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Abstract. The DLR-F11 high lift configuration previously considered at the 2nd AIAA High
Lift Prediction workshop (HiLiftPW-2) consists of a wing-body configuration with a three-
element high lift system including slat tracks and flap track fairings. This test case has been
selected a “computational / meshing challenge” in the 4th International Workshop on High-
Order CFD Methods due to its geometrical and computational complexity. In this article, we
demonstrate the applicability of current grid generation technology (CENTAUR) to generate a
quadratic curved mesh for this configuration. Furthermore, we employ a high-order Discontin-
uous Galerkin discretization for the Reynolds-averaged Navier-Stokes (RANS) equations with
the Wilcox-kω turbulence model which is sufficiently stable to be applicable to this test case.
Finally, a 3rd-order Discontinuous Galerkin (DG) flow solution is computed on the quadratic
(3rd-order) computational mesh. The numerical results are compared to experimental data as
well as to computational results published in the HiLiftPW-2.
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1 INTRODUCTION

In recent years there has been significant progress in the development of curved grid genera-
tion as well as of high-order aerodynamic flow solvers, cf. the EU-projects ADIGMA [19] and
its successor IDIHOM [20], for example. Nevertheless, in terms of geometrical and aerody-
namic complexity the capabilities reached were still far from being applicable to ”real-world”
industrial test cases.

Particularly problematic was the generation of computational meshes sufficiently coarse to
be suited to higher order methods and the subsequent curving of these meshes for a higher
order approximation of curved wall boundaries, which is known to be particularly difficult in
the presence of the highly stretched mesh elements typically used in the boundary layer of high
Reynolds number aerodynamic flow simulations. There have been a few efforts to generate
high-order meshes for flow field computations as demonstrated in [7], [22], and [28]. The
majority of these existing methods start with a relatively coarse linear grid and insert the extra
points needed to convert each element to high-order. There have also been methods that start
with a curved, high-order surface mesh. This surface is then marched outwards in order to create
the volume elements. The robustness of both the conversion method and the marching process
is an issue in the vicinity of highly curved convex and concave regions within the geometry. A
primary issue for high-order meshes is to ensure validity of the generated elements [17]. Work
on creating high order elements only in curved regions of the geometry has also been studied
[18].

Also, the high-order flow solvers reached their limits in terms of the stability of the dis-
cretizations and the solvers employed. Much effort concentrated on the development and in-
dustrialization of high-order CFD methods [19, 20] as well as on comparing the methods in
the International Workshops on High-Order CFD Methods [25]. However, the configurations
treated were bound to low to medium complexity. More recently, Discontinuous Galerkin dis-
cretizations were applied to the Common Research Model (CRM) wing-body configuration
[6, 10] and to a simple 3D high lift configuration in [15]. Here, it was particularly important for
the stability of the discretization to use a discretization at the wall boundary which resembles
as closely as possible the discretization on interior faces, and to use an according discretization
of force coefficients to keep adjoint consistency [14].

The DLR-F11 high lift configuration previously considered at the 2nd AIAA High Lift Pre-
diction workshop [1] consists of a wing-body configuration with a three-element high lift sys-
tem including slat tracks and flap track fairings. This test case has been selected a ”computa-
tional / meshing challenge” in the 4th International Workshop on High-Order CFD Methods [16]
due to its geometrical and computational complexity.

In the current work, we give details on how we create a coarse linear mesh for this configu-
ration using the CENTAUR grid generator [5], and describe the algorithms developed to curve
the mesh with piecewise quadratic polynomials for a 3rd-order boundary approximation. Fur-
thermore, we describe the main ingredients of the discretization employed [14, 15] which we
found sufficiently stable to be applicable to a test case of this complexity. Finally, the 3rd-order
DG flow solution computed on the quadratic (3rd-order) computational mesh is compared to
experimental data [1] as well as to numerical results published in the HiLiftPW-2 [1].

