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Abstract. Finding a good system topology with more than a handful of components is a
highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the
same time the components should interact in an energy-efficient way. An example for a system
design problem is the layout of the drinking water supply of a residential building. It may be
reasonable to choose a design of spatially distributed pumps which are connected by pipes in at
least two dimensions. This leads to a large variety of possible system topologies. To solve such
problems in a reasonable time frame, the nonlinear technical characteristics must be modelled
as simple as possible, while still achieving a sufficiently good representation of reality. The
aim of this paper is to compare the speed and reliability of a selection of leading mathematical
programming solvers on a set of varying model formulations. This gives us empirical evidence
on what combinations of model formulations and solver packages are the means of choice with
the current state of the art.
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1 INTRODUCTION

This paper will focus on the run-time comparison of different mathematical optimisation
solvers, complementarity constraint methods and approximation methods applied to an exem-
plary model of the drinking water supply system in a residential building. For a more com-
prehensive coverage of this comparison, we vary the number of floors and the inlay pressure,
whereas the overall method of modelling the pump system will remain the same. Depending
on the chosen solver, complementarity constraint and approximation method, the problem will
be modelled as a mixed-integer linear problem (MILP) or a mixed-integer nonlinear problem
(MINLP).

Key decision for the topology problem is to find the optimal placement of pumps and pipes.
Pumps can be positioned between the floors and pipes have to be laid out to connect the main
water connection in the basement with the pumps and the consumers. In addition, the opera-
tional parameters for pumps are calculated, e.g. flow rate, power input and rotational speed.

To analyse the solver behaviour for different model sizes and formulations, different varia-
tions of the number of floors and the inlay pressure were created. Each combination of a number
of floors and inlay pressure specifies a load setting of the pump network model. In this paper 40
different load settings were solved for all feasible combinations of solvers, constraint methods
and approximation methods. This led to a total of 400 solved problems. Following solvers and
methods were used and will be introduced in more detail in Section 3:

• Solvers: MINLP: Couenne, Scip MILP: Gurobi, GLPK

• Complementarity Constraint Methods: bigM (linear) and product (nonlinear) con-
straint

• Approximation Methods for Characteristic Curves:

Linear: piecewise linear approximation by aggregated convex combination (ACC),

Nonlinear: cubic, blending-function (Coons) and quadratic approximation

1.1 Estimation of Input Parameters

The following values, which are required to model the pump system, are calculated upfront.

1.1.1 Expected Load for Individual Floors

The minimal pressure headHmin, flow rateQ, and maximal flow velocity vmax for an individ-
ual floor are estimated by assuming a standard consumption for a flat following the European
industrial standard guideline (DIN EN) [1]. The DIN EN guideline defines a standard flat with
a dishwasher, kitchen sink, washbasin, shower, washing machine, and toilette. Information on
the flow rates, minimal pressure, resistance coefficients, and maximal flow velocity are given.
By applying the foundations of hydraulic systems [2] and assuming the hydraulic case with the
highest volume flow and pressure head, the total pressure loss due to friction can be calculated.
Including the minimal flow pressure from the DIN EN guideline leads to the estimated load of
an individual floor given in Table1.
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Parameter Symbol Value
minimal pressure head Hmin 13 m
flow rate Q 1.50 m3 h−1

maximal flow velocity vmax 2.0 m s−1

Table 1: Summary of parameter estimation for individual floor.

1.1.2 Selection of Pipe Diameters

A selection rule for the pipe diameters depending on the flow rate Q is determined. The pipe
diameters given in the DIN EN guideline [1] are listed in Table 2. The guideline also specifies
the flow velocity v to to be within specific bounds in order to avoid microbial load and noise.
We consider 0 m3 h−1 ≤ Q ≤ 60 m3 h−1 and 1 m s−1 ≤ v ≤ 2 m s−1.

Pipe diameter in mm
10 13 16 19.6 25.6 32 39 51 60 72.1 84.9 104

Table 2: Possible diameters for pipes.

This leads to the selcetion of pipe diameters depending on the flow rate which is shown in
Figure 1.
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Figure 1: Pipe diameter as function depending on
the flow rate.
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Figure 2: Linear approximation of the specific pres-
sure head loss.

