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Abstract. This paper is devoted to the redesign of the Lagrangian remapping process for com-
pressible Hydrodynamics in order to achieve better computational performance. As an un-
intended outcome, the analysis has lead us to the discovery of a new family of solvers – the
so-called Lagrange-flux schemes – that appear to be very promising for the CFD community.
Results obtained with the Lagrange-flux approach are comparable with those obtained with the
“legacy” Lagrange-remap solver using staggered variables, but provide a far better scalable
computational performance, as proven using performance modeling. We also extend Lagrange-
flux scheme to the case of multimaterial flows involving interface capturing advection schemes.
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1 Motivation and introduction

For complex compressible flows involving multiphysics phenomenons like e.g. high-speed
elastoplasticity, multimaterial interaction, plasma, gas-particles etc., a Lagrangian description
of the flow is generally preferred for easier physical coupling. To ensure robustness, some spa-
tial remapping on a regular mesh may be added. A particular case is the family of the so-called
Lagrange+remap schemes [2], also referred to as Lagrangian remapping that apply a remap
step on a reference (say Eulerian) mesh after each Lagrangian time advance step. Acknowl-
edged legacy codes implementing remapped Lagrange solvers usually define thermodynamical
variables at cell centers and velocity variables at mesh nodes (see figure 1). In Poncet et al. [1],

Figure 1: “Legacy” staggered Lagrange-remap scheme: thermodynamical variables are located
at cell centers (circles) whereas velocity variables are located at cell nodes (squares).

we have achieved a node-based performance analysis of a reference legacy Lagrange-remap
hydrodynamics solver used in industry. By analyzing each kernel of the whole algorithm, using
roofline-type models [3] on one side and refined Execution Cache Memory (ECM) models [4],
[5] on the other side, we have been able not only to quantitatively predict the performance of
the whole algorithm — with relative errors in the single digit range — but also to identify a set
of features that limit the whole global performance. This can be roughly summarized into three
features:

1. Staggered velocity variables involve a rather big amount of communication to/from CPU
caches and memory with low arithmetic intensity, thus lowering the whole performance;

2. Alternating direction (AD) strategies (see the appendix in [6]) or more specifically AD
remapping procedures also generate too much communication with a loss of CPU occu-
pancy and a rather poor multicore scalability.

3. For multimaterial hydrodynamics using VOF-based interface reconstruction methods,
there is a strong loss of performance due to some array indirections and noncoalescent
data in memory. Vectorization of such algorithms is also not trivial.

From these observations and as a result of the analysis, we decided to “rethink” Lagrange-remap
schemes, with possibly modifying some aspects of the solver in order to improve node-based
performance of the hydrocode solver. We have searched for alternative formulations that lower
communication and improve both arithmetic intensity and SIMD property of the algorithm.

In this paper, we describe the process of redesign of Lagrange-remap schemes leading to
higher performance solvers. Actually, this redesign methodology has also givn us ideas of
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innovative Eulerian solvers. The so-called Lagrange-flux schemes appear to be very promising
in the Computational Fluid Dynamics community.

The paper is organized as follows. In section 2, we first formulate the requirements for the
design of higher-performance Lagrange-remap schemes. In section 3 we give a description of
the Lagrange step and formulate it under a Finite Volume form. In section 4 we focus on the
remap step which is reformulated as a finite volume scheme with pure convective fluxes. This
interpretation is applied in section 5 to build the so-called Lagrange-flux schemes. We also
discuss the important issue of achieving second order accuracy (in both space and time). In
section 7 we deal with the extension to multimaterial flow with the use of low-diffusive and
accurate interface-capturing methods.

2 Requirements

Starting from a “legacy” staggered Lagrange-remap solver and related observed performance
measurements, we want to improve the performance by modifying the computational approach
under the following constraints and requirements:

1. A Lagrangian solver must be used (for multiphysics coupling issue).

2. To reduce communication, we prefer to use collocated cell-centered variables rather than
a staggered scheme.

3. To reduce communication, we prefer use a direct multidimensional remap solver rather
than splitted alternating direction AD projections.

