Comparative Study of Granular Soil Models using Particle and Mesh-based Schemes

Wibke Ricarda Wriggers1*, Antonia Larese2, Svenja Völkner1, Eugenio Oñate2, Thomas Rung1

1Institute for Fluid Dynamics and Ship Theory
Hamburg University of Technology
Am Schwarzenberg-Campus 4, 21073 Hamburg
wibke.wriggers@tuhh.de, svenja.voelkner@tuhh.de, thomas.rung@tuhh.de

2International Center for Numerical Methods in Engineering (CIMNE)
Universidad Politécnica de Cataluña
Campus Norte UPC, 08034 Barcelona
antoldt@cimne.upc.edu, onate@cimne.upc.edu

ABSTRACT

The paper is devoted to the predictive performance of different numerical approaches for modelling the behaviour of granular soils. The study aims to advocate the benefits of a simple soil description using a non-Newtonian model depicting perfect plasticity, which does not display spurious soil creeping.

Validation studies refer to classical granular dam break problems as well as more complex fluid-soil interaction. Results are obtained from a classical multiphase Finite-Volume method using a Volume-of-Fluid (VoF) approach and a particle based (single-phase) PFEM solver. Predictions display an encouraging agreement with experimental data provided that conceptual disadvantages of the VoF method are compensated by a specific approximation of the material properties.

Reported applications are concerned with a seepage induced progressive embankment failure and the simulation of granular cargo inside bulk carrier vessels exposed to seaways.

References