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Abstract. In diffusion nuclear magnetic resonance (NMR) and diffusion magnetic reso-
nance imaging (MRI), the multi-compartment Bloch-Torrey equation plays an important
role in probing the diffusion characteristics from a nanometer scale to a macroscopic
scale. The signal attenuation can be computed by solving the equation. If the volume of
interest is composed by multiple compartments, interface conditions with permeability
are imposed. Depending on applications, different gradient strengths can be used to
capture the signal attenuation. In probing porous media, for instance, high gradient
strengths are used. In diffusion MRI, since water molecules enter and exit the computa-
tional domain in realistic cases, pseudo-periodic boundary conditions are used. These
conditions cause difficulties in solving the equation efficiently and many efforts have
been made to develop an efficient numerical method. However, large-scale problems for
supercomputers with realistic applications have not been considered yet. We propose
a framework for the multi-compartment Bloch-Torrey models based on the FEniCS-
HPC platform, a part of the FEniCS project that allows for automated discretization,
automated error control with mesh adaptivity and high performance computing. The
framework runs on supercomputers with near optimal weak and strong scaling. Our
work includes two parts. First, we simplify the multi-compartment Bloch-Torrey model
used in diffusion MRI by proposing an approximation to the pseudo-periodic bound-
ary conditions to derive a general form for the interface and boundary conditions. The
second part includes implementation and numerical validation of our method on the
FEniCS-HPC platform. This simplified model is straightforward to implement and to
parallelize and shows promise in validation against more realistic models.



D. V.NGUYEN, J. JANSSON, and J. HOFFMAN

1 Introduction

In diffusion NMR and diffusion MRI, the signal attenuation S represents the diffu-
sion characteristic of molecular motion through the use of magnetic field gradient pulses
and it is computed as the average of the transverse magnetization M (r, t) over a volume
of interest €). The signal attenuation is measured at the echo time 7" by integrating the
complex transverse magnetization, i.e

S:/ M(x,T) dr (1)
reQ)

The water diffusion is encoded by using time-varying linear spatial magnetic field
gradient pulses f(?).

The complex transverse magnetization at a spatial posion r = (ry,--- ,r4) (here
d = 2,3 is the problem dimensions) can be modeled by the Bloch-Torrey equation
[15,[19]

%M(r,t) =-I~vf(t)g-rM(r,t)+ V- (D(r)VM(r,t))7 reQ, (2

where Z is the complex unit (Z? = —1), v = 2.67513 x 103 rad s~ T~ ! is the gyromag-
netic ratio of the water proton, D(r) is the diffusion tensor, and g = (g1, - - - , gq) is the
diffusion gradient including gradient strength and gradient direction.

Eq. (2) needs an initial condition:

M(r,0) = p, req 3)

where p is the initial transverse magnetization in (2.

The most commonly used temporal profile is called the pulsed-gradient spin echo
(PGSE) sequence [[18]], with two rectangular pulses of duration J, separated by a time
interval A — §, for which the profile f(¢) is

1, 0<t<é,
f)=9-1, A<t<A+, (4)
0, otherwise.

The signal attenuation is usually computed and plotted against the gradient strength
q = ||g]| or a quantity called the b-value which is computed as

T u
b=~ / ( / £(s) ds) du 5)
0 0
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For the PGSE, it is

5
b =~"|g|*s* (A— g) (6)

If © is composed by multiple compartments, i.e 2 = U'(), the following interface
conditions need to be imposed

D!(r)VM!(r,#) - n' = —D"(r)VM"(x,t) - n" = x" (M"(r, £) — Ml(r,t)>, 7)

where r € I'™ V [,n and n* is a normal vector pointing outward QF.
In diffusion MRI, to allow the water molecules to enter and exit the volume of interest
Q= H?Zl [a;, b;], the pseudo-periodic boundary conditions are applied

M(r,b)],_, = M(x,0)],_, exp(Z@i(t)>,

OM(r,t) exp (I Hi(t))’

ri=b;

8)

37’2-
where

0;(t) :zvgi(bi—ai)/f(s)ds,i: L---,d
0

An advantage of using Eq. (§) is significantly reducing the size of computational do-
mains. This is good in terms of saving computer resources but it is challenging to
impose and to generate valid meshes.

Solving the full model, i.e Eqs. (2] [7, 8], is challenging and many efforts have been
made [1} 10, [13} 14, [16,, 20]. However, large-scale problems for supercomputers with
realistic applications have not been considered yet.