2 LINEAR AND QUADRATIC GRID GENERATION

In order to generate curved meshes for high-order CFD simulations, two problems must be
solved. First, a coarse linear mesh must be generated that both sufficiently models the geometry
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(c) (d) (e)

Figure 1: Sequence of steps used by CENTAUR to construct curved, high-order grids.

and ensures that any subsequent high-order mesh is not too big to use for simulations. Second,
a robust method to curve the linear mesh is required. This method must be able to work for
all types of elements. In particular, the method must be able to handle highly stretched mesh
elements used to model the boundary layer region in high Reynolds number aerodynamic flow
simulations. The method must also be able to handle highly curved surfaces in both convex and
concave regions.

For the purpose of this work, the CENTAUR grid generator [5] is used to create a quadratic
curved 3D hybrid grid. The basic algorithm used to create a curved, high-order mesh is as
follows:

(a) Generate a coarse, linear hybrid grid.

(b) Insert an additional midpoint for every grid edge and quadrilateral face.

(c) Use the CAD information to map each new boundary point onto the underlying CAD
surface.

(d) Adjust the position of the interior points based on the mapped position of the boundary
edge midpoints, in order to prevent self-intersecting grid elements and to ensure grid
validity.

First, a coarse linear 3D hybrid grid is created. CENTAUR allows for the mesh generation
process to be tuned so that fewer elements are created while still preserving the geometry.
For the surface mesh generation, a lower analytic curvature clustering is used along with a
larger maximum element size. Next, prisms or hexahedra generated in the boundary layer are
similarly adjusted to increase the first layer thickness in preparation for the added high-order
points. Then, tetrahedra are used to automatically fill the remainder of the domain matching the
length scales from both the surface mesh and the boundary layer mesh.

Second, the linear mesh is converted into a high-order mesh. As shown in Figure 1(b), new
mid-edge and mid-face points are added to all edges and quadrilateral faces in the linear mesh.
Any new point that is located on a boundary surface is then mapped onto the CAD surface using
the same geometry routines used during mesh generation to place points on the surface. At this
stage, the mesh may be invalid in convex curved regions as seen in Figure 1(c). While in other
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curved regions, the mesh point spacing may be valid but distorted after the mapping process is
completed. To correct both types of problems, the motion of the boundary points is smoothed
into the interior as shown in Figure 1(d).

After this process is completed, the grid quality and validity is evaluated using the volumes of
the complete elements and sub-elements formed using the points added in Step (b). To ensure
good quality, volume ratios of the elements and sub-elements are also used. If any element
violates the quality or validity measures, its points are adjusted to ensure the criteria are met.
This process iterates until the mesh meets the various criteria.

3 DG DISCRETIZATION OF THE RANS AND WILCOX k-ω EQUATIONS

In this section, we give details on the Discontinuous Galerkin discretization similar to that
previously developed in [14] and already applied to a simple 3D high lift configuration in [15].
In particular, we consider the Reynolds-averaged Navier-Stokes (RANS) equations and the
Wilcox k-ω turbulence model equations [26, 27],

∇ · (F c(u)−Fv(u,∇u)) = S(u,∇u) in Ω, (1)

where u = (ρ, ρv1, ρv2, ρv3, ρE, ρk, ρω̃)> is the vector of conservative variables, with ρ, E, k,
and v = (v1, v1, v3)>, denoting the density, specific total energy, turbulence kinetic energy, and
velocity vector, respectively. Similar to Bassi et al. [3] the equations are considered in terms
of the auxiliary variable ω̃ = lnω instead of the specific dissipation rate ω for a more moderate
near-wall behavior of the variable and for guaranteeing positivity of ω. Additionally, we apply
some realizability conditions for the turbulent stresses [3, 11]. For a detailed description of the
convective and viscous fluxes, F c(u) and Fv(u,∇u), and the source terms S(u,∇u) involved
in (1), and of the boundary conditions imposed on the boundary Γ = ∂Ω, we refer to [9, 13]. In
this work, adiabatic no-slip wall boundary conditions, v = 0, n · ∇T = 0, are imposed on the
wall boundary ΓW.