1.1.3 Approximation of Pipe Characteristics

Pressure loss due to pipe friction can be represented by the Darcy-Weisbach equation [2]

∆HR =
∆pR
ρ g

= R · L = λ
1

2 di g
v2L , (1)
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with pipe diameter di, pipe length L, gravitational constant g, average flow velocity v in pipe,
friction factor λ and specific pressure loss R. Using the flow rate representation [2]

Q = vA = v
1

4
πd2i (2)

the specific pressure loss can be transformed to

R(Q, di) = λ
1

d5i

8

π2

Q2

g
. (3)

The friction factor λ can be calculated iteratively for a fixed pipe diameter di and fixed flow rate
Q with Newton’s method. Figure 2 shows that the specific pressure loss R depends strongly on
the pipe diameter and less on the volume flow. For simplification, we use the maximal specific
pressure loss Rmax for each pipe diameter as an approximation.

1.2 Pump models

In this paper, we consider three exemplary pumps from the KSB pump series Hya-Solo: EV
1/0206B, EV 1/0406B, and EV 1/0605B. The characteristics of these pumps can be found in [3].
The pump curves describe the pressure head increase and the power consumption as functions
of the flow rate and rotational speed. These pump curves will be approximated with different
methods which are introduced in Section 3.3.

2 MODEL

In this section, the optimisation model is presented. We do not yet focus on constraints that
can be modelled in different ways: For complementarity constraints, only the formulation as
disjunction is given – the explicit formulations are introduced in Section 3.2. The approxima-
tion methods of he pump characteristics are discussed in Section 3.3. The main variables and
parameteres which are used in this model can be found in Table 4.

2.1 Objective Function

The model aims to minimise the sum of investment costsC of the components and the energy
costs for operating the pumps:

min Cpipes + Cpumps + cenergy · T · Ptotal .

The operational costs cenergy are estimated with 0.2951e/kWh for an operating time of T = 5
years. The costs for the pipe purchase are estimated with cpipe = 50e/m. For the pumps the
investment costs are stated in the Table 3.

Pump Model Price in e
10206/B 2344.55
10406/B 2409.35
10605/B 2484.75

Table 3: Investment costs for the different pump models.
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Type Name Description Value Range Dimension
parameters nfloors number of floors

H0 inlet pressure head L
npipes number of possible pipes {1,2,3,...,∞}
npumps number of pumps {3}
T expected operating time of the system [0,∞] T
D ingoing and outgoing flow on each floor L3T−1

hSŜ height offset between floor S and Ŝ L
Qmax maximal flow for pipe diameter [0, 100] L3T−1

variables lpipe pipe length [0,∞] L
P power consumption of each pump [0, 1800] ML2T−3

Q flow rate in each pipe [0, 100] L3T−1

Qsquare quadratic flow rate in each pipe [0, 3600] L6T−2

n̂ normalised pump rotational speed [0.6,1]
∆H pressure head increase for each pump [0,100] L
H pressure head in each floor [0,100] L
kpipe indicator for pipe selection {0,1}
kpump indicator for pump placement on a pipe {0,1}
Rpipe specific pressure loss due to pipe friction [0,∞]
dpipe selected pipe diameter [9,105] L
kQ non-zero flow indicator {0,1}

Table 4: Main input parameters and decision variables of the optimisation model.

Expressed in decision variables, the objective is

min

npipes∑
i=1

npumps∑
j=1

kpump(i, j) · cpump(j) (4)

+

npipes∑
i=1

kpipe(i) · cpipe · lpipe(i)

+cenergy · T ·
npipes∑
i=1

npumps∑
j=1

P (i, j) .

2.2 Constraints

Pipe indicators model the interconnection of floors. The correspondence of pipes and floors
can be encoded by a matrixAwhere aij is equal to the index k ∈ {1, ..., npipes} of the pipe which
connects floor i with floor j. Pipes can only be placed from a lower floor to one above, i.e.
aij = 0 ∀j ≤ i. Hence, the number of pipes in the model is given by npipes = 1

2
nfloors(nfloors−1).