We propose a framework for solving the multi-compartment Bloch-Torrey equation
based on the FEniCS-HPC which is an open source framework for automated solution of
PDE on massively parallel architectures, providing automated evaluation of variational
forms given a high-level description in mathematical notation, duality-based adaptive
error control, implicit parameter-free turbulence modeling by use of stabilized FEM and
strong linear scaling up to thousands of cores [4-9]. The FEniCS-HPC is a branch of the
FEniCS [2, [11] framework based on components with clearly defined responsibilities:

e FIAT: finite element spaces, basis functions
e FFC+UFL: Automated evaluation of weak forms in mathematical notation.

e DOLFIN-HPC: Automated high performance assembly of weak forms and inter-
face to linear algebra of discrete systems and mesh refinement.
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Our work includes two parts. First, we simplify the multi-compartment Bloch-Torrey
model by proposing an approximation to the pseudo-periodic boundary conditions (8]
to derive a general form for the interface and boundary conditions. In the second part,
we implement the approximated model on the FEniCS-HPC platform.

The main contributions of this paper include:

e Proposing a framework on supercomputers for solving the muti-compartment
Bloch-Torrey equations applied to diffusion NMR and diffusion MRI.

e Solving the difficulties of mesh generation caused by the pseudo-periodic bound-
ary conditions that enables us to approach more realistic geometries.

e Implementing the method on the FEniCS-HPC platform.

e Validating the correctness and demonstrating the efficiency of the model and the
method for some example geometries.

The paper is organized as the follows. First, we introduce the multi-compartment Bloch-
Torrey models used in diffusion NMR and diffusion MRI with equations and quantities
used in this field. In section [2] we propose an approximation of the pseudo-periodic
boundary conditions. Then, we introduce the discretizations and implementations of
the approximated model on the FEniCS-HPC platform in section [3| In section @] we
first validate the correctness of the model through two examples: a two-layer infinitely-
long cylinder and a two-layer spherical cell. Then, we show speedup ratio and parallel
efficiency. Finally, in section [5| we conclude our work and propose future directions.

2 An approximation of the pseudo-periodic boundary conditions

To impose the pseudo-periodic boundary conditions (8) for the r;-direction, ver-
tices belonging to opposite planes r; = a; and r; = b; should be aligned, i.e r,, =
ry, — (b; — a;) e;, here r,,,, 1y, are coordinates of vertices belonging to opposite planes
r; = a; and r; = b;, and e; is a unit vector in r;-direction. However, it is usually
challenging to generate a mesh with such the enforcement in realistic cases since the
interfaces usually cut the exterior boundaries. We propose an approximation of the
pseudo-periodic boundary conditions that allows water molecules to enter and exit the
boundaries but does not require vertices belonging to the opposite planes to be aligned.

The approximation comes from a combination of the interface conditions between
two compartments and the pseudo-periodic conditions for the exterior boundaries. Since
the computational domain {2 is extended periodically, in some cases the cell interfaces
touch the exterior boundary 0€2. To simplify the explanation, we consider a computa-
tional domain 2 = [ay, b1] X [ag, bo] in which a cell is placed touching r; = a; (Fig. .
The boundary needs to be periodic at 7; = a; and r; = b;. The cell interior is charac-
terized by a diffusion tensor D¢. The extra-cellular space is the remaining part and is
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characterized by a diffusion tensor D¢. The cell touches the boundary at the interface
3, which is the intersection between the cell boundary and 0f2.

Q=[a,.b|x[a,,b] r9 = bo

Figure 1: When the cell interface touches 0f2, the interface conditions and periodic
boundary conditions are combined.

We recall the pseudo-periodic boundary conditions for this specific domain

M; = M, exp(Z0),

€ € Cc € (5 e (9)
D; VM; -n“=-D; VM -n exp(Z0).
where
t
0= g1 (bn— ) [ £(5)ds,
0
and the interface conditions at X are
D; VM, -n° :me(Mjl — M(jl) (10)
D; VM, -n° :/fe(MCf1 — Mjl)
The combination of (9) and (I0) with n® = —n° gives
DS VME ¢ = <M§1 exp(Z ) — M§1>,
(1T)

D{ VM - n® =x* (M;l exp(—Z ) — M§1>.

