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Abstract. We consider a large time step (LTS) Roe scheme, originally suggested by LeVeque
[Comm. Pure Appl. Math., 37 (1984), pp. 463–477] which has attained increased popularity
in recent years. The scheme is based on a wave formulation of the ordinary Roe scheme, and
the assumption that waves interact linearly. This assumption lets us propagate waves over more
than one cell, thereby violating the ordinary CFL condition requiring the Courant number to be
less than one. The LTS Roe scheme is applied to a two-phase flow model with phase transfer,
modelled using the stiffened-gas equation of state. Results from various test cases show that
the LTS Roe scheme with moderate Courant numbers is significantly more efficient than the
ordinary Roe scheme, measured by an error-to-runtime ratio. The optimal Courant number is
mainly a trade-off between reduced runtime due to fewer time steps, and increased error due to
the assumption of linear wave interactions.
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1 INTRODUCTION

The motivation for our paper is solving hyperbolic conservation laws of the form

ut + f(u)x = 0, (1a)
u(x, 0) = u0(x). (1b)

Here u ∈ RN is a vector of N unknowns, f : RN → RN is a hyperbolic flux function, and
u0 some initial condition. Numerical methods for solving such problems often fit into the finite
volume framework, which solves eq. (1) in the integral form,

d

dt
U i =

F i−1/2 − F i+1/2

∆x
, (2)

where U i approximates the average of u over volume i. The numerical flux function F i−1/2
approximates the flux between cells i− 1 and i, using only the cell averages {U i}.

Standard explicit finite volume methods typically use a three-point stencil which limits the
time steps to prevent waves from travelling more than one cell. Large time step (LTS) schemes
seek to circumvent this restriction by using a larger stencil, to allow longer time steps and there-
fore more efficient numerical simulations. Explicit LTS schemes also have the advantage of
being easily parallelizable, in contrast to implicit schemes, as pointed out by e.g. Norman et al.
[20]. One of the first large time step schemes for scalar conservation laws was presented by
LeVeque [9] in 1982. This scheme represents all waves as shocks, and handles the merging of
shocks explicitly. LeVeque later introduced an LTS scheme for systems of conservation laws
[11] using an exact Riemann solver, and proposed one using the Roe approximate Riemann
solver [10]. The wave interactions are assumed to be linear, which removes the need to han-
dle wave interactions explicitly. More recently, Qian and Lee [21] extended this scheme by
taking wave interactions into account. Norman et al. [20] developed a LTS scheme similar to
LeVeque’s approach, based on a WENO discretization.

Harten [4] developed a class of LTS schemes of second order with 2K + 3 stencils, where
K is the Courant number. He proves that the scheme is total-variation diminishing (TVD) for
linearized systems, and introduces an entropy fix. This scheme was later picked up by Qian and
Lee [22] and slightly modified to improve its stability. They also constructed an LTS scheme
for Yee’s upwind TVD scheme [27]. Other approaches to LTS schemes outside the framework
of Godunov methods have also been presented, such as the front-tracking scheme of Holden
et al. [6].

Murillo et al. [19] and Morales-Hernández et al. [17] picked up on LeVeque’s ideas and
applied an LTS Roe scheme to the shallow water equations. Recently, Thompson and Moeller
[26] introduced their wave-in-cell numerical scheme for hyperbolic conservation laws. The
scheme has many similarities with front-tracking schemes, and tracks the waves from each
Riemann problem explicitly, assuming they interact linearly. For nonlinear systems, the solution
is projected onto a grid after each time step. Both these schemes are equivalent to the LTS Roe
scheme we present in this paper, although applied to a different system of equations.

The LTS Roe scheme presented in the current paper is built on the general framework of
TVD LTS schemes described by Lindqvist et al. [13]. This work derived TVD requirements for
a class of LTS schemes, and discusses how existing schemes like LTS Godunov and LTS Roe fit
into this TVD LTS framework. They prove that an LTS extension of the Lax-Friedrichs scheme
is the most diffusive scheme, and that the LTS Roe scheme is the least diffusive scheme.
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In this paper, we apply the LTS Roe scheme to a two-phase flow model for CO2 pipelines,
with thermodynamics described by the stiffened-gas equation of state. CO2 capture and storage
(CCS) is expected to play a crucial role in reducing the world’s emissions of greenhouse gases.
In the International Energy Agency’s two-degree scenario (2DS), CCS will contribute to reduc-
ing the global CO2 emissions by about seven gigatonnes per year in 2050 [7]. CO2 pipelines will
be one of the key elements in a CCS infrastructure, and accurate models and efficient numerical
methods are necessary to predict their operation.

