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Abstract. The mechanism of fluid leakage trough the free volume between rough surfaces in
contact is relevant in physics and in many engineering applications. In the present study, the
normal contact problem between randomly generated fractal rough surfaces is solved using the
boundary element method. Then, an algorithm for the evaluation of the network involved in
the percolation of fluid is proposed. Numerical results are synthetically collected in diagrams
relating the free volume involved in the percolation to the dimensionless statistical parameters
of the rough surface.

1 INTRODUCTION

The mechanism of percolation in seals or simply between two rough surfaces in contact is
an interesting topic for physics and engineering [1, 2, 3]. This topic is relevant for many ap-
plications such as hydraulic fracturing and sealing of mechanical components in contact. Also,
the percolation of fluid in photovoltaic modules can lead to electrical power losses due to the
oxidation of the grid line deposited on the solar cell caused by moisture. The free volume and
the related network of channels is due to the fact that surfaces are never ideally flat and the
actual area in contact is determined by the elastic interactions between asperities. Since the
full contact solution could be attained only in case of very high contact pressures, in most of
the cases only a small percentage of the nominal contact area is in contact and a significant
amount of free volume is present. In this context, a line of research regards the discovery of the
relation between the contact mechanics results to the statistical properties of the undeformed
parent rough surface with a power-law power spectral density (PSD) function [4]. Yastrebov
investigated the role of the lower and upper cut-offs to the PSD function in different contact
regimes [5], while Paggi and Ciavarella [6] highlighted the effect of the bandwidth parameter
α. Similarly, the features of the leakage domain by considering the statistical proprieties of the
surface height distribution were investigated in the literature. As highlighted by Dapp [7], the
role of the finite size length and the lower cut-off frequency of the rough surface mainly affect
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the topology of the free volume and, consequently, leakage characteristics [1]. All of those stud-
ies pinpoint the fact that, below the full contact limit, morphological proprieties of the surface
affect percolation of a fluid between two rough surfaces. However, during contact, the initial
statistics of the deformed surface change as well as consequence of the elastic interactions.

The present study aims at investigating the dependency of the leakage characteristics of
free volume on the variation of statistical parameters describing the evolution of the contact
domain between rough surfaces. To this purpose, a single rough surface with fractal dimension
D = 2.1 has been generated and the contact problem has been solved for a series of mean plane
separations using the boundary element method (BEM). Afterwards, the free volume has been
evaluated and its portion involved in the percolation has been computed, under the assumption
of a laminar fluid flow. In Section 2, the numerical framework is briefly summarized. Results
are presented in Section 3, in form of diagrams relating the variation of the statistical parameters
of the contact domain for decreasing mean plane separations and the relation with the variation
of the percolating volume.

2 COMPUTATIONAL METHOD

A single rough surfaces with fractal properties is numerically generated according to the
random midpoint displacement (RMD) algorithm detailed in [8]. With this method, it is possible
to obtain a detailed square surface by refining an initial square mesh, adding recursively in
the mid point an intermediate height. The value of this height is equal to the mean value of
the neighboring heights, plus a random number extracted from a Gaussian distribution with
zero mean and variance σ2

1 = σ2
0/2

(3−D)/2, where σ2
0 = 1/

√
0.09 and D is the surface fractal

dimension ranging from 2 to 3. The refinement algorithm depends upon the parameterm, which
is related to the number of heights per side of the squared generated grid, viz. 2m + 1.

Once the surface is generated, the contact problem between an elastically deformable rough
surface and a rigid half space is solved using BEM [9] for different values of the far-field closing
displacement ∆. For each imposed ∆, the contact problem is solved using the Non-Negative
Least Squares (NNLS) algorithm, without warm starting, as detailed in [9].

After solving the frictionless contact problem, the grid points in contact are determined and
the contact mechanics results and the statistical parameters of the deformed surface are com-
puted for each imposed displacement. The total free volume V is evaluated by summing up the
corresponding contributions of the boundary elements not in contact. The complete procedure
is described in [10]. Next, the percolating volume Vpg is computed as the sum of all the bound-
ary element volumes involved in the leakage phenomena. Those elements are evaluated with an
algorithm examining all the available paths for the fluid and retaining in the computation only
the free channels connecting one side of the surface to the opposite. Statistical parameters of the
deformed surface are evaluated according to Nayak’s theory [4]. Nayak investigated the effect
of some characteristic moments which are related do the r.m.s. values of roughness (σ =

√
m0),

the r.m.s slope (σm =
√
m2) and the r.m.s. curvature (σk =

√
m4), and the bandwidth parame-

ter α =
m0m2

4

m2
. Here, this computation is repeated for each imposed contact displacement, using

the algorithm published in [11].