Only one pipe can be chosen to reach one floor:

nfloors∑
i=1

kpipe(aij) ≤ 1, ∀j ∈ {2, ..., nfloors} . (5)
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In addition, a bigM or product constraint for the following complementarity expression (c.f.
Section 3.2) is required to allow a flow rate only if the pipe is selected:

expr = Q(k, j) depending on kpipe(k) ∀ k ∈ {1, 2, ..., npipes} . (6)

The pipe diameters need to be selected as described in Section 1.1.2. Let the parameters dvalues(i)
be the possible pipe diameters and Qjd(i) the flow rates at the jump discontinuities in Figure 1.

Q(j) ≤ Qmax ∀j ∈ {1, 2, ..., npipes} , (7)
Q(j) ≥ Qjd(i) · kQ(j, i) ∀j ∈ {1, 2, ..., npipes} ,

∀i ∈ {1, 2, ..., 12}
Q(j) ≤ Qjd(i+ 1) · kQ(j, i) +Qmax · (1− kQ(j, i)) ∀j ∈ {1, 2, ..., npipes} ,

∀i ∈ {1, 2, ..., 12} ,

dpipe =
12∑
i=1

kQ(j, i) · dvalues(i) ∀j ∈ {1, 2, ..., npipes} .

To model the flow requirements, let I be the (npipes ×m) incidence matrix and D the input
(positive value) and output (negative value) flows of the floors. The continuity equation [4] on
networks can be implemented by the following constraints:

m∑
k=1

I(i, k) Q(k) = D(i) ∀i ∈ {1, ..., npipes} . (8)

The pipe friction is included based on the estimation in Section 1.1.3 and can be modelled by
a bigM or product constraint for the following complementarity expression which is active in a
pipe if the flow rate is higher than 0, i.e., if kQ(i, k) = 1:

expr = R(i)−Rmax(k) depending on kQ(i, k) ∀ i ∈ {1, 2, ..., npipes}, (9)
∀ k ∈ {2, ..., 12} .

The pressure requirement for each floor from Table 1 gives the minimal pressure head Hmin:

H(1) = H0 , (10)
H(k) ≥ Hmin ∀ k ∈ {2, ..., nfloors} .

In addition, a bigM or product constraint for the following complementarity expression is
required to model the differences of the pressure head between the floors S and Ŝ for each
selected pipe:

expr = H(Ŝ)−∆H(i, 1)−∆H(i, 2)−∆H(i, 3) + hSŜ +R(i) · hSŜ −H(S) (11)
depending on kpipe(k) ∀ k ∈ {1, 2, ..., npipes} .

The network dependencies are given by:

kpump(k, i) ≤ kpipe(k) ∀ i ∈ {1, 2, 3} , (12)
∀ k ∈ {1, 2, ..., npipes} .

To include the relationship of flow rate Q, rotational speed n̂, power P and pressure head ∆H
as given by the pump curves, the general constraints are shown here. The exact formulas for P̃
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and H̃ depend on the selected approximation method of the pump curves which are described
in Section 3.3:

P (i, j) = kpump(i, j) · P̃ (Q(i), n̂(i, j)) ∀ i ∈ {1, .., npipes} , (13)
∀ j ∈ {1, .., npumps} ,

∆H(i, j) = kpump(i, j) · H̃(Q(i), n̂(i, j)) ∀ i ∈ {1, .., npipes} , (14)
∀ j ∈ {1, .., npumps} .

In addition, the variables Q and n̂ need to be restricted to the value range which is included in
the pump curves.

3 SELECTED SOLVERS AND METHODS

This section gives a short introduction of all compared solvers, constraint methods and ap-
proximation methods including a quality analysis of the approximation methods.