1.1 Paper outline

Our paper is organized as follows: In section 2, we give a short introduction to the ordinary
Roe scheme and its large time step (LTS) extension. Section 3 describes the homogeneous
equilibrium model for two-phase flow, which we will use in our numerical test cases. The
model is applied to two-phase flow of CO2, the thermodynamics of which is described by the
stiffened-gas equation of state. Results from various test cases relevant to compressible two-
phase flow are presented in section 4, where we investigate how the LTS Roe scheme performs
for Courant numbers greater than 1. The different Courant numbers are compared in terms of
error versus runtime. Finally, section 5 summarizes our findings and outlines how the scheme
can be improved and extended to higher order.

2 NUMERICAL SCHEME

To solve the hyperbolic equation system (1) numerically, we divide the x and t axes into
finite volumes of size (∆x,∆t), and integrate over one such cell,

Un+1
i = Un

i +
∆t

∆x
(F n

i−1/2 − F n
i+1/2), (3)

where Un
i is the average of u over cell i at time tn, and F n

i−1/2 approximates the flux at the cell
interface between cells i− 1 and i.

In the classical Roe scheme [24], the numerical flux F n
i−1/2 is given by

F n
i−1/2 =

1

2
(F (Un

i ) + F (Un
i−1))−

1

2
|Â(Un

i−1,U
n
i )|(Un

i −Un
i−1), (4)

where Â is the Roe matrix, which must satisfy three properties:

1. Conserving: Â(UL,UR)(UR −UL) = F (UR)− F (UL)

2. Hyperbolic: Â(UL,UR) is diagonalizable with real eigenvalues

3. Consistent: Â(UL,UR)→ ∂F
∂U

smoothly as UL,UR → U

Here, UL/UR are the states to the immediate left/right of the cell interface.
If Â = R̂Λ̂R̂

−1
is a diagonalization of the Roe matrix, the absolute Roe matrix is |Â| =

R̂|Λ̂|R̂−1. Here |Λ̂| = diag(|λ̂1|, . . . , |λ̂N |) is the diagonal matrix with the absolute eigenvalues
of Â. It is instructive for our further derivations to rewrite the scheme in terms of waves, as

Un+1
i = Un

i −
∆t

∆x
(Â

+

i−1/2∆i−1/2 + Â
−
i+1/2∆i+1/2), (5)

where ∆i−1/2 = U i−U i−1, Â
±

= R̂Λ̂
±
R̂
−1

, and Λ̂
±

= ±diag(max(±λ̂1, 0), . . . ,max(±λ̂N , 0)).
This formulation illustrates how the fluctuations Â

+

i−1/2∆i−1/2 (right-going) and Â
−
i+1/2∆i+1/2

(left-going) propagate as waves in each direction.
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2.1 Large time step (LTS) Roe scheme

In this section, we present the most important aspects of the LTS Roe scheme, which was
first proposed by Leveque [10]. For more details, the reader is referred to Lindqvist et al. [13].
The time step ∆t in the ordinary Roe scheme in eq. (5) is limited by the CFL condition [2],
which requires the Courant number C to be less than one,

C =
∆t

∆x
max
k,i

(|λk,i|) < 1. (6)

Here λk,i is the kth eigenvalue of ∂F /∂U in the ith cell. This condition ensures that no waves
travel more than one cell in a single time step, or equivalently that the numerical domain of
dependence includes the mathematical domain of dependence. The motivation behind the LTS
Roe scheme (or any LTS scheme, for that matter) is to enable larger time steps by extending the
numerical domain of dependence.

If we assume that all wave interactions are linear, a natural extension of the Roe scheme is

Un+1
j = Un

j −
∆t

∆x

∞∑
i=0

(
Â
i+

j−1/2−i∆j−1/2−i + Â
i−
j+1/2+i∆j+1/2+i

)
, (7)

where
Â
i±

= R̂Λ̂
i±
R̂
−1
, (8a)

Λ̂
i±

= diag(λ̂i±), (8b)

λ̂i+ = max

(
0,min

(
λ̂− i∆x

∆t
,
∆x

∆t

))
, (8c)

λ̂i− = min

(
0,max

(
λ̂+ i

∆x

∆t
,−∆x

∆t

))
. (8d)

Although the sum in eq. (7) appears to be infinite, Â
i±

will be zero for sufficiently large i.
This reduces to the ordinary Roe scheme for Courant numbers less than 1. More importantly,
it allows arbitrarily large Courant numbers while still respecting the condition that the numer-
ical domain of dependence include the mathematical one. For scalar equations, we also know
that the scheme is TVD [13]. For a Courant number of C, the scheme’s stencil will include a
maximum of 2dCe+ 1 cells.

