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Abstract. The simulation of high-speed turbulent compressible flows using a numerical method
of Large Eddy Simulation (LES) combined with the Characteristic-Based Split scheme (CBS)
and anisotropic mesh adaptation is presented in this work. The CBS scheme is a unified ap-
proach for Computational Fluid Dynamics (CFD) with capability of covering a wide range of
flow speeds and types with good stability and accuracy compared with other numerical schemes
of the same order [1]. Although LES of incompressible flows combined with the CBS scheme
has already been successfully addressed, the compressible extension is not yet covered, been the
main contribution of this work. The CBS scheme is employed in a Finite Element Method (FEM)
context for space and time discretization using unstructured meshes with adaptation [2], allow-
ing the representation of complex geometries with accuracy. The anisotropic mesh adaptation is
performed with mesh refinement, mesh coarsening and edge swapping procedures. A compress-
ible dynamic Smagorinsky model is employed for the compressible LES model. The developed
code is used to investigate a complex turbulent transonic flow around a circular cylinder in a
two-dimensional approach. Several complex flow features such as lamda-shock-waves, viscous
interactions and Von Kármán vortex sheet effects are correctly captured by the mesh adapta-
tion strategy and the computed aerodynamic coefficients are close to the experimental reported
values.
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1 INTRODUCTION

The simulation of high-speed turbulent compressible flows at transonic and supersonic speed
ranges has several difficulties. For aerodynamic problems, the accurate capturing of the com-
plex three-dimensional shock waves and flow features developed is a challenging task which
is hard to accomplished without making use of a mesh adaptation methodology. The adequate
mesh to be used in the simulation depends on the desired resolution, the numerical algorithm
employed, the flow characteristics and the geometry, thus being hard to be a priori determined
even for an expert in CFD. Furthermore, the large mesh resolution required to correctly eval-
uate the smallest scales present in flows of high Reynold number, typically present in such
type of problems, is prohibitive. Such constraints are alleviated by making use of a turbulence
modelling strategy such as the Large Eddy Simulation (LES) combined with mesh adaptation.

Large Eddy Simulation (LES) directly calculates the large and energetic vortical structures in
turbulent flows, while modelling the smaller-scales eddies. Therefore, compared to Reynolds-
Averaged Navier-Stokes (RANS) models, the advantage of LES are significant, being RANS
effective only for steady simulations of fluid flows. The LES model is combined with the
Characteristic-Based split Scheme (CBS) [1] in this work to simulate turbulent compressible
flows. The CBS scheme can handle with flows with a wide range of velocities. The capabilities
of using the CBS scheme to solve compressible turbulent flows has not been investigated yet
and it is the main objective of this work.

Mesh adaptation is combined with the turbulent flow solver in order to achieve a high resolu-
tion solutions together with low computational cost. The main procedures for mesh adaptation
used in this work are mesh refinement, mesh coarsening and edge swapping. Mesh adaptation
is evaluated anisotropically by making use of a metric-based methodology using the concept of
Riemannian space to analyse the error as a tensorial quantity [2].

The developed algorithm is used to investigate a complex transonic turbulent flow around a
circular cylinder in a two-dimensional approach. Even for a two-dimensional investigation, the
obtained results are quite promising. The evaluated aerodynamic coefficients, Strouhal number
and the complex flow features are in good agreements with experimental results.

2 GOVERNING EQUATIONS

For an arbitrary function F (xi, t), the filtered variable F̄ (xi, t) in physical space is repre-
sented by the convolution product [3]:

F̄ (xi, t) =

∫
Ω

G (xi − ξi,∆)F (ξi, t) dξi (1)

where xi are the Cartesian coordinates (i = 1, 2), t is the time variable, G is the filter ker-
nel, Ω represents the flow domain and ∆ is a measure of the filter width and is related to the
computational mesh size. For compressible flows, the density weighted variable F̃ (xi, t) is
employed:

F̃ (xi, t) =
ρF
ρ

(2)

and the resulting filtered compressible Navier-Stokes equations are:

∂ρ

∂t
+

∂

∂xi
(ρũi) (3)
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∂ (ρũj)

∂t
+

∂

∂xi
(ρũiũj)−

∂τ̃ij
∂xi
−
∂τ sgsij

∂xi
+

∂p

∂xj
+
∂ (τ ij − τ̃ij)