4. The method should be simply extended to second-order accuracy (in both space and time).

5. The solver must be able to be naturally extended to multimaterial flows.

Before going further, let us first comment the above requirements. The second requirement
should imply the use of a cell-centered Lagrange solver. Fairly recently, Després and Mazeran
in [7] and Maire and et al. [8] (with high-order extension in [9]) have proposed pure cell-
centered Lagrangian solvers based on the reconstruction of nodal velocities. In our study, we
will examine if it is possible to use approximate and simpler Lagrangian solvers in the La-
grange+remap context, in particular for the sake of performance. The fourth assertion requires
a full multidimensional remapping step, probably taking into account geometric elements (de-
formation of cells and edges) if we want to ensure high-order accuracy remapping. We have
to find a good trade-off between simplifications-approximations and accuracy (or properties) of
the numerical solver.

3 Lagrangian time advance step

As example, let us consider the compressible Euler equations for two-dimensional problems.
Denoting ρ, u = (ui)i, i ∈ {1, 2}, p and E the density, velocity, pressure and specific total
energy respectively, the mass, momentum and energy conservation equations are

∂tU` +∇ · (uU`) +∇ · π` = 0, ` = 1, . . . , 4, (1)

where U = (ρ, (ρui)i, ρE), π1 = ~0, π2 = (p, 0)T , π3 = (0, p)T and π4 = pu. For the sake of
simplicity, we will use a perfect gas equation of state p = (γ − 1)ρ(E − 1

2
|u|2), γ ∈ (1, 3]. The

speed of sound c is given by c =
√
γp/ρ.
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For any volume Vt that is advected by the fluid, from the Reynolds transport theorem we
have

d

dt

∫
Vt

U` dx =

∫
∂Vt

{∂tU` +∇ · (uU`)} dx = −
∫
∂Vt

π` · ν dσ

where ν is the normal unit vector exterior to Vt. This leads to a natural explicit finite volume
scheme in the form

|Kn+1,L|(U`)
n+1,L
K = |K|(U`)

n
K −∆tn

∑
An+1

2 ,L⊂∂Kn+1
2 ,L

|An+ 1
2
,L|πn+ 1

2
,L

A · νn+
1
2
,L

A . (2)

In expression (2), the superscript “L” indicates the Lagrange evolution of the quantity. Any
Eulerian cell K is deformed into the Lagrangian volume Kn+ 1

2
,L at time tn+

1
2 , and into the

Lagrangian volume Kn+1,L at time tn+1. The pressure flux terms through the edges An+1/2,L

are evaluated at time tn+
1
2 in order to get second-order accuracy in time. Of course, that means

that we need a predictor step for the velocity field un+ 1
2
,L at time tn+

1
2 (not written here for

simplicity).

Notations. From now on, we will use the simplified notation vn+
1
2 = un+ 1

2
,L.

4 Rethinking the remap step

The remapping step consists in projecting the fields U` defined at cell centers Kn+1,L onto
the initial (reference) Eulerian mesh with cells K. Starting from an interpolated vector-valued
field I n+1,LUn+1,L, we project the field on piecewise-constant function on the Eulerian mesh,
according to the integral formula

Un+1
K =

1

|K|

∫
K

I n+1,LUn+1,L(x) dx. (3)

Practically, they are many ways to deal with the projection operation (3). One can assemble ele-
mentary projection contributions by computing the volume intersections between the reference
mesh and the deformed mesh. But this procedure requires the computation of all the geometrical
elements. Moreover, the projection needs local tests of projection with conditional branching
(think about the very different cases of compression, expansion, pure translation, etc). Thus the
procedure is not SIMD and with potentially a loss of performance. The incremental remapping
can also interpreted as a transport/advection process, as already emphasized by Dukowicz and
Baumgardner [10].

Let us now write a different original formulation of the remapping process. In this step, there
is no time evolution of any quantity, and in some sense we have ∂tU = 0, that we rewrite

∂tU = ∂tU +∇ · (−vn+
1
2U) + ∇ · (vn+

1
2U) = 0.

We decide to split up this equation into two substeps, a backward convection and a forward one:

i) Backward convection:
∂tU +∇ · (−vn+

1
2U) = 0. (4)

ii) Forward convection:
∂tU +∇ · (vn+

1
2U) = 0. (5)

Each convection problem is well-posed on the time interval [0,∆tn] under a standard CFL
condition. Let us now focus into these two steps and the way to solve them.
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4.1 Backward convection in Lagrangian description

After the Lagrange step, if we solve the backward convection problem (4) over a time inter-
val ∆tn using a Lagrangian description, we have

|K|(U`)
n,?
K = |Kn+1,L|(U`)

n+1,L
K . (6)

Actually, from the cell Kn+1,L we go back to the original cell K with conservation of the
conservative quantities. For ` = 1 (conservation of mass), we have

|K| ρn,?K = |Kn+1,L| ρn+1,L
K

showing the variation of density by volume variation. For ` = 2, 3, 4, it is easy to see that both
velocity and specific total energy are kept unchanged is this step:

un,? = un+1,L, En,? = En+1,L.