Let the domain Ω be subdivided into a shape-regular mesh Th = {κ} consisting of (possibly
curved) elements κ. Furthermore, let Vp

h be the finite element space consisting of discontinuous
vector-valued polynomial functions of degree p ≥ 0 on Th, then the Discontinuous Galerkin
discretization of (1) employed in this work is given by: Find uh in Vp

h such that∫
Ω

{(−F c(uh) + Fv(uh,∇huh)) : ∇hvh − S(uh,∇huh) · vh} dx

+
∑
κ∈Th

∫
∂κ

(
ĥh − σ̂hn

)
· vh ds+

∑
κ∈Th

∫
∂κ

(ûh − uh)⊗ n :
(
G>(uh)∇vh

)
ds = 0 (2)

for all vh ∈ Vp
h, where n|∂κ denotes the outward unit normal vector to the boundary ∂κ of

element κ. Here, the convective and diffusive numerical flux functions, ĥh and σ̂h, are ap-
proximations to the normal convective flux F c(uh) · n and the viscous flux Fv(uh,∇huh),
respectively. On an interior face ∂κ ∩ ∂κ′ between two neighboring elements κ, κ′ ∈ Th, the
numerical flux functions

ĥh = ĥ(uh,n) = ĥ(u+
h ,u

−
h ,n),

σ̂h = σ̂(uh,∇uh) = σ̂(u+
h ,u

−
h ,∇u

+
h ,∇u

−
h ),

(3)

connect the interior and the exterior traces, u+
h and u−h , and their derivatives,∇u+

h and∇u−h , of
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uh. On a boundary face ∂κ ∩ Γ 6= ∅, the numerical boundary flux functions,

ĥh|Γ = ĥΓ,h = ĥΓ(u+
h ,n),

σ̂h|Γ = σ̂Γ,h = σ̂Γ(u+
h ,∇u

+
h ).

(4)

depend on the interior trace u+
h , directly and/or through the boundary function uΓ(·) given by

uΓ(uh) = (uh,1, 0, 0, 0, uh,5, 0, uh,1ω̃wall)
> on ΓW, (5)

Here, ω̃wall is determined using a projection of the analytic ln(ω) near-wall behavior onto the
polynomial ansatz space in the elements at the wall [23]. Similarly, the vector-valued numerical
flux function ûh in (2) is an approximation to uh and is given by ûh = û(uh) = û(u+

h ,u
−
h )

on interior faces and by ûh|Γ = ûΓ,h = ûΓ(u+
h ) on boundary faces. Finally, G(u) de-

notes the homogeneity tensors defined by fvk (u,∇u) = Gkl(u)∂u/∂xl, k, l = 1, 2, 3, for
Fv(uh,∇huh) = (fv1 , f

v
2 , f

v
3 ). Assuming that the numerical fluxes ĥh and σ̂h are consistent,

then (2) is a consistent discretization of the flow equations (1), cf. [13, 14] for more details.

3.1 Numerical fluxes on interior faces

In the following, we give details on the numerical fluxes used on interior faces. For the con-
vective numerical flux ĥ a Roe flux is chosen based on the diagonalization of the full Jacobian of
the convective flux [24]. Furthermore, an entropy fix is employed similar to that of Harten [8].
Finally, the numerical fluxes for the diffusive terms are those of the BR2 scheme [3],

ûh = {{uh}}, σ̂h = {{G(uh)∇huh}} − δ(uh), (6)

where the penalization term δ(uh) is given by

δ(uh) = CBR2{{G(uh)L
e
0(uh)}}. (7)

Here {{τ}} = 1
2

(τ+ + τ−) denotes the standard mean used in the DG context, and Le0(uh)
denotes the local lifting operator, cf. [3, 14] for more details. Note that the penalization constant
CBR2 must be sufficiently large for stability [4] and is taken as the number of faces of an element.