∂xi
= 0 (4)

∂
(
ρẼ
)

∂t
+

∂

∂xi

(
ρẼũi

)
− ∂

∂xi

(
k̃
∂T̃

∂xi

)
+

∂

∂xi
(pũi)−

∂

∂xi
(τ̃ijũj)− Cp

∂qsgsi

∂xi
− (5)

∂

∂xk
([τ ik − τ̃ik] ũi)−

1

2

∂

∂xi
ρ ( ˜ukukui − ũkũkũj − τ sgskk ũi) +

∂

∂xi

(
k
∂T

∂xi
− k̃ ∂T̃

∂xi

)
= 0

where ρ is the mean density, ũi are the filtered Cartesian components of the velocity, p is the
mean pressure, τ̃ij and τ ij are the filtered and mean molecular viscous stress tensor, respectively,
Ẽ is the filtered total energy, T̃ is the filtered absolute temperature, k̃ and k are the filtered and
mean diffusion coefficient, respectively, Cp is the specific heat coefficient at constant pressure,
τ sgsij is the sub-grid scale stress tensor and qsgsi is the sub-grid turbulent heat flux. The filtered
viscous stress tensor is approximated by:

τ̃ij = µ̃

[(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
δij
∂ũk
∂xk

]
(6)

where µ̃ is the molecular viscosity based on the Favre-filtered static temperature T̃ and δij is the
Kronecker delta. The temperature dependence of the molecular velocity is evaluated through
the Sutherland’s relation [4]:

µ̃ =
1.45T̃ 3/2

T̃ + 110
× 10−6 (7)

where all variables are in the SI system and T̃ is given in Kelvin. The closure of the conservative
equations is done with the addition of the state equation of a perfect gas:

p = (γ − 1) ρẽ (8)

where γ = Cp/Cv with Cv is the specific heat coefficient at constant volume and ẽ is the filtered
internal energy.

The sub-grid scale stress tensor and the sub-grid turbulent heat flux are defined as:

τ sgsij = ρ (ũiuj − ũiũj) (9)

qsgsi = ρ
(
T̃ uj − T̃ ũj

)
(10)

The terms (τ ij − τ̃ij), ∂
∂xi

(
k ∂T
∂xi
− k̃ ∂T̃

∂xi

)
and 1

2
∂
∂xi
ρ ( ˜ukukui − ũkũkũj − τ sgskk ũi) are neglected

due to its small contribution to the filtered conservation equations, following the results of
[5, 6, 7, 8]. Finally, the total energy is approximated by [9, 10]:

ρẼ = ρCvT̃ +
1

2
ρũiũi +

1

2
τ sgsii (11)
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Based on the widely used sub-grid eddy viscosity model, the sub-grid stress tensor can be
written as:

τ sgsij = 2ρνsgs

(
S̃ij −

1

3
S̃kkδij

)
− 1

3
τ sgskk δij (12)

where the rate of strain tensor S̃ij is defined by:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(13)

and the trace of sub-grid stress τ sgskk tensor is modelled separately. The dynamic compressible
Smagorinsky model is used in this work to evaluate the sub-grid viscosity νsgs and thus τ sgsij ,
qsgsi and τ sgsii [11].

The numerical solution of the flow equations is performed with the Characteristic-Based Split
(CBS) scheme introduced by Zienkiewicz and Codina [12]. For the solution of the governing
equations, the CBS algorithm uses a fractional step with a split. The four steps can be briefly
described as [13]:

1. solve momentum equation without pressure terms,

2. calculate pressure solving a Poisson equation,

3. correct velocity components,

4. calculate additional scalar variables, such as temperature, from appropriate governing
equations.

