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Abstract. Viscous dampers are energy dissipation devices widely employed for the seismic 

control of structures. The performance of systems equipped with viscous dampers has been 

extensively analyzed by employing deterministic approaches. However, these approaches ne-

glect the response dispersion due to the uncertainties in the input as well as in the structural 

system properties. Some recent works highlighted the important role of these uncertainties in 

the seismic performance of systems with linear or nonlinear viscous dampers. The present 

study focuses on the uncertainty in the damper properties and it aims at evaluating its influ-

ence on the probabilistic response of the damped system. In particular, the variability of the 

damper properties is assumed to be constrained by the tolerances allowed in qualification 

and production control tests. A preliminary study on the damper response is carried out to 

relate the constitutive damper characteristics to the parameters controlled in the experi-

mental tests and to evaluate the consequences of damper parameter variations on the dissipa-

tion properties of the device. In the subsequent part of the study, the response hazard curves, 

providing the relation between the values of the response parameters of interest and the rele-

vant yearly exceedance probability, are evaluated. In the analyses, a simplified structural sys-

tem is considered, and the Subset Simulation (SS) algorithm is employed together with the 

Markov Chain Monte Carlo method to achieve a good estimate of small probabilities of 

exceedance. A sensitivity analysis, considering the expected variations in the damper proper-

ties, is finally carried out by employing the Augmented SS method to study the influence of the 

device acceptance ranges on the hazard curves. 
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1 INTRODUCTION 

Supplemental energy dissipation systems are widely employed for the seismic control of 

new and existing structures. In particular, viscous dampers provide an efficient tool to dissi-

pate the seismic input energy into heat, by reducing both the displacement and force demand 

in the structures [1, 2]. To date, the performance of systems equipped with viscous dampers 

has been extensively analyzed by employing deterministic approaches neglecting the response 

dispersion due to the uncertainties in the input as well as in the structural system properties.  

However, these deterministic approaches provide only an approximate assessment of the 

seismic performance [3]. Some recent works have highlighted the important role of the uncer-

tainties in the seismic performance of structures equipped with viscous dampers [4, 5, 6, 7] 

and the different propagation of ground motion uncertainties in systems equipped with linear 

or nonlinear viscous dampers [8, 9, 10]. The present study focuses on the influence of the un-

certainties in the damper properties. In the approach suggested by codes and followed in prac-

tical design [11, 12, 13, 14], this uncertainty is bounded by the tolerances allowed in the 

qualification and production control tests. Consequently, design procedures usually involve a 

safety check based on the responses obtained by upper and lower bounds of the damper prop-

erties, chosen coherently with the test tolerances. However, the actual level of safety provided 

by the suggested design procedures is a problem requiring further investigation, as pointed out 

in [10], and the relevance of this topic is mainly due to the low robustness inherent to the 

structure-dampers system, where the unexpected dissipative device failure can lead to a pro-

gressive collapse of the potentially non-ductile structure. 

The present paper aims at evaluating the influence of these allowed tolerances in the prob-

abilistic performance of the system, by providing useful information on the exceedance prob-

ability of the response parameters of most interest for the performance assessment (as 

described by response hazard curves) and by using an approach to the problem that is more 

efficient and reliable with respect to those used in previous studies on the same topic.  

A preliminary analysis of the damper response is developed to relate the damper constitu-

tive characteristics to the parameters controlled in the experimental tests and to analyze the 

variation in the dissipation properties of the device.  

In the subsequent part of the study, response hazard curves are developed by employing a 

simplified model of the structural system. These curves provide the relation between the val-

ues of the response parameters of interest and the relevant yearly probability of exceedance. A 

sensitivity analysis, considering the expected variations in the damper properties, is then car-

ried out to assess the influence of the device acceptance ranges on the hazard curves. The re-

sponse measures considered include the maximum values of the deformation, related to the 

damage of the structural system and the damper failure [15], and the maximum values of the 

relative velocity, related to the damper force. The model uncertainties considered in the appli-

cations concern the earthquake scenario parameters and the ground motion characteristics, 

while other uncertainties concerning the structure response are neglected [16, 17]. The numer-

ical applications, involving both linear and nonlinear viscous dampers show that tolerances 

allowed in the tests provide notable differences among the observed values of the response 

parameters of interest. 

It is noteworthy that the probabilistic response of the system was analyzed in the previous 

studies by employing approaches consistent with the PEER framework [18]. This latter is a 

widely employed framework that permits a separation of the tasks related to the seismic haz-

ard, structural vulnerability and expected losses assessment. The application of the framework 

is usually based on a description of the seismic input in terms of a small set of real records.  
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This approach does not permit to achieve an accurate estimate of small failure probabilities. 

For this reasons, in this study the Subset Simulation algorithm with Markov Chain Monte 

Carlo method are employed to obtain a good estimate of small probabilities of exceedance 

[19]. Coherently with this approach, the Augmented SS method is used for the sensitivity 

analysis [20]. This simulation techniques require a seismological stochastic model and the one 

proposed in [21, 22] has been used for the analyses. 