Thus, this step is clearly computationally inexpensive.

4.2 Forward convection in Eulerian description

From the discrete field (Un,?
K )K defined on the Eulerian cells K, we then solve the forward

convection problem over a time step ∆tn under an Eulerian description. A standard Finite
Volume discretization of the problem will lead to the classical time advance scheme

Un+1
K = Un,?

K − ∆tn

|K|
∑
A⊂∂K

|A|Un+ 1
2
,?

A (v
n+ 1

2
A · νA) (7)

for some interface values U
n+ 1

2
,?

A defined from the local neighbor values Un,?
K . We finally get

the expected Eulerian values Un+1
K at time tn+1.

Notice that from (6) and (7) we have also

|K|Un+1
K = |Kn+1,L|Un+1,L

K −∆tn
∑

A⊂∂K

|A|Un+ 1
2
,?

A (v
n+ 1

2
A · νA) (8)

thus completely defining the remap step under the finite volume scheme form (8). Let us em-
phasize that we do not need any mesh intersection or geometric consideration to achieve the
remapping process. The finite volume form (8) is now suitable for a straightforward vector-
ized SIMD treatment. From (8) it is easy to achieve second-order accuracy for the remapping
step by usual finite volume tools (MUSCL reconstruction + second-order accurate time advance
scheme for example).

4.3 Full Lagrange+remap time advance

Let us note that the Lagrange+remap scheme is actually a conservative finite volume scheme:
putting (2) into (8) gives for all `:

(U`)
n+1
K = (U`)

n
K − ∆tn

|K|
∑

An+1
2 ,L⊂∂Kn+1

2 ,L

|An+ 1
2
,L| (π`)

n+ 1
2
,L

A · νn+
1
2
,L

A

− ∆tn

|K|
∑

A⊂∂K

|A| (U`)
n+ 1

2
,?

A (v
n+ 1

2
A · νA) (9)
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that can also be written

(U`)
n+1
K = (U`)

n
K − ∆tn

|K|
∑

A⊂∂K

|A|

(
|An+ 1

2
,L|

|A|
(π`)

n+ 1
2
,L

A · νn+
1
2
,L

A

)

− ∆tn

|K|
∑

A⊂∂K

|A|
(

(U`)
n+ 1

2
,?

A (v
n+ 1

2
A · νA)

)
. (10)

We recognize into (10) pressure-related fluxes and convective numerical fluxes.

4.4 Comments

The finite volume formulation (10) is attractive and seems rather simple at first sight. But
we should not forget that we have to compute a velocity Lagrange vector field vn+

1
2 = un+ 1

2
,L

where the variables should be located at cell nodes to return a well-posed deformation. More-
over, expression (10) involves geometric elements like the length of the deformed edgesAn+ 1

2
,L.

Among rigorous constructions of collocated Lagrangian solvers, let us mention the GLACE
scheme by Després-Mazeran [7] and the cell-centered EUCCLHYD solver by Maire et al [8].
Both are rather computationally expensive and their second-order accurate extension is not easy
to achieve.

Although it is possible to couple these Lagrangian solvers with the flux-balanced remapping
formulation, it is also worth searching for simplified approximate Lagrange formulations. One
of the difficulty in the analysis of Lagrange-remap schemes is that, in some sense, space and
time are coupled by the deformation process.

Below, we derive a formulation that leads to a proper separation between space and time, in
order to determine the order of accuracy in a simple way. The idea is to make the time step tend
to zero in the Lagrange-remap scheme (method of lines [11]), then exhibit the instantaneous
spatial numerical fluxes through the Eulerian cell edges that will serve for the construction of
an explicit finite volume scheme. Because the method needs an approximate Riemann solver in
Lagrangian form, we will call it a Lagrange-flux scheme.

5 Derivation of a simple second-order accurate Lagrange-flux scheme

From conclusions of the discussion above, we would like to be free from any “complex”
collocated Lagrangian solver involving complex geometric elements. Another difficult point is
to define the deformation velocity field vn+

1
2 at time tn+

1
2 , in an accurate manner.