The time increment is assumed to be ∆t = tn+1 − tn and the flux mass Un+1
i = ρui, evaluated

at time n+ 1, is split into two terms:

Un+1
i = Un

i + ∆U∗i + ∆U∗∗i (14)

A standard Galerkin finite element procedure is used for spatial discretization. Linear triangular
and elements are employed in the present work. The spatial discretization of the variables is
carried out as:

Ui = NuÛi, ∆Ui = Nu∆Ûi, ∆U∗i = Nu∆Û∗i , ∆U∗∗i = Nu∆Û∗∗i
ui = Nuûi, p = Npp̂, ρ = Nρρ̂ (15)

where a hat superscript represents a nodal quantity and Ni are the shape functions such that:

Ûi =
[
U1
i , U

2
i , · · · , Ua

i , · · · , Um
i

]T (16)

Nj =
[
N1
j , N

2
j , · · · , Na

j , · · · , Nm
j

]
(17)

with a being a node (or variable), which varies from 1 to m, i = 1, p and j = ui, p, ρ.
The semi-discrete forms of the CBS equations are then weighted by NT and integrated over

the domain. The final equations for the four steps of the CBS scheme for the explicit formulation
is summarized as:
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• Step 1, obtain ∆Ũ∗i :

M∆Û∗i = ∆t
[
(C− S)

(
ûjÛi

)
− (Kτ −Tτ ) Tij

]n
− ∆t2

2
ûk

[
(Ku −Tu)

(
ûjÛi

)
+ (Kp −Tp) p̂

]n
(18)

• Step 2, obtain ∆ρ̃:

M∆ρ̂ = ∆t
[
(D−Ru)

(
Ûi + θ1∆Û∗i

)
−∆tθ1Kp̂

]n
(19)

• Step 3, obtain Ũi, thus establishing the values at tn+1:

MÛi = M∆Û∗i + ∆t[(D−Ru) p̂]n (20)

• Step 4, solve energy equation to obtain the value ∆ρ̃Ẽ:

M∆ρ̂Ê = ∆t
[
(C− S) ûj

(
ρ̂Ê + p̂

)
− (Tτ −Kτ ) (Qi + Tijûj)

]n
− ∆t2

2

[
ûk (Ku −Tu) ûj

(
ρ̂Ê + p̂

)]n
(21)

where Tij = τij + τ sgsij is the total stress, Qi = k ∂T
∂xi

+ qsgsi is the total heat flux and the vector
and matrices are given by:

M =

∫
Ω

NTNdΩ Ru =

∫
Ω

NTNnidΩ S =

∫
Γ

NTNnjdΓ (22a)

C =

∫
Ω

∂NT

∂xj
NdΩ D =

∫
Ω

∂NT

∂xi
NdΩ K =

∫
Ω

∂NT

∂xi

∂N

∂xi
dΩ (22b)

Kτ =

∫
Ω

∂NT

∂xj
dΩ Ku =

∫
Ω

∂NT

∂xk

∂N

∂xj
dΩ Kp =

∫
Ω

∂NT

∂xk

∂N

∂xi
dΩ (22c)

Tτ =

∫
Γ

NTnjdΓ Tu =

∫
Γ

NT ∂N

∂xj
nkdΓ Tp =

∫
Γ

NT ∂N

∂xi
nkdΓ (22d)

with θ1 = 0.5 for a second-order accuracy (Crank-Nicolson scheme) in time for the velocity.
For transonic and supersonic speeds, an additional shock capturing dissipation is introduced

to capture and smooth local oscillations in the vicinity of shocks. A method based on the
Hessian of pressure is employed, modifying Φ̂n+1 =

{
ρ̂, ûi, Ê

}
evaluated in time n + 1 to

Φ̂n+1
s by [14]:

Φ̂n+1
s = Φ̂n+1 −∆tM−1

L Ceh
3 |u|+ c

p

∣∣∣∣∂2p

∂x2
i

∣∣∣∣n
e

(∫
Ω

∂NT

∂xi

∂N

∂xi
dΩ

)
Φ̂n (23)

where h is the element size [14], c is the local sound speed, Ce is an user-informed constant and
the subscript e represents an element [1].

The following local time stepping is employed [13]:

∆t = min

(
h

c+ |u|
,
h2

2ν

)
θc (24)

where θc is an user specified number between 0 and 1 used to not violate the Courant-Friedrichs-
Lewy condition.
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3 MESH ADAPTATION

Both the direction and the magnitude of the anisotropy are important and necessary infor-
mation required for the construction of an anisotropic mesh adaptation procedure. These in-
formation can be evaluated through the use of the so called metric-based methods, where a
Riemannian metric space is evaluated based on the interpolation error of the solution field. The
most important features of the metric-based method employed in this work for two-dimensional
problems is briefly described in this section. A more detailed overview of such methodology
can be found in references [15, 2].