Theoretically, when k¢ — +o00, Eq. becomes the pseudo-periodic boundary con-
ditions @) However, we see that practically when k¢ = 1.0m/s, Eq. is a good
approximation of Eq. @]} for free diffusion up to b = 2000 s/mm? corresponding to
S = 2.479e-3. If the computed signal is stronger, k° = 0.1 m/s is good enough. Eq.
(TT) is interesting for the following reasons

5
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e The interface conditions are only a special case of Eq. (I1I). Their general
form is Eq. (12).

D'(x" ) VM (r! t) - n' = £ (M”(r", t)exp(Z ™) — M'(x', t)>,
(12)
D" (r")VM"(r",¢) - n" = x" (Ml(rl, £) exp(Z 0™) — M™(x", t)),

where k' = k™, " € I, vt € T and

I = " =~y g (r" — rl)/f(s) ds.

Further on, instead of solving the complete Bloch-Torrey PDE problem involv-
ing the PDE (2)), the interface conditions Egs. (7)), the two boundary conditions
Egs. (), we will solve an approximated model consisting of the Bloch-Torrey
equation (2) and the general conditions (12)).

e If M7 and My are known from the previous time step, the exterior boundaries of
the computational domain need not to be treated as periodic. It is also applicable
to non confirming interfaces. The constraints of periodicity and confirming inter-
faces which are usually the most challenging issues in generating meshes can be
avoided.

e Since Eq. (12)) becomes standard Robin boundary conditions, it is straightforward
to implement and parallelize.
3 Discretizations and Implementations on the FEniCS-HPC platform

Let V! be a function space and v € V' be a test function, then the weak form of Eq.
on a compartment €)' is

%/ledr: —ny(t)/vg-erdr—/Vv-DVMldr+ / vDVM'-n'ds
o Q! Q! aQinrin
(13)
Combining with Eq. (12)), we get
%/ledr:—Ivf(t)/vg-erdr—/Vv-DVMldr
Q! Ql Q! (14)

+ / v K" (M"(r", t) exp(Z 6™) — Ml(rl,t)) ds

olNrin
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Assuming that V! is spanned by basis functions ¢, i.e V! = span{y1, ..., ¢}, and
& (t) ~ M'(ry,t), M'(r,t) can be presented in a linear combination of basis function,
ie Ml(r,t) = Z]kvzl 0ok, where N is the number of degrees of freedom. Eq.
takes v = g, =1,..., N to give

N N
0. |
B R T0) B MR

N N (15)
- Z/ Vs - DVpadr + k" Z / OpPa dsEM
a=1 o a=1
onrin

Here " ~ () exp(1 ™) — &L (1) = M™(x",t) exp(I 6™) — M'(r!,t). We note
that M™(r",t) comes from '™ C Q" but its values should be projected onto I C Q.
The spatial position r” should be computed such that it aligns with r\,. We Assume
thatr!, = (r!);—; gand r? = (r),=1. 4. If r’, belongs to the interfaces between two
compartments, then r” = r! . If r!, belongs to the plane r; = a;, i.e 7t = a;, then we will
set 7" = b; and 1} = rl for all k # i. In reverse, if r! belongs to the plane r; = b;, i.e
rt = b;, then we will set 7" = a; and r = ri for all k # i. Since r” is computed with
respect to rl, the value of £” at r” may not be available and interpolation will be used.

Let £ and ¢ is a column vectors of degrees of freedom and basis functions, i.e £ =

(&) and ¢ = (), Eq. can be rewritten in a matrix form
0
Ml = =Ty f(1) I =S¢+ wFET (16)

Since ¢! is complex-valued, we can write ¢! = &, + Z &L Eq. is then decoupled to
two equations
0
Mot = 1f (1) I & — S & + H"F' €5
5 (17)
M0l = (1) Ty — S e+ el

where

Ml:/apgonr, Sl:/Vgo-Vgonr, Jl:/g-mpgonr,
Ol

Ql Ol

1 reodQnlin
Fl:/stons, x(r) = . :
0 otherwise

ot

Before writing a high-level "solver" in C++ using DOLFIN-HPC, we define the ma-
trices in UFL "form files", closely mapping mathematical notation. The form files are
then compiled to low-level C++ source code with FFC.

7
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Matrices M and J can be defined in a same form with f = 1 for matrix M and
f = g - r for matrix J. Here f is a dolfin "Function" defined in the "solver".