In what follows, we are trying to deal with time accuracy in a different manner. Let us
comme back to the Lagrange+remap formula (10). Let us consider a “small” time step t > 0
that fulfils the usual stability CFL condition. We have

(U`)K(t) = (U`)
n
K − t

|K|
∑

A⊂∂K

|A|
(
|AL(t/2)|
|A|

(π`)
L
A(t/2) · νLA(t/2)

)
− t

|K|
∑

A⊂∂K

|A| (U`)
?
A(t/2)vA(t/2) · νA.

By making t tend to zero, (t > 0), we have AL(t/2) → A, (π`)
L(t/2) → π`, v(t/2) → u,

(U`)
? → U`, then we get a semi-discretization in space of the conservation laws. That can be

seen as a method of lines ([11]):

d(U`)K
dt

= − 1

|K|
∑

A⊂∂K

|A| ((π`)A · νA)− 1

|K|
∑

A⊂∂K

|A| (U`)A (uA · νA). (11)
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We get a classical finite volume method in the form

dUK

dt
= − 1

|K|
∑

A⊂∂K

|A| ΦA

with a numerical flux ΦA whose components are

(Φ`)A = (U`)A (uA · νA) + (π`)A · νA. (12)

In (11), pressure fluxes (p`)A and interface velocities uA can be computed from an approximate
Riemann solver in Lagrangian coordinates (for example the Lagrangian HLL solver, see [12]).
Then, the interface states (U`)A can be computed from a upwind process according to the sign
of the normal velocity (uA · νA). To get higher-order accuracy in space, one can use a stan-
dard MUSCL reconstruction + slope limiting process. At this stage, because there is no time
discretization, all acts on the Eulerian mesh and fluxes are defined at the edges the the Eulerian
cells.

To get high-order accuracy in time, one can then apply a standard high-order time advance
scheme (RK2, etc.). For the second-order Heun scheme for example, we have the following
algorithm:

1. Compute the time step ∆tn subject to some CFL condition;

2. Predictor step. MUSCL reconstruction + slope limitation: from the discrete values Un
K ,

compute a discrete gradient for each cell K.

3. Use a Lagrangian approximate Riemann solver to compute pressure fluxes πn
A and inter-

face velocities un
A

4. Compute the upwind edge values (U`)
n
A according to the sign of (un

A · νA);

5. Compute the numerical flux Φn
A as defined in (12);

6. Compute the first order predicted states U?,n+1
K :

U?,n+1
K = Un

K −
∆tn

|K|
∑

A⊂∂K

|A| Φn
A

7. Corrector step. MUSCL reconstruction + slope limitation: from the discrete valuesU?,n+1
K ,

compute a discrete gradient for each cell K.

8. Use a Lagrangian approximate Riemann solver to compute pressure fluxes π?,n+1
A and

interface velocities u?,n+1
A

9. Compute the upwind edge values (U`)
?,n+1
A according to the sign of (u?,n+1

A · νA);

10. Compute the numerical flux Φ?,n+1
A as defined in (12);

11. Compute the second-order accurate states Un+1
K at time tn+1:

Un+1
K = Un

K −
∆tn

|K|
∑

A⊂∂K

|A| Φn
A + Φ?,n+1

A

2
.

One can appreciate the simplicity of the numerical solver.
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Figure 2: Second-order Lagrange-flux scheme on reference Sod’s 1D shock tube problem. Time
is T = 0.23, 384 mesh points. Here Sweby’s slope limiter with coefficient 1.5 is used.

5.1 Details on the Lagrangian HLL approximate solver

A HLL approximate Riemann solver [12] in Lagrangian coordinates can be used to easily
compute interface pressure and velocity. For a local Riemann problem made of a left state UL

and a right state UR, the contact pressure p? is given by the formula

p? =
ρRpL + ρLpR
ρL + ρR

− ρLρR
ρL + ρR

max(cl, cR) (uR − uL), (13)

and the normal contact velocity u? by

u? =
ρLuL + ρRuR
ρL + ρR

− ρLρR
ρL + ρR

pR − pL
max(cl, cR)

(14)

leading to very simple operations.