3.1 Solvers

The presented comparison includes four different solvers. Two solvers, Gurobi and GLPK,
for linear problems and two for nonlinear problems, Couenne and Scip. Except of Gurobi
all solvers are open source. A short general description of the used solver can be found below.
Gurobi is a commercial solver for mixed-integer linear problems (MILP), as well as linear prob-
lems (LP). A new version of Gurobi can also include quadratic aspects but is not used in this
paper. The solver is provided by the company Gurobi [5]. GLPK (GNU Linear Programming
Kit) includes an open source solver for mixed-integer linear problems (MILP), as well as linear
problems (LP). GLPK works with the GNU MathProg modelling language, which is a sup-
ported by the Free Software Foundation [6]. Couenne (Convex Over and Under ENvelopes for
Nonlinear Estimation) is an open source solver for mixed-integer nonlinear problems (MINLP).
The solver is provided by the Computational Infrastructure For Operations Research Founda-
tion (COIN-OR) [7]. Scip (Solving Constraint Integer Programs) is a commercial open source
solver for mixed-integer nonlinear problems (MINLP) as well as for mixed-integer linear prob-
lems (MILP). Scip is directed towards meeting the needs of Mathematical Programming experts
who are interested in a high level of control and detailed information of the solution process.
The solver is provided by the Zuse Institute Berlin (ZIB) [8].

3.2 Methods to Model Complementarity Constraints

In general, complementarity constraints describe the following relation:

expr1 = 0 ∨ expr2 = 0 . (15)

We will compare two different methods to model complementarity constraints, which are
used to activate and deactivate equality constraints depending on the value of an auxiliary de-
cision variable. The linear bigM method and the nonlinear product method. As the product
complementarity constraint is nonlinear, it can not be used with the linear solvers Gurobi and
GLPK.

For both methods assume expr = 0 is a linear constraint for a number of decision variables
which only needs to be met if the auxiliary binary decision variable k ∈ {0, 1} is active, i.e.
k = 0. This requirement can be modelled with the following constraints.
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3.2.1 bigM Method

Let bigM ∈ R+ be a sufficiently big positive constant. Then the above described requirement
can be modelled with the constraint (16).

expr ≤ + k bigM , (16)
expr ≥ − k bigM .

The choice of bigM needs to guarantee −bigM ≤ expr ≤ bigM for any feasible combinations
of the decision variables in expr. Nevertheless, bigM should be estimated as small as possible,
as a big value for bigM increases the risk of numerical errors.

3.2.2 Product Method

To reduce numerical errors caused by the bigM method, one can use the standard comple-
mentarity constraint in product form (17) for nonlinear solvers instead.

(expr) (1− k) = 0 . (17)

3.3 Approximation Method

Pump curves are used to represent the key pump characteristics and show the pressure head
increase ∆H(n̂, Q) as a function over the rotational speed and flow rate as well as the required
power input P (n̂, Q). These pump curves need to be approximated for the MI(N)LPs. For this
comparison one linear and three nonlinear approximation methods are used and the quality of
all four methods is analysed by validating the affinity laws, c.f. Section 3.3.5.

3.3.1 Piecewise Linearization by Aggregated Convex Combination

An aggregated convex combination formulation based on a Freudenthal triangulation [9] is
used as piecewise linear approximation method. The surfaces which describe the pump curves
∆H(n̂, Q) and P (n̂, Q) are cut into triangles. In each triangle the curve is approximated by
a linear triangle spanned by the grid points of the pump curve. Hence, in each grid point the
approximation equals the actual pump curve. In every other point, the approximation is a linear
combination of the three surrounding grid points. In this paper a 7x7 triangulation is used which
leads to 49 grid points.

3.3.2 Cubic Approximation

For the cubic method the pump curves are approximated with the cubic functions (18) where
the coefficients a, b, c, α, β, γ and δ are determined by a regression analysis. In the regression
analysis the rotational speed is scaled to the maximal pump rotational speed nref, i.e. n̂ = n

nref
.

∆H(n̂, Q) = aQ2 + bQn̂+ cn̂2 , (18)
P (n̂, Q) = αQ3 + βQ2n̂+ γQn̂2 + δn̂3 .

The results of the regression analysis for the three different pump models pumps Hya-Solo
EV 1/0206B, Hya-Solo EV 1/0406B and Hya-Solo EV 1/0605B are shown in Table 5 for the
pressure head increase ∆H and for the power consumption P . In this table one can also find the
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Figure 3: Cubic approximation of pressure head increase in pump curve for the pump model Hya-Solo EV
1/0206B.

standard error εβ(j) for each coefficient of the approximation which is calculated with the MSE

(mean squares of errors) σ2
r =

∑m
i=1 ε

2

m−p−1
leading to the standard error εβ(j) = σr

√
(XTX)−1

jj , c.f.
[10].