3 RESULTS

A rough surface with fractal dimension D = 2.1 has been generated using the RMD algo-
rithm with a refinement corresponding to m = 7, see also [10] for more details. The surface
lateral size is L = 0.1 mm, and the undeformed surface presents a maximum height equal to
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hs = 6.72 µm. Moreover, the mean surface elevation is equal to h̄ = 2.78 µm and the r.m.s.
of heights is σ = 0.95 µ m2, the r.m.s. of the profile slopes is σm ∼= 0.004, and the r.m.s. of
curvatures is σk = 0.16 µm−2. The bandwidth parameter is α0 = 921.

The explored values of the far-field displacement ∆ are in the range between ∆ = 0 (in-
finitesimal contact) and the maximum asperity height ∆ = hs computed in relation to the
undeformed surface. This range is subdivided in twenty equal levels. The value of ∆ is made
dimensionless by dividing it for hs, i.e, ∆∗ = ∆

hs
. In this way, it is possible to the define the

contact level from ∆∗ = 0 (infinitesimal contact regime) to ∆∗ = 1 (full contact regime). As
detailed in [6], the dimensionless free volume V ∗ = V

L2σ
is introduced, where L is the surface

lateral size and σ is the r.m.s. value of height distribution. Therefore, the percolating volume
Vpg is made dimensionless using its value when only one spot is in contact for ∆∗ = 0. The
spectral moments are also made dimensionless by dividing them for their initial values, i.e.,
m∗
n = mn

mn0
, where mn0 is the value of the n−th moment corresponding the undeformed surface.

The undeformed surface topography is shown in Fig.1(a), while Fig.1(b) shows the variation
of the statistical parameters during contact. By increasing the contact interference ∆∗, statistical
parameters diminish in value since the surface becomes flatter and flatter and the related r.m.s.
becomes smaller and smaller. More specifically, m0 presents small variations for infinitesimal
contact, before significantly reducing its value for medium and full contact regimes. The same
trend is noted for the variance of slopes, m2. This transitional regime takes place for ∆∗ & 0.4.
The parameter m4, for low values of ∆∗, tends to be almost constant with variations of about
10% up to ∆∗ ∼= 0.6, while it significantly reduces afterwards. The variability of α vs. ∆∗ is in
line with the trend of m0 and m2, mitigated by the trend of m4.

The dependencies of Vpg on the free volume V ∗ and on the dimensionless mean height h̄∗ =
hs
h̄

are shown in Fig.2. It is important to notice that, for this surface, Vpg varies almost linearly
with Vpt. This might be due by the morphology of the surface, which has the tallest asperity
in the center. Moreover, the initial percolating volume Vpg is equal to the total free volume
V ∗. Examining Fig.2(b), the dependency of Vpg on the surface mean height presents a highly
nonlinear trend, especially in the low contact regime (h̄∗ = 1). On the other hand, near the full
contact limit (h̄∗ = 0), Vpg tends asymptotically to a constant value. Finally, Vpg is correlated
to m∗

0 and m∗
2 during contact in Fig.3. In both cases, for an infinitesimal far-field displacement,
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Figure 1: Topography of the surface and variation of its Nayak’s moments for different contact levels.
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Figure 2: Variation of the leakage volume during contact. Fig.2(a) shows the dependency of the dimensionless
leakage volume V ∗

pg with respect to the overall free volume V ∗. Fig.2(b) shows the dependency of V ∗
pg on the

dimensionless mean height of the deformed rough surface.

a strong dependency of Vpg on the moments of the PSD is reported. On the opposite, the
percolating volume tends to be almost independent of the statistical proprieties of the surface
near full contact. This could be connected directly with Persson theory of leakage [2, 3], which
asserts that leakage phenomena do not depend on surface statistic in the full contact regime.

4 CONCLUSIONS

In this work, the free volume generated by two fractal rough surfaces in contact has been
computed, determining also its percolating part, which is its portion through which a lami-
nar fluid flow can cross the entire surface from on side to the opposite. A single surface has
been generated with the RMD algorithm, and the contact problem has been solved with a BEM
method for different far-field displacements, from the infinitesimal to the full contact regimes.
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Figure 3: Variation of the leakage volume during contact. Fig.3(a) shows the dependency of the dimensionless
leakage volume V ∗

pg on m∗
0. Fig.3(b) shows the dependency on m∗

2.
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Then, the percolating volume has been evaluated, considering its dependency on the statistical
parameters of the surface computed according to Nayak’s theory of roughness. Results shows
that there is a linear dependency between the free volume V∗ and the percolating one Vpg. More-
over, examining the height and slope r.m.s. values, it is possible to notice that the percolating
volume strongly depends on their variation for small imposed far-field displacements. On the
other hand, the percolating volume nearby the full contact limit appears to be almost indepen-
dent of the statistical parameters variation, in agreement with the Persson’s theory of leakage in
seals. Future developments of the present study will regard a statistical analysis of the obtained
results based on a wider population of numerically generated contact surfaces. Moreover, the
computation of the portion of the free volume which is involved in leakage is also an important
result, and its dependency on the statistics of the rough surfaces is also a crucial issue to deepen.
This knowledge could be helpful to avoid surface configurations implying trapped fluid.
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