3.2 Numerical fluxes on wall boundary faces

The discretization on the boundary is chosen as close as possible to the discretization em-
ployed on interior faces. In particular, we use the same numerical flux functions for defining
the numerical boundary fluxes as employed on interior faces, i.e., we consider

ĥΓ(u+
h ,n) = ĥ(u+

h ,u
−
Γ (u+

h ),n), ûΓ,h = {{uh}}Γ, σ̂Γ,h = {{F̃v(uh,∇uh)}}Γ − δ̃Γ(u+
h ), (8)

where the boundary mean value {{·}}Γ of uh is defined by {{uh}}Γ = 1
2

(
u+
h + u−Γ (u+

h )
)
, and

the wall exterior state u−Γ = u−Γ (u+
h ) is obtained by mirroring the interior state u+

h at the wall
boundary state uΓ(u+

h ) (cf. (5)) according to 1
2

(
u+
h + u−Γ (u+

h )
)

= uΓ(u+
h ). Furthermore, for

the BR2 scheme [3] the penalization term δ̃Γ in (8) is given by

δ̃Γ(u+
h ) = CBR2{{G̃(uh)L

e
Γ(uh)}}Γ = CBR2

2

(
G̃(u+

h )LeΓ(u+
h ) + G̃(u−Γ )LeΓ(u−Γ )

)
= CBR2{{G̃(uh)}}Γ L

e
Γ(u+

h ),
(9)
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where LeΓ(u) denotes the local lifting operator on the boundary with LeΓ(u+
h ) = LeΓ(u−Γ ), cf. [13,

14] for more details. Finally, the diffusive flux F̃v in (8) and the corresponding homogeneity
tensor G̃ in (9) is modified on the adiabatic walla boundary ΓW such that no heat flux is added,
corresponding to the adiabatic condition n · ∇T = 0, i. e.,

n · F̃v(u,∇u) = n ·
(
G̃(u)∇u

)
= (0, (τ n)1, (τ n)2, n · (τ v))>on ΓW. (10)

The boundary treatment of fluxes in (8) corresponds to introducing a ghost layer of elements
at the wall boundary and evaluating the discretization on the wall boundary like on interior faces.
Finally, (∇u)−Γ in {{F̃v(uh,∇uh)}}Γ = 1

2
(F̃v(u+

h ,∇u
+
h )+ F̃v(u−Γ , (∇u)−Γ )) is the wall exterior

gradient which might depend on the interior state and gradient but is chosen as (∇u)−Γ = ∇u+
h ,

for simplicity, which results in {{F̃v(uh,∇uh)}}Γ = {{G̃(uh)}}Γ∇u
+
h .

3.3 Evaluation of force coefficients

Let us consider the total drag and lift coefficients, CD and CL,

J(u) =

∫
ΓW

(pn− τ n) ·ψ ds =

∫
ΓW

(p ni − τijnj)ψi ds, (11)

where τ = (µ + µt)
(
∇v + (∇v)> − 2

3
(∇ · v)I

)
presents the stress tensor at the wall in-

cluding the viscous and turbulent viscosities µ and µt. Furthermore, ψ is given by ψd =
1
C∞

(cos(α), 0, sin(α))> or ψl = 1
C∞

(− sin(α), 0, cos(α))> for the drag and lift coefficient, re-
spectively, and α is the angle of attack. Finally, C∞ = q∞A, where q = 1

2
ρ|v|2 denotes the

dynamic pressure and A denotes a reference area and subscripts ∞ indicate freestream quanti-
ties.

Given that the numerical boundary fluxes ĥh|Γ and σ̂h|Γ are consistent, Jh(uh) defined by

Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds

=

∫
ΓW

(
ĥ(u+

h ,u
−
Γ (u+

h ),n)− {{G̃(uh)}}Γ∇u
+
h + δ̃Γ(u+

h )
)
· ψ̃ ds.

(12)

with ψ̃ = (0, ψ1, ψ2, ψ3, 0)>, is a consistent discretization of the force coefficient J(u) in (11).
Finally, the discretization of the force coefficients according to (12) is required for a discretiza-
tion of (1) to be adjoint consistent [14].