5.2 Numerical experiments

Shock tube problems. An as example, we test the Lagrange-flux scheme presented in sec-
tion 5 on the reference one-dimensional Sod shock tube problem [13]. We use a Runge-Kutta
2 (RK2) time integrator and a MUSCL reconstruction using the second-order Sweby slope lim-
iter [14]

φ(a, b) = (ab > 0) sign(a) max
(

min(|a|, β|b|), min(β|a|, |b|)
)

with coefficient β = 1.5. We use a uniform grid made of 384 points. The final time is T = 0.23
and a CFL number equal to 0.25 . On figure 2, one can observe a good behaviour of the Eulerian
solver, with rather sharp discontinuities and low numerical diffusion into rarefaction fans.

The second reference example is a case of two moving-away rarefaction fans under near-
vacuum conditions (see Toro [12]). It is known that the Roe scheme breaks down for this case.
The related Riemann problem is made of the left state (ρ, u, p)L = (1,−2, 0.4) and right state
(ρ, u, p)R = (1, 2, 0.4). The final time of T = 0.16. We use 8192 mesh points to stress the
behaviour on a refined mesh. Numerical results are given in figure 3. One can observe once
again a nice behaviour of the method with a rather good accuracy.

Complex flow with high density ratios. In order to validate and compare both staggered La-
grange+remap and collocated Lagrange-flux, we propose the following original two-dimensional
monofluid case. The computational domain is the rectangle [0, Lx] × [0, Ly] with Lx = 3
and Ly = 2. Boundary conditions are wall slip boundary conditions. The initial solution is
a piecewise constant solution being constant into three different regions (see figure 4). Into
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Figure 3: Second-order Lagrange-flux scheme on a double rarefaction near-vacuum case. Final
time is T = 0.16, 8192 mesh points.

the region number 1 delimited by the rectangle [0, 1] × [1.1, 2], the solution is defined by
(ρ, u, v, p) = (1, 0, 0, 1). Into the region number 2 delimited by the rectangle [0, 2]× [0.9, 1.1],
the solution is defined by (ρ, u, v, p) = (100, 0, 0, 0.1). Into the last region number 3, we
impose (ρ, u, v, p) = (0.125, 0, 0, 0.1). A perfect gas law with γ = 1.4 is used. For spatial
discretization, we use a rather fine Cartesian mesh made of 1200× 400 points.

Into region nb 2, we have a dense cold fluid and a high density ratio between zone 2 and the
two other zones. In region nb 1, we have a greater pressure that initiates a flow dynamics. The
solution develops a complex structure made of several propagating shock waves, a low moving
heavy fluid zone delimited by contact discontinuities, and a vortex of rarefied gas near the right
border of the region 2. Numerical results between Lagrange-flux discretization versus staggered

Figure 4: Geometry and initial conditions. All boundary conditions are wall slip conditions.

Lagrange+remap with splitted alternating directional remapping are shown in figure 5. One can
observe that the density fields at snapshot time t = 2 sec are very comparable from the accuracy
point of view. One can only notice a slight difference of capture of the contacts.

6 Performance results

In the “performance” companion paper [15], we propose a rigorous performance modeling
approach to analyze the performance of both legacy Lagrange-remap solver and the Lagrange-
flux scheme. It is indeed shown that performance results are far better using the Lagrange-flux
scheme. The reformulated approach is also more suitable for SIMD and multi-core scalability.
We refer to the companion paper [15] for interested readers.
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(a) Lagrange-flux scheme, final time t = 2 sec.
Density field, colormap in log scale.

(b) Legacy staggered Lagrange + splitted directional
remapping, final time t = 2 sec. Density field, col-
ormap in log scale.

Figure 5: Comparison of results between Lagrange-flux discretization vs staggered La-
grange+remap with splitted directional remapping.

7 Dealing with multimaterial flows

We would like to give an outline of the possible extension of Lagrange-flux schemes to
compressible multimaterial/multifluid flows, i.e. flows that composed of different immiscible
fluids and separated by free boundaries. Details of the multimaterial extension can be found
into [18].

For pure Lagrange+remap schemes, usually VOF-based interface reconstruction (IR) algo-
rithms are used (Young’s PLIC, etc.). After the Lagrangian evolution, for the cells that host
more than one fluid, fluid interfaces are reconstructed. During the remapping step, one has
to evaluate the mass fluxes per material. From the computational point of view and comput-
ing performance, this process generally slows down the whole performance because of many
array indirections in memory and specific treatment into mixed cells along with the material
interfaces.