2.2 Entropy fix

Lindqvist et al. [13] show that the scheme is unconditionally total-variation diminishing for
scalar equations for all Courant numbers. From the Lax-Wendroff theorem [8] we know that
TVD schemes converge to a weak solution for scalar equations, but not necessarily the correct
entropy solution [5]. In [13], it is suggested to vary the time step slightly, which ensures that
entropy-violating shocks are eliminated. In this work, we employ this entropy fix, by using a
modified Courant number Ĉ given by

Ĉ = C − r, (9)

where r is sampled randomly and uniformly from the interval (0, 1).
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Lindqvist et al. [13] also prove an extension of Harten’s lemma [3]: All unconditionally TVD
schemes have numerical viscosities that are bounded by the LTS Lax-Friedrichs and the LTS
Roe schemes. The related work of Qui and Shu [23] also concerns the entropy properties of
TVD LTS schemes.

3 TWO-PHASE FLOW MODEL

For our numerical test cases, we model the two-phase (gas-liquid) flow of CO2 using the one-
dimensional homogeneous equilibrium model (HEM) [25], in which the two phases have the
same pressure, temperature, chemical potential and velocity. The advantage of this model is that
it does not require explicit modelling of the interaction between the phases, such as interfacial
friction, heat and mass. It can nevertheless describe two-phase flow reasonably well in cases
where the two phases are tightly coupled, such as in bubbly flow or in small diameter pipes.
This model has been used for simulation of two-phase flow by e.g. Clerc [1], Lund et al. [14].

The homogeneous equilibrium model can be expressed using the Euler equations,

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (10a)

∂ρv

∂t
+
∂(ρv2 + p)

∂x
= 0, (10b)

∂E

∂t
+
∂ [v(E + p)]

∂x
= 0, (10c)

where ρ is the mixture density, v is the velocity, p is the pressure and E is the mixture energy
density. The latter can be expressed as

E = ρ

(
e+

1

2
v2
)
, (11)

where e is the mixture internal energy density.
To close the equation system (10), we need an equation of state (EOS) to relate the pressure

p to the mixture density ρ and the mixture internal energy density e. In this work, we construct
a mixture EOS by describing each phase using the stiffened-gas EOS, as described by e.g.
Menikoff [15], Menikoff and Plohr [16]. For each phase, this can be viewed as a linearization
of a reference EOS, and has the advantage of being simple and highly efficient, while still giving
relatively accurate results close to a chosen reference point. The two stiffened-gas equations of
state are combined into a mixture EOS by requiring that both phases have the same pressure,
temperature and chemical potential.

The pressure, internal energy and chemical potential (for each phase) are given by

pk(ρk, T ) = ρk(γk − 1)cv,kT − p∞,k, (12)

ek(ρk, T ) = cv,kT +
p∞,k
ρk

+ e∗,k, (13)

µk(ρk, T ) = γkcv,kT + e∗,k − cv,kT ln

(
T

T0,k

(
ρ0,k
ρ

)γk−1)
− s0,kT, (14)

where γk, cv,k, p∞,k, e∗,k, T0,k, ρ0,k and s0,k are parameters specific for phase k = {g, `} where
g denotes gas and ` denotes liquid. These parameters can be fitted using experimental data or a
reference EOS for a given fluid.
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The pressure p must be expressed as a function of mixture density ρ ≡ αgρg +α`ρ` and mix-
ture energy e ≡ (αgρgeg + α`ρ`e`)/ρ, with the condition that the phase pressures, temperatures
and chemical potentials be equal, pg = p` = p, Tg = T` = T and µg = µ`. This leads to a
transcendental equation system that is solved numerically using a Newton method, as in Lund
et al. [14].

In the LTS Roe scheme for the homogeneous equilibrium model (10), we use the Roe matrix
described by Morin et al. [18]. The Roe matrix is diagonalized numerically.