2 DAMPER RESPONSE SENSITIVITY 

The response of viscous damper is usually described by an exponential constitutive law in 

the form [23, 24] 

  vvcFd sgn


  (1) 

where Fd is the measured force and c and are two constitutive parameters: the former is a 

multiplicative factor while the latter describes the nonlinear behaviour (=1for the linear 

case).  

In a sensitivity study aiming at evaluating the consequences of variations of the damper pa-

rameters on the system performance, these two parameters could be assumed to vary freely.  

However, the experimental procedure for the production controls suggest a different ap-

proach to the sensitivity analysis, involving characteristic parameters directly linked to the 

experimental test results, as explained hereafter. In general, the design is based on a target 

value of the maximum velocity v0 attained at a circular frequency 0,test relevant to the seismic 
response, and the production control tests are oriented to check the damper behavior at this 

design condition. More precisely, sinusoidal cycles simulating the design conditions, i.e., the 

displacement histories    tvtu testtest ,0,00 sin/  , are imposed to the damper and the corre-

sponding maximum damper force Fd,test is measured. Some tolerance is allowed in the force 

value and acceptance criteria usually requires that the difference between the measured value 

of the maximum force Fd,test  and the expected (design) value Fd0,test  is lower than +/- pFd0,test 

[11, 12, 13]. The safety check is coherently carried out by considering the worst conditions 

compatible with the acceptance criteria [11, 12, 13], by adopting a lower/upper bound ap-

proach. 

In this context, rather than investigating the system response by considering a free varia-

tion of the constitutive parameters it is more useful to link the variability of the response to 

the outcomes of the acceptance tests. Thus, in this study the response is investigated by as-

suming p, describing the acceptance tolerance pFd0,test, as a system parameter and by introduc-

ing a second parameter   to identify the different pairs (c,) providing the same force 

variation pFd0,test. The pairs (c,) satisfying the equality constraint lie on a curve, whose par-

ametric expression is made explicit. Let c0 and 0  denote the reference values assumed in the 

structural design. A variation  ̂,ĉ  of the constitutive parameters provides the following var-

iation testdF ,0
ˆ  of the maximum force testdF ,0  expected in the sinusoidal test  
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The equation clearly shows that both ĉ  and ̂

 

contribute to this variation and the previous 

expression can be rewritten by introducing the tolerance parameter p as 
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It is evident (Figure 1) that the same variation p can be obtained by different pairs  ̂,ĉ  

and the constraint between these parameters can be described by introducing the parameter   

  
 

1
1

,ˆ

0

0 






v

p
cpc  (4) 

    ,ˆ p  (5)  

so that the pair (p,) provides a representation of the response variability that is alternative to 

the representation provided by  ̂,ĉ . The condition =0 coincides with a force variation due 

only to a variation of the response scale factor ĉ =p, whereas the other values describe a force 

variation p involving a combination of ĉ  and ̂ . 

To complete the preliminary analysis of the damper variability effects, a linearized form of 

the previous relationship between the constitutive parameters is derived. This form can be of 

interest in the sensitivity analysis of problems where eqn(1) is the only source of nonlinear 

behaviour and the local response variation can be conveniently approximated by analytical 

linear operators [25, 26, 27]. The relationships corresponding to eqns(3-5) are 

  ̂ln
ˆ

0
0

v
c

c
p   (6) 

   00 lnˆ vpcc   (7) 

  ˆ  (8) 
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Figure 1: Variations allowed for the damper response. 

Figure 2 shows the parametric curves containing the pairs  ̂,ĉ , evaluated for 3 values of 

the force variation factor p. The 3 cases reported correspond to p = - 0.3, p = 0.0, p = + 0.3.  

These curves are obtained by intersecting the surfaces provided by eqn.(3) (nonlinear ex-

pression) and by eqn.(6) (linear approximation) with horizontal planes identifying the force 

variations. The results concerning the case of linear viscous damper (=1) and nonlinear vis-

cous damper with =0.2 are reported respectively in Figure 2a and Figure 2b. It can be ob-
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served that the differences between the results obtained by using the nonlinear (exact) and the 

linear approximation become negligible in the case of the nonlinear damper. In this latter case, 

a notable percentage variation of   is linked to very small variation of c .  

The energy dissipation properties are analyzed and reported in Figure 3. The energy dissi-

pated in a cycle at the design conditions is denoted by 0dW . The corresponding energy dissi-

pated in the same test by a damper with different properties depend on p  and   and it is 

denoted by dW . Figure 3 shows the values of the ratio 0/ dd WW  obtained by varying the pa-

rameters. The solid lines correspond to the results measured for fixed values of the force fac-

tor p . The cases 30.0,15.0,0,15.0,30.0 p  are reported and the points of these curves 

describe the variations relevant to different pairs  ̂,ĉ . Dashed lines connect the points with 

the same variation of c . Results of Figure 3a refer to a linear viscous damper and Figure 3b 

refers to a nonlinear viscous damper with 2.0 . Given a value of the force factor p , the 

energy dissipated changes significantly by varying the pair  ̂,ĉ . Higher values of    

result in a reduction of the dissipative properties and this trend is more evident in the linear 

case. The discussed trend of the dissipation properties are valid in the neighborhood of the 

design conditions and different trends are observed for cycles with larger (or smaller) ampli-

tudes which can be representative of the response for seismic inputs with intensity levels 

higher (or lower) than the design one.  