3.1 Metric Estimates

The length `M (ab) of an edge ab can be continuously evaluated in a Riemannian metric
space with a parametrization given by γ (t) = a + tab with t ∈ [0, 1] as:

`M (ab) =

∫ 1

0

‖γ′ (t)‖Mdt =

∫ 1

0

√
abTM (a + t ab) ab dt (25)

whereM is a 2× 2 symmetric positive definite matrix called metric tensor, or just metric. The
size |TK |M of an element K evaluated in the Riemannian metric space is determined by:

|TK |M =

∫
K

√
detM (x)dx (26)

The anisotropic quality of an element K can be monitored through a quality function QM that
combines both sizing and orientation information [16]:

QM (K) =

∑
`2
M (AK)

|TK |M
(27)

where AK are the edges of an element K. In the previous equation, the numerator takes into
account the sizing of the mesh. Decreasing the length of the edges evaluated in the Riemannian
space also reduces QM. The denominator is a measure of the orientation of the simplex in the
Riemannian space, where a simplex oriented closer to the local field eigenvectors leads to a
reduction of QM. Thus, minimizing QM the quality of the element becomes maximized in an
anisotropic sense.

From a discrete point of view, the metric field need to be interpolated to evaluate approximate
length and volume in the Riemannian space. Considering a linear interpolation of the metric
tensor, the integration of Eq. 25 is evaluated by [17]:

`M (ab) ≈ 2

3

`2
0 + `0`1 + `2

1

`0 + `1

(28)

where `i (ab) =
√

abTM (xi)ab is the length of the edge in metricM (xi) with i = 1, 2 for
the edge end-points a and b, respectively. Similarly, the integral of Eq. 26 can be numerically
approximated by:

|TK |M ≈

√√√√det
1

3

3∑
i=1

Mi (x) |TK | (29)

whereMi (x) is the metric at each of the i vertices of the element K (assumed as a triangle)
with Euclidean oriented measure |TK |.
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The error ELp(ab) estimated for an edge ab is defined as the upper bound of the difference
between a quadratic approximation and the evaluated linear interpolation measured in the Lp

norm for a given continuous function φ, which can be expressed as:

ELp(ab) ≡ `M (ab) (30)

with the metricM (x) defined as the normalized Hessian of the function φ measured in the Lp

norm [18]:
M (x) =MLp (x) = (det |H|)−

1
2p+d |H| (31)

where H is a symmetric matrix representing the Hessian of φ. As H is a symmetric matrix, it
can be decomposed into the product of orthonormal matrices R of associated eigenvectors and
a diagonal matrix Λ of eigenvalues. To ensure that H is a positive-defined matrix and limited,
|H| = R

∣∣∣Λ̃∣∣∣RT is obtained as the Hessian matrix with normalized and limited eigenvalues λ̃i

of Λ̃ = diag
(
λ̃i

)
such that [15]:

λ̃i = min

(
max

(
λi,

1

h2
max

)
,

1

h2
min

)
(32)

with hmax and hmin as the maximum and minimum allowed edge size in the mesh and the
Hessian matrix is evaluated by a double projection scheme using a weak formulation [19].

3.2 Metric Intersection

When more than one metric is simultaneously specified at one point, the resulted met-
ric should cover the minimum error associated to each of these metrics. Therefore, a met-
ric intersection procedure is used in this work. A common basis P of two metrics MA and
MB is looked for, such that they are congruent to a diagonal matrix at its basis. The matrix
B =MA

−1MB is introduced, such that B is diagonalizable with real eigenvalues. The normal-
ized eigenvectors of B are ei with i = 1, 2 and compose the common diagonalizable basis P .
The principal components ofMA andMB projected in this basis can be obtained with [15]:

µi = eTiMAei and βi = eTiMBei (33)

As P is also invertible, the metric intersection can be evaluated through:

MA∩B =MA ∩MB =
(
P−1

)Tdiag (max (µi, βi))P−1 (34)

For a third metricMC to be intersected, the same procedure is performed, withMAB∩C em-
ployingMAB =MA∩B and so on for more metric intersections.