4 RESULTS

In this section, we will present results from various test cases relevant to compressible flow.
We will compare the LTS Roe scheme to an ordinary Roe scheme with a Courant number less
than one. The performance of the two methods will be measured by the error achieved for a
certain runtime, which in this case is more relevant than the error on a certain grid, as long as we
are not limited by memory. The error is measured in the L2 norm by comparing the numerical
solutions to reference solutions calculated with a Roe method with minmod flux limiter on a
6000 cell grid. More precisely, the error E can be expressed as

E =

√∑n
i=1(Ui − Uref,i)2

n
, (15)

where Ui and Uref,i are the numerical and the reference solution at point i, respectively.
The properties used for the stiffened gas equation of state are listed in table 1. These prop-

erties are fitted to match the real properties of carbon dioxide at p = 45 bar and saturation
conditions (T = 283.13 K).

Table 1: Stiffened gas parameters, fitted to CO2 at 45 bar and saturation conditions.

Symbol Unit Gas value Liquid value

γ – 1.06 1.23
p∞ Pa 8.86× 105 1.32× 108

cv J/(kg K) 2411 2436
e∗ J/kg −3.00× 105 −6.23× 105

T0 K 283.13 283.13
ρ0 kg/m3 135 861.27
s0 J/(kg K) 1784 1088

4.1 Advected volume fraction discontinuity

In this case, there is an initial discontinuity in the volume fraction which is advected in the
positive x direction at a constant speed. The initial conditions are

p = 20 bar, (16a)
u = 10 m/s, (16b)

α` =

{
0.1 if x ≤ 2500 m,

0.9 if x > 2500 m,
(16c)

T = Teq(p), (16d)
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Figure 1: Liquid volume fraction discontinuity at time t = 500 s on a grid with 100 cells for initial conditions
given in eq. (16).

where Teq(p) denotes the equilibrium (boiling) temperature at the pressure p.
Figure 1 shows the liquid volume fraction at time t = 500 s for four different Courant num-

bers, compared to the reference solution. Since each time step introduces some diffusion, the
LTS Roe scheme has a significant advantage over the ordinary Roe scheme for this case. As
an example, Roe with C = 0.9 will need roughly 56 times more time steps than LTS Roe with
C = 50, leading to more diffusion and a less accurate solution. In addition, fewer time steps
means a shorter computational time, which adds to the advantages of using LTS Roe for this
case. This seems to indicate that it is beneficial to increase the Courant number indefinitely,
however this is not the case for all initial conditions, as we will see in the following sections.

4.2 Rarefaction and shock

This case starts with a discontinuity in both volume fraction and pressure, which leads to
both a rarefaction wave and a shock wave. The initial condition is given by

u = 0, (17a)

α` =

{
0.1 if x < 5000 m,

0.9 if x > 5000 m,
(17b)

p =

{
20 bar if x < 5000 m,

60 bar if x > 5000 m,
(17c)

T = Teq(p). (17d)

Figures 2 and 3 show the pressure and liquid volume fraction, respectively, at t = 25 s. In
this case, it is clear that a Courant number of 50 is far too high, and also C = 10.0 leads to
some oscillations. C = 3.0 seems more appropriate and gives a solution similar to that achieved
with C = 0.9, although some oscillations are present. However, since C = 0.9 requires about 3
times as many time steps, C = 3.0 might well be the most appropriate choice when it comes to
runtime per error.
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Figure 2: Pressure for at time t = 25 s on a grid with 100 cells for initial conditions given in eq. (17).
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Figure 3: Pressure for at time t = 25 s on a grid with 100 cells for initial conditions given in eq. (17).
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Figure 4: Errors plotted against runtime for initial conditions given in eq. (17).
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Figure 4 shows the error in the three conservative variables as function of runtime, for the
four different Courant numbers considered. It is apparent that a Courant number of 3 gives
a significantly lower error for a given runtime compared to C = 0.9. This picture seems to
be consistent for all the three conserved variables. Even C = 50.0 achieves runtimes that are
comparable to that of C = 0.9 for a given error, although this requires a grid with about 7 times
more cells.

4.3 Liquid-gas shock tube

In this case, the left part of the domain contains liquid at 60 bar, whereas the right contains
gas at 20 bar. This is expected to be more challenging than the previous cases, since it requires
handling both single-phase and two-phase regions. More precisely, the initial state is given by

u = 0, (18a)

α` =

{
1 if x < 5000 m,

0 if x > 5000 m,
(18b)

p =

{
60 bar if x < 5000 m,

20 bar if x > 5000 m,
(18c)

T = Teq(p). (18d)
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Figure 5: Pressure at time t = 7 s on a grid with 100 cells for initial conditions given by eq. (18).

Figure 5 shows the pressure at t = 7 s on a grid with 100 cells, compared to the reference
solution. Both C = 10.0 and C = 50.0 lead to some significant oscillations, whereas C = 3.0
performs quite well. However, it is apparent that the speed of the left-moving rarefaction wave
(around x = 2000 m) is not resolved correctly and is notably different from the exact one.