= FiniteElement ("CG", "tetrahedron" , 1)
= TrialFunction (V)

= TestFunction (V)

= Coefficient (V)

= fruxvxdx

O H <SS <
|

The stiffness matrix S with a diffusion coefficient D is defined as

= FiniteElement ("CG", "tetrahedron", 1)
= TrialFunction (V)

= TestFunction (V)

= Coefficient (V)

= Dxdot (grad(u),grad(v) ) xdx

QO <
I

Finally, the matrix F' with a boundary marker Yy is defined as

V= FiniteElement ("CG", "tetrahedron", 1)
v = TestFunction (V)

chi = Coefficient (V)

L = chixvxds

For the time discretization, similar to [10, [14] we apply the second-order adaptive
Runge-Kutta Chebyshev (RKC) [17]. This method has second order in time and is
especially suitable for parabolic PDEs. Since this method is explicit, the right-hand side
of Eq. (I7) is known and the two equation can be solved separately. With the same
reason, each equation in turn is solved independently on each compartment. To adapt
the FEniCS-HPC platform, the serial code of the RKC available at http://www.
netlib.org/ode/rkc. f was rewritten and parallelized.

4 Results
4.1 Validation of the framework

We validate the framework through two examples: a two-layer infinitely-long cylin-
der and a two-layer sphere. In the first example, we show that the pseudo-periodic
boundary conditions can be well approximated by imposing high permeabilities at the
exterior boundaries that solves difficulties of mesh generation and well facilitates for
parallelization. In the second example, we show that the framework works efficiently in
a wide range of gradient strength.

Signals for a two-layer infinitely-long cylinder
In this sample, we compute signals for a cylinder which is composed of two lay-
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ers with 1 = 3pum and Ry, = 5um and L = 5um. The diffusion coefficients are
D, = D, = 3e-3mm? /s. We allow water molecules to enter and exit the computational
domain in the z-direction by imposing ¢ = 0.1 m/s. So, the signals represent the dif-
fusion in an infinitely-long cylinder. Between two layers, a permeability of k=5e-5m/s
is imposed and the diffusion time is 6 = A = 10ms.

The mesh was generated in such a way that it is totally non conforming and non-
periodic. The interior layer is twice as fine as the exterior one. The top base is twice as
coarse as the bottom (Fig. [2a)).

We performed simulations for three gradient directions % =[1,0,0], “L\/é” and [0, 0, 1].
The exact signals are computed by a combination between free diffusion and matrix
formalism. In all three gradient directions, we obtain good approximations. For high
b-values, the approximations are less good since the signals are too weak (Fig. [2b).

— gflg|=[1 0 0], exact
O gfgl=[1 00, sirul
== gflgl=[1 0 1], exact
O ggl=[1 0 1], sirul
— dgi=[0071]
N % glgkoT)

exact
simul

1] 1000 z000 3000 4000 5000  BO0O 7000 5000
b [sfmm®]

(a) (b)

Figure 2: Signal on a double-layer cylinder with Ry = 3um and Ry = S5um, L = 5pm.
The diffusion coefficients are D; = D, = 3e-3mm?/s. The permeability is xk=5e-
5m/s for the membrane between two layers. The approximation of the pseudo-periodic
boundary conditions is applied in z-direction with k¢ = 0.1 m/s.

Signals for a two-layer sphere
In this example, we compute signals on a double-layer spherical cell with Ry = 20um
and R, = 40um (Fig. [3a). A wide range of gradient strengths [3} [13] is used. The
signals are computed and plotted against b-values and g-values. In Fig. the gradient
strength ¢ is varied between 0 and 1.5 T/m for d=1e-3s, A=1s. Two mesh sizes of
1922 and 8276 vertices are considered. For high gradient strength, finer mesh is needed
to give good approximation. When computed against b-values, the gradient strength is
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large for short-time diffusion and smaller for long-time diffusion. Three time sequences,
§ = A = 0.1,0.5,1.0s with b varied between 0 and le5 s/mm? are considered (Fig.
. The largest gradient strength is 0.045 T/m for § = A = 0.1s and b=1e5 s/mm?.
Numerical signals are compared to the reference ones computed by matrix formalism
[3]. The diffusion coefficients are D; = D, = 3e-3 mm? /s, the permeability for the
membrane between two layers is k=5e-5m/s, and k¢ = 0 is set for exterior boundaries.