3.3 Mesh Refinement, Mesh Coarsening and Edge Swapping

The present mesh adaptation procedure uses the metric-based framework to evaluate the error
associated to each edge of the mesh. When the error is above a specified value, the edge is split
into two new edges. When the error is less than the desired, the edge is removed by an edge
collapse procedure. Edge and face swapping are also used to improve the mesh quality.

When an edge ab is refined, a new node c is inserted generating two new edges: ac and cb.
A Riemannian centred is used, such that the new inserted node c verifies the following relation:

`M (ac) = `M (cb) (35)
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0 1 2 3

Figure 1: Edge-based anisotropic triangular subdivision scheme.

The spatial variation of the metric must be taken into account to solve the non-linear integral
relation defined by Eq. 35. Moreover, using Eq. 25 and the parametrization ac = mab and
cb = (1−m) ab with m ∈ [0, 1], the Riemannian centred split defined in Eq. 35 can be
evaluated by finding m such that:∫ 1

0

√
acTM (a + t ac) ac dt =

∫ 1

0

√
cbTM (c + t cb) cb dt (36)

and considering a linear interpolation of the metric tensor along ab, the value of m is obtained
as:

m =
`2

0 − 2−
2
3 (`3

0 + `3
1)

2
3

`2
0 − `2

1

(37)

valid for all values of `0 and `1 such that `0 6= `1. If `0 = `1, there is no size gradation and the
Euclidean center is chosen for the split, with m = 1/2.

The refinement procedure must ensure that the topology of the mesh will not be violated,
generating only valid elements. In order to satisfy this condition, the partitioning of an ele-
ment is performed according to the number and position of the refined edges. All anisotropic
partitioning cases are covered. For a mesh composed by triangular elements, four types of sub-
division are possible, covering eight anisotropic cases (see Fig. 1). This type of edge subdivi-
sion is unique and can always be performed (existence and uniqueness conditions are satisfied),
ensuring that the topology will not be violated.

An edge is coarsened by an edge collapse procedure. Let ab be an edge to be coarsened,
with initial vertex a and final vertex b. The vertices a and b are joined along the direction of the
edge ab to a new point c between a and b, collapsing all elements that share at least one edge
with ab. To hold the anisotropic information along the procedure, the choice of the collapsed
point c = a + nab is performed by finding n ∈ [0, 1] that minimizes the sum of all quality
functions of the remaining elements affected by the collapse:

min
n∈[0,1]

∑
K∈B

QM (K) (38)

subjected to the following constraints:

|TK | ∀K ∈ B > 0 (39a)∑
K∈A

|TK | −
∑
K∈B

|TK | = 0 (39b)

where B is the remaining set of elements affected by the procedure after the collapse and A the
original set (see Fig. 2). A discrete approach is employed to solve Eq. 38 in this work. The
continuous parametrization n is replaced by nc ≥ 2 discrete positions nj ∈ [0, 1]:

nj =
(j − 1)

(nc − 1)
(40)
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K3

K1

K2

K4

K5

K11

K10

a

K3

K1

K2

K4

K5

B

B

B

B

B

C

C

A

A

A

A

A

b
c

K6

A

K7

A

K8

A

K9

A

a b

K6

B

K7

B

K8

B

K9

B

Figure 2: Edge collapse procedure.

with j = 1, . . . , nc. For each nj position, the summation of Eq. 38 is evaluated using Eq.
27 and considering a linear interpolation of the metric tensor between a and b. Finally, the
position nj which has the minimum value for this objective function and that does not violate
the constraints of Eqs. 39 is chosen as the collapse point. This discrete approach is equivalent
to choose between collapse the edge to one of the edge endpoints a or b if nc = 2. For nc = 3,
the Euclidean midpoint is also considered as a possible position for the collapse and so on. In
this work, nc = 10 is adopted, allowing several possibilities for the choice of the position of
point c.

Edge swapping is performed in order to increase the mesh quality by alternating the edge
connectivities. An edge ab that does not lye in the boundary of the domain shares two neighbour
elements: K1 and K2. The internal edge of such elements can be swapped in order to obtain the
elements K ′1 and K ′2 (see Fig. 3). The following condition is verified:

max {QM (K ′1) , QM (K ′2)} < max {QM (K1) , QM (K2)} (41)

If such condition holds and no degenerated elements are obtained, then the swapping is per-
formed, increasing the anisotropic quality of the mesh.