Figure 6 shows the errors in the three conserved variables as function of runtimes. Also
for this rather challenging case, the LTS Roe scheme outperforms the ordinary Roe scheme for
moderate Courant numbers. Even a Courant number as high as 10 seems to be the best choice
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Figure 6: Errors plotted against runtime for initial conditions given in eq. (18).
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for this case when it comes to runtime, somewhat contrary to what one would expect when only
considering fig. 5.

4.4 Smooth initial state

As a final test of how LTS Roe handles smoother initial states, we consider the following
initial state:

α` = 0.6 sin
(
π

x

10 000 m

)
+ 0.2 (19a)

u =
(

2.0 cos
(

4π
x

10 000 m

)
+ 2
)

m/s (19b)

p =
(

20 + sin
(

1 + 4
x

10 000 m

))
bar (19c)

T = Teq(p) (19d)

Figure 7 shows the errors and runtimes for the three conserved variables. For this case, with
rather smooth solutions, the LTS Roe scheme performs very well, and seems able to handle very
large Courant numbers.

4.5 Discussion

From the results presented above, the main impression is that the LTS Roe scheme with mod-
erate Courant numbers works well for a variety of different cases. For smooth solutions, very
high Courant numbers can be tolerated and still produce results with a lower error-to-runtime
ratio. The presence of shocks and strong nonlinearities seems to reduce the maximal suitable
Courant number, which is to be expected since we assume all waves interact linearly. Neverthe-
less a Courant number of around 3 proved to be a good choice in all cases. Interestingly, this is
very similar to what was reported by LeVeque [11] in his related scheme.

We have presented the dependence of the error on runtime and Courant number for the
various cases. It is important to note that the time needed for different steps of the solution
procedure might vary significantly depending on the application. In our case, a large portion of
the simulation time is spent solving the two-phase equilibrium problem, mentioned in section 3.
This makes it especially beneficial to increase the Courant number, since this leads to fewer ex-
ecutions of the two-phase equilibrium solver. The same considerations are likely to be relevant
for other applications that involve computationally expensive thermodynamics.

Simply put, the solution procedure for a single time step consists of three parts:

1. Calculating the waves emanating from each cell interface by solving the Riemann prob-
lems,

2. propagating the waves over one or more cells (depending on the Courant number),

3. and projecting the resulting solution back onto the grid.

Each step involves a certain cost and introduces a certain error. In a typical application, step
1 incurs the highest costs, whereas steps 2 and 3 introduce the most errors. In step 2, the LTS
Roe scheme is based on the assumption that the waves interact linearly, which leads to some
errors. In addition, each projection in step 3 leads to projection errors. When increasing the
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Figure 7: Errors plotted against runtime for initial conditions given in eq. (19).
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Courant number, we make a trade-off between increased error in step 2, reduced error (due to
fewer executions) in step 3, and reduced cost (fewer executions) of step 1. The Courant number
that gives the optimal trade-off (error versus runtime) will depend on the application.

5 SUMMARY

We have presented a two-phase flow model using the stiffened gas equation of state to de-
scribe the gas and liquid phases. The model was solved numerically with a novel large time
step (LTS) Roe scheme. The LTS Roe scheme is based on the ordinary Roe scheme, but has a
larger stencil which allows longer time steps while still being total-variation diminishing (TVD).
Waves emanating from the Riemann problems are assumed to interact linearly, and propagated
over one or more cells depending on the wave speed.

The LTS Roe scheme was applied to a number of test cases relevant to two-phase flow. It was
shown that increasing the Courant number above 1 can give more accurate results for a certain
runtime. For most cases, there is an optimal, finite Courant number that gives the optimal trade-
off between runtime and error. Since the scheme is fully explicit, it is easily parallelizable,
which is an advantage over implicit schemes.

As presented, the LTS Roe scheme is of first order, but we expect the scheme to be easily
extendable to second order. Harten [4] expanded his similar scheme to second-order by applying
to a modified flux using a minmod flux limiter. Furthermore, it is not straightforward to include
source terms in a LTS scheme. A possibility is to use a fractional-step method such as Godunov
or Strang splitting (see e.g. LeVeque [12, Ch. 17]), or to integrate the calculation of source
terms directly with the wave propagation. This work verifies that the LTS Roe scheme, already
successfully applied to shallow water flow [17, 19], aerodynamics [22] and Maxwell’s equations
[26], can be extended to more general equation systems.
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