If the geometry of the Lagrangian cells is not completely known (as in the case of Lagrange-
flux schemes), anyway we have to proceed differently. A possibility is to use interface captur-
ing (IC) schemes, e.g. conservative Eulerian schemes that evaluate the convected mass fluxes
through Eulerian cell edges. This can be achieved by the use of antidiffusive/low-diffusive
advection solvers in the spirit of Després-Lagoutière’s limited-downwind approach [16] or
VoFire [17]. In a recent work [18], we have analysed the origin of known artefacts and nu-
merical interface instabilities for this type of solvers and concluded that the reconstruction of
fully multidimensional gradients with multidimensional gradient limiters was necessary. Thus,
we decided to use low-diffusive advection schemes with a Multidimensional Limiting Process
(MLP) in the spirit of [20]. The resulting method is quite accurate, shape-preserving and free
from any artefact. We show some numerical results in the two next subsections. Let us empha-
size that the interface capturing strategy perfectly fits with the Lagrange-flux flow description,
and the resulting schemes are really suitable for vectorization (SIMD feature) with data coales-
cence into memory.

10
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7.1 Interface capturing for pure advection problems

Let us first present numerical results on a pure scalar linear advection problem. The forward-
backward advection case proposed by Rider and Kothe [21] is a hat-shaped function which is
advected and stretched into a rotating vector field, leading to a filament structure. Then by
applying the opposite velocity field, one have to retrieve the initial disk shape. In figure 6,
we show the numerical solutions obtained on a grid 5002 for both the scalar field (of variable
z ∈ [0, 1]) and the quantity z(1− z) that indicates the spreads of the diffuse interface. One can
conclude the very good behaviour of the method, providing both stability, accuracy and shape
preservation.

(a) At initial time t = 0 (b) At time t = 3

(c) At time t = 6 (d) At time t = 9

(e) At final time t = 12

Figure 6: Validating the low-diffusive interface capturing scheme on the Kothe-Rider advection
case, mesh 5002.

7.2 Three-material hydrodynamics problem

We then consider our interface capturing method for multifluid hydrodynamics. Because
material mass fractions are advected, that is

∂tyk + u · ∇yk = 0, k = 1, ..., N,

one can use the advection solver of these variables but we prefer a conservative form of the
equations

∂t(ρyk) +∇ · (ρyku) = 0

in order to enforce mass conservation (see also [22]). The multimaterial Lagrange-flux scheme
is tested on the reference “triple point” test case, found e.g. in Loubère et al. [23]. This prob-
lem is a three-state two-material 2D Riemann problem in a rectangular vessel. The simulation

11
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Figure 7: Geometry and initial configuration for the reference triple-point case.

(a) Density field (b) Pressure field

(c) Temperature field (d) Colored representation of material indicators

Figure 8: Results on the multimaterial “triple point” case (perfect gases) using a collocated
Lagrange+remap solver + low-diffusive interface capturing advection scheme, mesh made of
2048× 878 points. Final time is T = 3.3530.

domain is Ω = (0, 7) × (0, 3) as described in figure 7. The domain is splitted up into three
regions Ωi, i = 1, 2, 3 filled with two perfect gases leading to a two-material problem. Perfect
gas equations of state are used with γ1 = γ3 = 1.5 and γ2 = 1.4. Due to the density differences,
two shocks in sub-domains Ω2 and Ω3 propagate with different speeds. This create a shear
along the initial contact discontinuity and the formation of a vorticity. Capturing the vorticity
is of course the difficult part to compute. We use a rather fine mesh made of 2048× 878 points
(about 1.8M cells). One figure 8, we plot the density, pressure, temperature fields respectively
and indicate the location of the three material zones. On can observe a nice capture of both
shocks and contact discontinuities. The vortex is also captured accurately.

8 Concluding remarks and perspectives

This paper is firstly focused on the redesign of Lagrange-remap Hydrodynamics solvers in
order to achieve better HPC node-based performance. We have reformulated the remapping
step under a finite volume flux balance, allowing for a full SIMD algorithm. As an unin-
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tended outcome, the analysis has lead us to the discovery of a new promising family of Eulerian
solvers – the so-called Lagrange-flux solvers – that show simplicity, accuracy, and flexibility
with a proven higher performance capability (see the “performance” ECCOMAS companion
paper [15]). Interface capturing methods can be easily plugged-in for solving multimaterial
flow problems.
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