Figure 3 shows the cubic approximation of the pump curve for the pressure increase ∆H(n̂, Q).

3.3.3 Bending-Function (Coons) Approximation

The Coons approximation method [11] is not physically motivated but based on graphical
data processing. It interpolates the pump curve with an auxiliary variable s with 0 ≤ s ≤ 1.
The pump curve is approximated as a linear function of s and a quadratic function of the second
variable Q:

∆H(s,Q) = (a1Q
2 + b1Q+ c1)s+ (a2Q

2 + b2Q+ c2)(1− s) , (19)
P (s,Q) = (α1Q

2 + β1Q+ γ1)s+ (α2Q
2 + β2Q+ γ2)(1− s) .

For all pump models the results of the regression analysis can be found in the appendix in Table
7 and 8.

3.3.4 Quadratic Approximation

A further nonlinear approximation method is a complete quadratic approximation [12] for
0.6 ≤ n̂ ≤ 1. This approximation is not physically motivated and does not adhere to the affinity
laws. However, due to its lower polynomial degree, it might speed up the computation without
too much of a deviation from the cubic approximation.

∆H(n̂, Q) = aQ2 + bQn̂+ cn̂2 , (20)
P (n̂, Q) = αQ2 + βn̂2 + γQn̂+ δQ+ εn̂+ ζ .

The approximation for the pressure head increase is the same as for the cubic approximation
3.3.2. Therefore, the coefficients a, b and c can be taken from the cubic regression analysis in
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Coefficient Value Error
a206 −3.415 0.25
b206 2.760 0.87
c206 45.193 0.63

a406 −0.921 0.085
b406 1.177 0.55
c406 52.296 0.75

a605 −0.345 0.04
b605 0.373 0.35
c605 47.973 0.65

Coefficient Value Error
α206 −11.142 2.52
β206 41.522 13.29
γ206 54.318 19.61
δ206 191.211 7.75
α406 −1.774 0.79
β406 5.902 7.59
γ406 135.815 19.57
δ406 245.276 12.86
α605 −0.664 0.12
β605 1.154 1.59
γ605 125.728 5.84
δ605 276.781 5.81

Table 5: Coefficients for the cubic approximation of the pressure head ∆H (right) and the power consumption P
(left) for each of the three pump models 10206/B, 10406/B, 10605/B. The coefficients of the other approximation
methods can be found in the appendix.

Table 5. The coefficients α, β, γ, δ, ε and ζ need to be determined in an additional regression
analysis. The results for the power consumption P for the three different pump models can be
found in the appendix in Table 9.

3.3.5 Quality Analysis of Approximation Methods

For comparison, four approximation methods are applied. We want to analyse how well they
match reality. The functional correlation of pump rotational speed n̂, flow rate Q and pressure
head ∆H are described by affinity laws [13]. They imply the following proportionality:

Q ∼ n̂, ∆H ∼ n̂2, and P ∼ n̂3 . (21)

These proportionality relations can be transformed to the following quality measure (22) for
the approximation methods. The error value E indicates the adherence to the affinity law and
therefore the fit quality of the approximation method:

EQ =
Q1

Q2

− n̂1

n̂2

≈ 0, EH =
∆H1

∆H2

−
( n̂1

n̂2

)2
≈ 0 and EP =

P1

P2

−
( n̂1

n̂2

)3
≈ 0 . (22)

To measure the quality of the approximation method, a set of 1000 grid points were inserted in
the approximation of the pump curve and the results used to calculate the errors in (22). The
results are listed in Table 6 in the appendix. The error analysis shows that all used approximation
methods have a similar and low error level. The only exception is the bending-function (Coons)
approximation method which causes a higher average error for the pressure head EH for all
tested pump models.

4 OPTIMISATION RESULTS FOR A SELECTED EXAMPLE

In most cases, the topology results of different solver and method combinations for one load
setting are the same or vary only slightly, c.f. Section 5.4.