3.4 Evaluation of cp- and cf -values

Related to the evaluation of integral quantities (the force coefficients) is the evaluation of
local quantities at the wall boundary like surface pressure and skin friction as involved in cp-
and cf-distributions. The local cp- and cf-values at the wall boundary ΓW are given by

cp = cp(u) =
p(u)− p∞

1
2
ρ∞v2

∞
, cf = cf(u,∇u) =

τW (u,∇u)
1
2
ρ∞v2

∞
, (13)

where τW = −(τ n) · t denotes the viscous stress at the wall, and τ = µS is the viscous stress
tensor defined in Section 3.3. Here, we recall that n is the unit outward normal vector to the
boundary Γ of the (fluid dynamics) computational domain Ω; thus the vector n points into the
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airfoil. Furthermore, t denotes the unit tangential vector to Γ parallel to the flow direction off
the wall and directed such that t · v∞ > 0. Similar to evaluating the force coefficients (11)
based on (12), the local cp- and cf-values (13) are evaluated based on (cf. [14])

cp,h = cp,h(uh) =
ĥΓ,h · ñ− p∞

1
2
ρ∞v2

∞
, cf,h = cf,h(uh,∇uh) = −

(
σ̂Γ,hn

)
· t̃

1
2
ρ∞v2

∞
, (14)

with ñ = (0, n1, n2, n3, 0)> for n = (n1, n2, n3)>, and t̃ = (0, t1, t2, t3, 0)> for t = (t1, t2, t3)>.

4 APPLICATION TO THE DLR-F11 HIGH LIFT CONFIGURATION

In the 4th International Workshop on High-Order CFD Methods (HioCFD-4), the DLR-F11
high lift configuration is considered a ”computational/meshing challenge”. This configuration
has already been extensively analyzed for various configuration detail levels in the 2nd AIAA
High Lift Prediction Workshop (HiLiftPW-2). In HioCFD-4, the so-called Config 4 detail level
is considered which includes slat tracks and flap track fairings but no slat pressure tube bundles.
This configuration is considered at Mach numberM = 0.175, Reynolds numberRe = 15.1·106

based on the mean aerodynamic chord (MAC) of 347.09mm, and angle of attack α = 7◦. These
are the flow conditions of one of the high Reynolds number cases of Case 2b in HiLiftPW-2.

4.1 Linear and quadratic mesh generation process

For the DLR-F11 configuration under consideration, first a linear hybrid mesh has been
generated using the CENTAUR grid generator. To reduce the number of surface faces, the
curvature clustering was lowered to 6 compared to a typical value of 12-20. The curvature
clustering represents the number of points used to model a full circle. To further reduce the
number of surface faces, the faces on the wing and high lift surfaces were stretched in the
spanwise direction by a factor of 3 near the leading and trailing edges. To properly model the
boundary layer region, a 20-layer prismatic mesh was used with the initial layer thickness set
to 0.003mm and the stretching set to 1.44. To decrease the number of tetrahedra generated, a
tetrahedral stretching value of 2.15 was used. Sources were also used to locally add additional
elements where needed to model complex geometric regions like the intersection between the
slat and slat tracks.

With 2 365 919 prisms, 42 603 pyramids and 1 116 213 tetrahedra, in total 3 524 735 elements
and 1 427 392 nodes, the linear mesh is rather coarse considering the complexity of the config-
uration. In a second step, also using the CENTAUR grid generator, the wall boundary faces
of this mesh have been curved to create a quadratic, 3rd-order boundary approximation, and
boundary as well as interior elements have been curved in order to avoid crossover of element
faces. The high-order mesh contains the same number of elements and has 11 237 409 nodes.
Figure 2 shows the quadratic mesh for the DLR-F11 configuration including curved surface
faces on the fuselage. Figure 3 shows the surface mesh for both the linear and quadratic meshes
in the region of the outboard flap track fairing. Note the curved surface elements on the trailing
edge of the flap track fairing and its lower surface. Figure 4 shows a cut through both the linear
and the quadratic hybrid meshes around the slat. The quadratic mesh clearly shows the curved
prisms in the boundary layer. Both the first layer elements and elements farther away from the
surface have been curved to ensure a good quality mesh in this region. Finally, Figure 5 shows
a cut through the prism layers around the slat and leading edge of the main wing and their con-
nection to the tetrahedral farfield mesh. Note the relatively smooth surface of the slat and main
wing despite the relatively coarse surface mesh in this region of high curvature.
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Figure 2: Quadratic mesh for the DLR-F11 configuration.

(a) (b)

Figure 3: Outboard flap track fairing surface mesh: (a) the linear mesh, and (b) the quadratic mesh.