K1

K2

K’1
K’2ab

ab

Figure 3: Edge swapping procedure.

3.4 Adaptation Algorithm

The overall algorithm implemented in this work performs the following sequence of local
mesh modifications:

1. Refine edges with error above a given error threshold value ηU ;

2. Edge swapping until convergence;

3. Coarse edges with error below a given error threshold value ηL;

4. Edge swapping until convergence.

which defines one adaptation iteration. An edge ab is refined if ELp(ab) ≥ ηUεLp and it
is coarsened if ELp(ab) ≤ ηLεLp , where εLp is the target adaptation error measured in the
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Lp norm. The upper and lower error threshold values ηU and ηL are assumed as 1.4 and 0.6,
respectively [17]. As the investigated flows are compressible and turbulent, the continuous
function u chosen for the adaptation is the intersection of all conservative flow field variables,
with φ = ρ ∩ ui ∩ E for the error estimation in Eq. 31 and the adaptation is performed at each
ta iterations of flow solver.

4 Test Case: Turbulent Transonic Flow Around a Circular Cylinder

The studied test case consists of a turbulent transonic flow around a circular cylinder. The
circular cylinder has a diameter of D = 1 with center located at coordinates x = 0, y = 0.
The domain Ω is circular with radius R = 25D. The free stream Mach number employed is
M∞ = 0.80 and the free stream Reynolds number is Re∞ = 500.000. The simulation is carried
from the initial time set to zero to the final time T = 50s. Mesh adaptation is performed at
each ten iterations of flow solver (ta = 10) in order to control a target interpolation error of
εLp = 0.05 measured in the L2 norm. The maximum and the minimum allowed edge sizes are
hmax = 1D and hmin = 0.003D, respectively.

Fig. 4 and Fig. 5 show the gradient magnitude of the mass density and the corresponding
mesh at two different instants. In these figures, the complexity of the developed flow around
the cylinder, involving complex viscous interactions with shock waves together with the high
transient nature of such effects is evident. The separation point of the boundary layer is associ-
ated with the formation of lambda-shock-waves of different sizes and intensities. There is also
the formation shock-waves linking and interacting with vortices rotating in opposite directions.
Finally, there is the formation of a Von Kármán vortex sheet after a zone of intense interaction
of viscous and shock-wave effects.

Fig. 6 and Fig. 7 show the unsteady lift Cl and drag Cd coefficients, respectively. The
average drag coefficient obtained in the present work is Cd = 1.61 while the reference [20]
experimental value is Cd = 1.50. The power spectra Pl of the lift coefficient as function of the
Strouhal number St is shown in Fig. 8, where a pronounced pic close to the value of St = 0.18
is present. The experimental value for this pic response reported by [20] is also the exact same
value. Finally, the power spectra Pd of the drag coefficient as function of the Strouhal number
St is shown in Fig. 9. In this case, there is not only one pronounced pic.
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(a) Gradient magnitude of density. Scale: black (zero) to white (three).

(b) Mesh

Figure 4: Flow field and mesh at time t = 20s.
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(a) Gradient magnitude of density. Scale: black (zero) to white (three).

(b) Mesh

Figure 5: Flow field and mesh at time t = 25s.
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Figure 6: Unsteady lift coefficient.

Figure 7: Unsteady drag coefficient.

Figure 8: Power spectra of lift coefficient.

Figure 9: Power spectra of drag coefficient.
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5 CONCLUSIONS

The coupling of the CBS algorithm with a dynamic Smagorinsky model for simulating tur-
bulent compressible flows and anisotropic mesh adaptation is presented in this work. The devel-
oped code is used to investigate a complex turbulent transonic flow around a circular cylinder in
a two-dimensional approach. The complex lamda-shock-waves, viscous interactions and Von
Kármán vortex sheet effects are correctly captured by the mesh adaptation strategy, and the
computed aerodynamic coefficients are in excellent agreement with the experimental reported
values, even for a two-dimensional model. Although these preliminaries results are promising,
an extension of the proposed methodology to a three-dimensional case is the next required step
for validation of the computations.
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