We chose an example with a residential building with three floors. In the optimised topology
in Figure 4 one pump of type Hya-Solo EV 1/0206B is used between the second and third floor.
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Pipe 1

Diameter 

in mm 32

Flow rate 

in m�/h 3

Pipe 2

Diameter in mm 19.6

Flow rate in m�/h 3

Pump 1

Model EV 1/0206B

Power in 

Watt 89.085

Pressure 

increase 

in m 11.069

Total Cost: 3320.28€

Floor 1

Pressure 

head in m 18

Floor 2

Pressure 

head in m 13.701

Floor 3

Pressure 

head in m 20.106

Figure 4: Example of optimal topology with 16% savings
compared to standard approach.

Total Cost:

3969.99€

Floor 1

Pressure 

head in m 18

Pipe 2

Diameter 

in mm 19.6

Flow rate 

in m�/h 3

Pump 1

Model EV 1/0406B

Power in 

Watt 179.59

Pressure 

increase 

in m 12.351

Floor 2

Pressure 

head in m 26.053

Floor 3

Pressure 

head in m 21.387

Pipe 1

Diameter 

in mm 32

Flow rate 

in m�/h 3

Figure 5: Example topology with pumps only on the first
floor.

Compared to the basic approach to place all pumps in the first floor, the optimal solution for this
example reduces the sum of investment costs of the components and energy costs for operating
the pumps by 16%. Following the basic approach it is necessary to use the more expensive
pump Hya-Solo EV 1/0406B to gain the relevant flow rate and pressure head from the pump in
the first floor to the third floor, see Figure 5.

5 EMPIRICAL RESULTS

All methods show the expected result of the commercial solver Gurobi excelling clearly in
run-time performance, especially for a growing model size.

When comparing the geometric mean of run-times over all problems for the best method per
solver, it is necessary to focus on lower number of floors, e.g. 7 or 8 floors. The reason is that
the problems with a high number of floors could not be solved to optimality with all solvers and
all methods within the time limit of six hours (details see Section 5.2).

For 7 floors the best method combination for Counne and Scip is far closer to Gurobi than for
the geometric mean over all methods. This shows the relevance of the right method choice: Scip
takes about 9 times the geometric mean time of Gurobi over all problems. When comparing
the best suitable method combination for Scip (bigM constraints and quadratic pump curve
approximation), it takes only 4 times the geometric mean time of Gurobi. For Counne the
difference of the geometric mean run times to Gurobi drops from factor 135 to 28 for the best
suitable combination (product complementarity constraints with quadratic approximation).

5.1 Number of Constraints and Variables

For all pump characteristic approximations and complementarity constraint methods, the
number of constraints as well as the number of variables grow quadratically in the number of
floors. The linear approximation has by far the highest numbers with around 4,500 constraints
and 8,300 variables for 7 floors compared to the nonlinear approximation methods which all
have about 1,500 constraints and 1,000 variables. For 10 floors the linear approach leads to
9,700 constraints and 18,000 variables, whereas the nonlinear methods have 2,500 constraints
and 1,600 variables.
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Figure 6: All solvers with geometric mean of run-times over all approximation and constraint methods as well as
all inlet pressures for each number of floors.
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Figure 7: All solvers with geometric mean over all problems solved with the best combination of methods for teach
solver over all inlet pressures for each number of floors.

5.2 Method Analysis for Individual Solvers

For the nonlinear solvers, we used a total of six different combinations of pump characteristic
approximations and complementarity constraint methods. In this section, we show how they
influence the run-time of the individual solvers.



Lea Rausch, Philipp Leise, Thorsten Ederer, Lena C. Altherr and Peter F. Pelz

5.2.1 Couenne

The highest influence on the run-time of the Couennne solver is caused by the method
to model the complementarity constraints, as each approximation method combined with the
bigM method has a higher run-time than any approximation method combined with the product
method for complementarity constraints. There is also a strong increase of the differences in
run-time between the complementary methods starting with seven floors.