Ry =40pum

—d=A=1s5 (Exact)
O §=A=1sg (Simul)
— 6=A=0.5 s (Exact)
# $=A=0.5 s (Simul)
— §=A=0.1 s (Exact)
O §=2=0.15 (Simul)

— Exact
o 1922x2 vertices
+  8276x2 vertices

S(a)'s(0)
S(b)/S(0)

-4
10

a (Tim) b (s/mm®) x10"

(b) (©

Figure 3: Signal on a double-layer spherical cell with R; = 20pum and Ry = 40pm.
The diffusion coefficients are Dy=D;=3e-3 mm? /s, the permeability for the membrane
between two layers is k=5e-5m/s, and k° = 0 is set for exterior boundaries. The
gradient strength is varied between 0 and 1.5 T/m for d=1e-3s, A=1s and two mesh
sizes of 1922 and 8276 vertices are considered (a). When computed against b-values, the
gradient strength is large for short-time diffusion and smaller for long-time diffusion (b).
Three time sequences, § = A = 0.1, 0.5, 1.0s with b varied between 0 and 1e5 s/mm?

are considered.

10
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Each b-value is computed in between 5 and 10 minutes using 4 MPI processes for
the mesh size of 8276 x 2 vertices. Timing for each ¢ is less than 2 minutes for the mesh
size of 1922 x 2 and 15 minutes for the mesh size of 8276 x 2 vertices.

4.2 Speedup ratio and parallel efficiency

We clarify the timing, speedup ratio and parallel efficiency on the Hydra and Beskow
computers for a sphere of radius R = 80m with b = 4000 s/mm? and the diffusion time
0 = A = 100ms. On the Hydra a moderate-scale problem with a tetrahedral mesh of
124886 vertices and on the Beskow a large-scale problem with 4307475 vertices are
considered. The number of MPI processes vary between 1 and 42 on the Hydra and
between 4 and 232 on the Beskow.

On the Hydra, the serial computation is about 1.7 hours and the fastest computation
with 42 MPI processes is about 4 minutes. On the Beskow, the timing is about 14.7
hours for 4 MPI processes and 20 minutes for 232 MPI processes. See Fig.

3
10 O

o * Hydra
o U Beskow

2
0% o]

10 *

Timing (minutes)
I
L

0
10

0 1 2
10 10 10 10

Number of MPI processes

3

Figure 4: Timing tested on the Hydra and on the Beskow for a sphere of radius R =
80um with b = 4000 s/mm? and the diffusion time 6 = A = 100ms. The tetrahedral
mesh has 124886 vertices on the Hydra and 4307475 vertices on the Beskow.

The speedup ratio is the ratio between timing for serial execution 7.,;,; and timing
for parallel execution T}y qiici, 1.€

Tse'r‘ial

S(p) = ——serial__
(p) Tpa7'allel (p )

(18)

where p is the number of MPI processes used in the parallel execution.
The ideal speedup is Sizeqi(p) = p, i.e when p MPI processes are used, the parallel
execution will be p times faster than the serial execution.

11
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The parallel efficiency is computed by

=2

5 (19)
p

In Fig. [5] we show the speedup ratio and parallel efficiency corresponding to the tim-
ing in Fig. ] We obtain a strong scaling on both computers and the parallel efficiency

is always higher than 60%.

50
— ldeal
40 *— Simul
&
0
=
T 30
=
(=]
o
3
g 20
o
jo R
"
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0 ‘ ‘ ‘ .
0 10 20 30 40
Number of MPI processes
(@)
2501
200
=
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& 150(
=
Q
[« R
3 100}
L]
']
Q.
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E 0.6
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0.2 . . . . .
0 10 20 30 40 50
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s 12}
2
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i}
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0.2 . . . . .
0 50 100 150 200 250
Number of MPI processes
d

Figure 5: Speedup ratio and parallel efficiency on the Hydra and on the Beskow for a
sphere of radius R = 80um with b = 4000 s/mm? and the diffusion time § = A =
100ms. The tetrahedral mesh has 124886 vertices on the Hydra and 4307475 vertices
on the Beskow. We obtain a strong scaling on both computers and the parallel efficiency

is always higher than 60%.
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5 Conclusion and future works

We proposed a FEniCS-HPC framework for the multi-compartment Bloch-Torrey
models applied for diffusion NMR and diffusion MRI. This framework works efficiently
for a wide range of gradient strengths and shows promise in validation against more
realistic models. A comparison with other methods will be performed and more realistic
applications will be considered in the future.
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