(a) (b)

Figure 4: Hybrid mesh cuts in the slat region: (a) the linear mesh, and (b) the quadratic mesh.

Figure 5: Cut throught the prism layers around the slat and the leading edge of the main wing.
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4.2 Flow solution process

The DG solver PADGE [12] employs the discretization of the RANS and Wilcox-kω equa-
tions as described in Section (3). The discrete equations are solved fully implicitly using a lin-
earized Backward-Euler method. The CFL number of this pseudo-time iteration method starts
with a low value and increases as the nonlinear residual decreases. Divergent iteration steps
are (automatically) repeated with half the CFL number or even with a lower factor if required.
As the solution continues to converge the CFL reduction factor is subsequently increased to
unity again. This way, the solver can overcome difficult stages in the solution process like the
transient phase but still benefits from (relatively) high CFL numbers in the final stage of the so-
lution process. The linear systems of the implicit iteration scheme are solved using the GMRES
method and the ILU(0) preconditioner as offered by the PETSc library [2] which runs within
a block-Jacobi iteration in parallel. The Jacobian matrices required in the implicit scheme are
hand-differentiated and complete in the sense that the derivatives of all terms are included and
all equations are fully coupled.

On the mesh generated as described in Sections 2 and 4.1 we first solve the DG discretiza-
tion (2) for the polynomial degree p = 0, and subsequently for p = 1 and p = 2. The solver for
the p = 0 solution starts from freestream values, the solver for each of the p > 0 solutions starts
from the converged p−1 solution. With this p-sequencing the solver for each polynomial degree
has a sufficiently good initial guess to start the solution process with. We choose the number of
quadrature points per elements depending on the polynomial degree. For a polynomial degree
p we use p+ 2 Gaussian quadrature points in each dimension, i. e., (p+ 2)3 per element. Before
the PADGE solver starts solving it checks the regularity of the mesh by evaluating the Jacobian
determinants1 at the quadrature points for the particular polynomial degree. As the degree in-
creases the number of quadrature points per element increases and the coverage of the element
by checking the determinants in quadrature points is increased. Thus, a curved mesh which
might occur “discretely regular” for one specific degree (and thus quadrature formula) might
turn out to be irregular if checked at the quadrature points involved for a higher polynomial
degree.

degree # DoFs/eqn # quadrature # irregular worst # neg.
points/elem. elements Jac./element

0 3 524 735 8 0 0/8
1 14 098 940 27 0 0/27
2 35 247 350 64 14 2/64

Table 1: PADGE’s “discrete regularity” check of the mesh (with 3 524 735 elements) for p = 0, p = 1, and p = 2.

The related data is collected in Table 1 for p = 0, p = 1, and p = 2. For each of the
polynomial degrees it includes the number of degrees of freedoms per equation, the number
of quadrature points per element, the number of irregular elements when checking the Jaco-
bian determinants in the quadrature points, and finally the worst/highest number of quadrature
points per element at which the Jacobian determinant is negative. Here, we see that the mesh is
“discretely regular” when checking in the quadrature points of the discretization of polynomial
degrees p = 0 and p = 1 as in each of the quadrature points involved the Jacobian determinant

1Jacobian determinant: The determinant of the derivative of the mapping function from the reference element
to the element in physical space.
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is positive. Furthermore, we see that for p = 2 there are 14 irregular elements. However, in
these elements the Jacobian determinants are negative in at most 2 out of 64 quadrature points.
Depending on the sensitivity of the discretization to irregular elements this “slightly irregular”
mesh might be acceptable to the flow solver or not.