Comparing the approximation methods one can see that for bigM complementarity con-
straints the cubic approximation methods outperforms the quadratic approximation, whereas
for complementarity constraints it is the other way around and the quadratic approximation out-
performs the cubic approximation, especially for a high number of floors. Even though Coons
is a simplification of the cubic equations, it has the highest run time for both complementary
methods for a high number of floors; for the product method starting with 7 floors, for bigM
starting with 5 floors.

5.2.2 Scip

Contrary to Couenne, for the Scip solver the approximation method for the pump curves has
the highest influence on run time. This is shown as every method to model the complementar-
ity constraints combined with the Coons approximation is worse than every complementarity
constraints method combined with the other two approximation methods.

Comparing the two other approximation methods, one can see that for bigM complemen-
tarity constraints the quadratic approximation method outperforms the cubic approximation.
Whereas, for product complementarity constraints it is the other way around, especially for a
high number of floors. BigM is the better complementarity constraint method for Scip since for
each approximation method the bigM method has a shorter geometric mean run-time than the
same approximation method combined with product complementarity constraints.

5.3 Comparison of Scip and Couenne

In Figure 5 one can see that Scip with its best combination (bigM complementarity constraint
and quadratic approximation) outperforms compared to Couenne’s best combination (product
complementarity constraint and quadratic approximation), as well as in the overall comparison
with the geometric mean run-time of all combinations.

As already discussed in the individual solver analysis, the product complementarity con-
straint methods works better for Couenne as for Scip. In Figure 5.4 one can see that for 10
floors this difference is so severe that the in average slower solver Couenne outperforms Scip
when using the product complementarity constraint method.

5.4 Objective Values and Boundaries of the Presented Methods

In most cases, all solvers, approximation methods and constraint types result in similar topol-
ogy decisions for the same load setting with only a small deviation in the objective function
value due to numerical differences. Only for 4% of all solved problems the objective value
deviates more than 5% (but no more than 26%) from the average objective value of all problems
belonging to this load setting. In these cases, a small deviation of the topology is possible.

An exception with a different topology decision and objective value deviation of 88% occurs
when using the solver Scip with cubic approximation method for one load setting with a high
inlet pressure (H0 = 17 m) with a low number of floors (nfloors = 3). For this load setting,
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Figure 8: Couenne solver with geometric mean of run-times over all inlet pressures for each number of floors for
each combination of approximation and complementary methods.
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Figure 9: Solver Scip with geometric mean of run-times over all inlet pressures for each number of floors for each
combination of approximation and complementary methods.

the topological solution using Scip with cubic approximation method with bigM as well as with
product complementarity constraint method differs strongly from all other solutions of the same
load setting. With the cubic approximation method no pump is selected in the whole system
whereas one pump is selected in all other solutions of this load setting. We assume it is caused
by the high numerical complexity of the cubic approximation method, as the inlet pressure is
relatively high for the number of floors. This hypothesis is supported by the solutions for a
different load setting with an even higher inlet pressure of (H0 = 23 m) with the same number
of floors (nfloors = 3). For this second load setting, all solutions (with all combinations of
solvers, constraint and approximation method) contain the topology decision to use no pump,
as the inlet pressure is sufficient to supply all floors.
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Figure 10: Geometric mean of run time over all inlet pressures and all approximation methods for each number of
floors for each complementary method for Couenne and Scip.

6 CONCLUSIONS

• A model to design spacially distributed fluid systems has been developed and verified.

• Savings of energy and investment costs by applying the developed model could be de-
tected for an example load setting.

• Solver runtime was compared depending on various combinations of solvers, comple-
mentarity constraint methods and approximation methods for pump characteristics.

• Optimal solutions from different solvers and methods vary only slightly, but the run-times
deviate severely.