On this mesh we computed p = 0, p = 1 and p = 2 (i. e., 1st-, 2nd-, and 3rd-order) flow
solutions. For each of the polynomial degrees the (l2-norm of the) nonlinear residual (vector)
is reduced by a factor of 10−10 relative to the freestream residual for that polynomial degree.
Then the flow solution is transferred to (embedded into) the function space of the next higher
polynomial degree, and the solution process is continued. Figure 6 plots the convergence history
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Figure 6: DLR-F11, Config 4: M = 0.175, Re = 15.1 ·106, α = 7◦: Solver convergence of the nonlinear residual
vs. the number of fully implicit iteration steps for the p = 0, p = 1, and p = 2 flow solutions.

of the (l2-norm of the) nonlinear residual (vector) normalized by the freestream residual for
each polynomial degree. The p = 0 solution for which several of the physical and discretization
terms vanish is converged in a very small number (17) of iterations steps. The p = 1 solver
does not start from freestream (corresponding to a normalized residual of one) but from a lower
residual as it uses the p = 0 solution as initial solution. The p = 1 solution requires a relatively
large number (339) of iteration steps. This is a typical effect in p-sequencing on fine meshes
where the p = 1 solver starts with a rather bad p = 0 solution as initial guess. In the convergence
history of the p = 1 solution there are several stages where the convergence rate is reduced to
almost zero. Here, the solver experienced problems and decided to recompute some iteration
steps with a decreased CFL number. Given that in this computation 45 out of the 339 iteration
steps diverged/failed and needed to be recomputed the initial CFL number and the settings of
its subsequent increase seemed to be chosen too high. Even close to the 10−10 convergence
criterion the solver experienced problems which is why the computation had been restarted to
check whether the nonlinear residual would converge below 10−14, and it actually did after 87
further steps 18 of which were recomputed. Overall, the CFL number in the p = 1 solution
process started with 5 and increased to 500 until residual 10−10 and over 40 000 until residual
10−14. Finally, the p = 2 solver took the p = 1 solution as initial guess and converged the
nonlinear residual below the prescribed 10−10 tolerance. Here, only 24 out of 254 nonlinear
iteration steps failed and needed to be recomputed with a decreased CFL number. Here, the
CFL number started at 10 and increased up to 200.
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Figure 7: DLR-F11, Config 4: M = 0.175, Re = 15.1 ·106, α = 7◦: cp-distributions of the 3rd-order DG solution
viewed from above and below the configuration.

(a) (b)

Figure 8: DLR-F11, Config 4: M = 0.175, Re = 15.1 · 106, α = 7◦: (a) cf -distribution and streamlines of the
3rd-order DG solution on the main wing and flap. (b) Pressure tap locations in the experiment (figure from [1]).

The cp-distribution of the resulting p = 2 flow solution is shown in Figure 7. Here, we
recognize the complexity of the flow which passes the slat, the slat tracks, the upper wing or
the lower wing with the flap track fairings, and the flap. Furthermore, Figure 8(a) shows the
cf -distribution and cf -streamlines zoomed in on the flap and parts of the main wing. Here, we
see that the flow stays attached on the main wing as well as on most of the flap. However, close
to the flap track fairings (located below the flap) there are small separation regions on the upper
side of the flap. Furthermore, there is a larger separation region on the flap near its tip.

Figure 8(b) shows the location of the pressure taps in the experimental setup. Slices of the
cp-distribution at the pressure tap locations PS1, 4, 6, and 10 (at the y-positions η = 0.150,
0.449, 0.681, and 0.891, respectively) are shown in Figure 9 compared to the experimental data
at similar flow conditions. Here, we see that the cp-distribution matches very well that of the
experiments, not only on the main wing but also on the flap and the slat.
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(a) (b)

(c) (d)

Figure 9: DLR-F11, Config 4: M = 0.175, Re = 15.1 ·106, α = 7◦: cp-distributions of the 3rd-order DG solution
compared to experimental data (at M = 0.176, Re = 15.1 · 106, α = 7.03938) [1]. cp-slices at pressure tap
locations (a) PS01 at η = 0.150, (b) PS04 at η = 0.449, (c) PS6 at η = 0.681, and (d) PS10 at η = 0.891.

Finally, Table 2 collects the integrated forces. Here we see that the force coefficient values
for the lift, drag and moment coefficients, CL, CD, and CM , are quite close to the experimental
data. Furthermore, they are in a range similar to that obtained in RANS-SA computations during
the HiLiftPW-2, with a slightly larger deviation in the moment but closer to the experiments in
the drag coefficient.

5 CONCLUSIONS AND OUTLOOK

The computational/meshing challenge of the DLR-F11 configuration which is “close to in-
dustrial needs” was considered to improve and challenge current high-order mesh generation
and solver techniques. For this complex geometry, a quadratic curved mesh has been generated
using the CENTAUR grid generator [5]. On this 3rd-order mesh a fully turbulent 3rd-order DG
solution to the RANS and Wilcox-kω turbulence equations has been obtained using the fully im-
plicit DLR-PADGE solver [12]. The numerical results compare very well to experiments, with
particularly well matching cp-distributions, and good approximations were obtained to global
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CL CD CM
Exp. 1.9270 0.1615 -0.5390
TAU? 1.8794 0.1681 -0.5647

-2.5% +4.1% -4.8%
PADGE 1.8781 0.1649 -0.5704

-2.5% +2.1% -5.8%

Table 2: DLR-F11, Config 4: M = 0.175, Re = 15.1 · 106, α = 7◦: Force coefficients of the p = 2 flow solution
compared to HiLiftPW-2 results (? Rudnik, Melber-Wilkending (DLR), RANS-SAO, 2013) and experiments [1].

force coefficients with deviations in the range of previous HiLiftPW-2 results.
This work can be considered as one of possibly many steps towards offering a complete and

automated chain of high-order grid generation and high-order aerodynamic CFD solver tech-
nology. At the beginning of this work curved grids were generated for this complex geometry
which included a large number (> 100) of heavily irregular elements. In contrast to that the
grid on which a 3rd-order solution could finally be computed had only a few (in the range of
10) elements left which were “slightly irregular” only. Given this it is clear that the high-order
grid generation took a significant step forward. Nevertheless, further steps are required in this
direction. First of all, the final goal would be that all elements in a high-order mesh are regular;
in a first step not necessarily “regular” as can be analyzed with a validity check based on Bézier
functions [17], but “discretely regular” in the sense that the Jacobian determinants are positive
at least in each of the quadrature points involved in a (quadrature-based) discretization of a
specific polynomial degree. Secondly, meshes which are generated to be used with high-order
methods, and which will be taken as starting point for local mesh (or hp-)refinement [18, 21]
should be as coarse as possible but clearly still sufficiently fine to capture the geometry. On this
fine line of ostensibly conflicting requirements (coarse but still sufficiently fine) it is particular
important that mesh generation capabilities are stable and deliver high quality elements even in
case of particularly coarse meshes. Finally, curved grid generation should not stop at quadratic
boundary approximation. The difference between using quadratic curved meshes as compared
to using linear (straight-sided) meshes is quite large and can be expected to be larger than
the difference between e. g., a quadratic and a cubic boundary approximation. Nevertheless, a
boundary approximation higher than quadratic – even though introducing additional complexity
in the grid generation process – would increase the quality of the boundary approximation in
case of a fixed mesh size or would allow coarser meshes with a similar boundary approximation
quality.

No doubt, the complexity of the configuration considered stressed the PADGE solver [12]
close to its current limits. Using a discretization on the boundary which resembles the dis-
cretization employed on interior faces as close as possible, and thus introducing a level of
numerical diffusion which is equal/similar throughout the domain until (and including) the
boundary, is – to our experience [15] – an essential ingredient to stabilize flow computations
on geometries of this complexity. With an appropriate discretization of force coefficients the
particular discretization employed on the boundary does not break adjoint consistency [14], in
which case corresponding discrete adjoint solutions can be expected to be smooth. Furthermore,
evaluating local quantities like surface pressure and skin-friction at the wall accordingly, allows
to obtain accurate and smooth cp- and cf -distributions [14] even in our case of using numerical
flux functions at the wall boundary. A fully implicit solver has been used, with solver recovery
techniques enabled which recompute divergent/failed steps with a lower CFL number. Further
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development of the high-order discretization and solvers are still required. While PADGE can
be considered a research code, not particularly trimmed to efficiency or scalability, high-order
DG methods are currently being implemented alongside cell-centered 2nd-order Finite Volume
methods into the new DLR flow solver Flucs dedicated (amongst others) to future industrial use.
Significant effort will be required to make high-order DG methods readily available to industry
for configurations of this complexity, at cruise as well as at high lift conditions.
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