• Approximation methods with simpler equations can lead to higher run-times.
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8 APPENDIX

Pump Model Approximation Error Type Average Standard Deviation
EV 1/0206B cubic EQ −7.11× 10−19 3.74× 10−33

EH −4.27× 10−18 1.36× 10−16

EP −3.69× 10−19 1.52× 10−32

coons EQ 5.55× 10−19 3.79× 10−33

EH −3.50× 10−2 6.94× 10−3

EP −1.83× 10−2 3.76× 10−3

quadratic EQ −9.44× 10−19 3.61× 10−33

EH −4.35× 10−18 1.40× 10−16

EP 6.26× 10−4 4.35× 10−5

linear EQ 4.00× 10−19 3.70× 10−33

EH −1.16× 10−3 3.12× 10−3

EP −3.54× 10−4 1.29× 10−5

EV 1/0406B cubic EQ −3.33× 10−20 3.70× 10−33

EH −8.30× 10−18 1.40× 10−16

EP 1.72× 10−19 1.56× 10−32

coons EQ −8.55× 10−19 3.52× 10−33

EH 2.60× 10−1 1.95× 10−1

EP 2.24× 10−1 1.22× 10−1

quadratic EQ 6.66× 10−19 3.78× 10−33

EH −9.92× 10−18 1.38× 10−16

EP −2.22× 10−4 2.66× 10−6

linear EQ −4.33× 10−19 3.70× 10−33

EH −1.45× 10−3 3.96× 10−3

EP −1.42× 10−3 2.78× 10−5

EV 1/0605B cubic EQ 5.55× 10−19 3.91× 10−33

EH −5.42× 10−18 1.34× 10−16

EP 2.03× 10−18 1.66× 10−32

coons EQ −5.33× 10−19 3.49× 10−33

EH 2.61× 10−1 1.78× 10−1

EP 2.38× 10−1 1.40× 10−1

quadratic EQ −3.00× 10−19 3.86× 10−33

EH −5.91× 10−18 1.34× 10−16

EP −1.75× 10−4 6.67× 10−5

linear EQ 6.88× 10−19 4.05× 10−33

EH 9.33× 10−4 2.57× 10−3

EP −1.51× 10−3 2.42× 10−5

Table 6: Error in affinity laws for the pump characteristic approximation methods.
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Coefficient Value Error
a206(1) −3.415 0.25
a206(2) −2.761 0.23
b206(1) 2.760 0.87
b206(2) 0.397 0.42
c206(1) 45.193 0.63
c206(2) 15.940 0.15
a406(1) −0.921 0.08
a406(2) −0.902 0.08
b406(1) 1.177 0.55
b406(2) 0.601 0.32
c406(1) 52.296 0.75
c406(2) 17.991 0.25
a605(1) −0.345 0.04
a605(2) −0.329 0.03
b605(1) 0.373 0.35
b605(2) 0.129 0.14
c605(1) 47.973 0.65
c605(2) 16.257 0.15

Table 7: Coefficients for the bending-function (Coons) approximation of the pressure head characteristic for each
of the three pump models 10206/B, 10406/B, 10605/B.

Coefficient Value Error
α206(1) −16.441 3.97
α206(2) −14.684 3.23
β206(1) 134.804 14.42
β206(2) 51.325 6.34
γ206(1) 165.890 10.51
γ206(2) 39.560 2.38
α406(1) −10.958 1.68
α406(2) −3.328 2.42
β406(1) 175.426 11.20
β406(2) 44.981 10.05
γ406(1) 231.090 14.55
γ406(2) 72.840 9.05
α606(1) −7.667 0.78
α605(2) −3.125 1.34
β605(1) 154.842 7.27
β605(2) 42.054 6.96
γ605(1) 260.489 13.48
γ605(2) 72.679 7.40

Table 8: Coefficients for the bending-function (Coons) approximation of the power characteristic for each of the
three pump models 10206/B, 10406/B, 10605/B.
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Coefficient Value Error
α206 −10.509 0.09
β206 554.656 0.34
γ206 177.974 0.62
δ206 −57.797 0.46
ε206 −552.849 5.40
ζ206 169.975 2.13
α406 −9.462 0.03
β406 888.804 4.60
γ406 241.806 0.45
δ406 −72.719 0.33
ε406 −963.466 7.29
ζ406 304.907 2.89
α605 −6.729 0.02
β605 1034.160 5.54
γ605 208.700 0.38
δ605 −60.132 0.28
ε605 −1125.230 8.73
ζ605 354.673 3.43

Table 9: Coefficients for quadratic approximation of power characteristic for each of the three pump models
10206/B, 10406/B, 10605/B. The coefficients for the pressure head characteristic are given by the cubic coefficients
in Table 5 (left).
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