  

a b 

Figure 2: Linear/nonlinear p-cd relationships for different p values (-30; 0; +30 %): a) = 1.0;  b) = 0.2. 
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Figure 3. Dissipated energy variation in cyclic paths (amplitude 0.0454m, circular frequency 2) 
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3 SEISMIC RESPONSE SENSITIVITY 

3.1 Seismic performance 

The seismic assessment and design of structures is usually carried out by evaluating via 

structural analysis the statistics of one (or more) response parameter of interest D and by en-

suring that the P[D > d
*
] of exceedance of a fixed threshold d

* 
is lower than an acceptable 

value P
*
. The random variable D can be expressed in terms of the ratio between a perfor-

mance demand and the relevant capacity, so that a unitary threshold implies failure at ultimate 

condition. This way, D accounts for the uncertainties in the loading actions, in the model and 

the capacity. Typical response parameters employed in the context of the performance as-

sessment of buildings with viscous dampers are: inter-storey drifts, absolute accelerations at 

storey, total base shear, forces on dampers, strokes on dampers.  

Code design and assessment procedures aim at satisfying the reliability constraint in an in-

direct way, as they evaluate a conventional demand measure d0 < d
*
 which is obtained from 

loadings of intensity whose exceedance probability P0 is lower than the acceptable probability 

P
* 
[3]. Amplification factors are usually considered to pass from d0 to d

*
. 

In the specific case of the seismic analysis of buildings equipped with dampers, the design 

is carried out by evaluating the response for seismic events with a mean annual frequency of 

occurrence varying from 1·10
-2

 (service limit state) to 2·10
-3

 (ultimate limit state) [11, 28, 29] 

while the safety target requires that the probability of failure is lower than 10
-5

 -10
-6 

[11, 29].  

In order to relate the design condition, described by the pairs (d0, P0),  to the effective sys-

tem reliability, described by the couple (d
*, 

P
*
), it is useful to evaluate the response hazard 

function  

    d>DPdGd   (9) 

associating a generic value of the response parameter threshold d to the corresponding proba-

bility of exceedance. The conventional design value d0 can be linked to the response value 

associated to a given probability of exceedance by introducing the inverse function GD
-1

(P) 

and defining the ratio 

  
 

0

1

d

PG
P d



  (10) 

This ratio can be interpreted as the amplification factor for the design value d0 providing 
 

the response parameter value corresponding to the desired probability of exceedance. 

Design procedures generally do not involve a probabilistic analysis but aim at providing 

the value of d0 by means of a deterministic analysis. For example, the seismic design is usual-

ly based on the description of the seismic input in terms of a pseudo-acceleration response 

spectrum and a reduced set of (artificial or natural) ground motions accounting for the record-

to-record variability effects. The conventional design value of the response d0 is obtained as 

the mean of the maximum response values. This design approach introduces further sources 

of approximation in the evaluation of the system reliability which are not addressed in this 

work. 

3.2 Response hazard curve evaluation 

Let X  be the vector of the random variables of the system lying in the domain  , includ-

ing both the variables describing the ground motion, for which a stochastic model is required, 
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and the structural system uncertainties. The system parameters are described by the vector 

 , collecting the damper parameters p  and  , as discussed in the previous section.  

The failure corresponds to the region of response events such that 

    d>xgxdG dd  |:|  , having denoted with  |xgd  the response function provid-

ing the value of the parameter d , once the sample x  and the parameters  are assigned. The 

response hazard function can be obtained as 

      dxxpxIdG xdd 


||   (11) 

where  xpX  if the probability density function (PDF) of the system variables and  

 |xId  is the indicator function, such that 1dI  if  dGx d  (equivalently   dxgd  ), 

otherwise 0dI . In the following, it is assumed that the  xpX  is not influenced by the pa-

rameters  , although the formulation can be extended to the general case  xpX
 [20]. 

The sensitivity problem is approached by considering the augmented reliability problem 

proposed in [20], i.e., by considering   as a fictitious random variable with arbitrary PDF 

 p . By this approach, the response sensitivity can be estimated with the same simulations 

employed for estimating the reliability, thus significantly reducing the computational effort 

with respect to other approaches. 

The response hazard function can be obtained through the Bayes’ Theorem in the form 

  
 
 

 dG
dp

dG dd







 |
|   (12) 

where 

          
dxdpxpxIdG xx dd |  (13) 

and  

  
   

 dG

dpxI
dp

d

x d 





|
|


  (14) 

In this formulation, both X and   are random variables and the probability of exceeding 

the threshold d is a rare event that can be efficiently evaluated by the Subset Simulation-

Markov chain method [19].  

3.3 Uncertainties description 

The seismic event is described by defining a seismic source characterized in terms of mo-

ment magnitude M and source-to-site (hypocentral) distance R. The description of the uncer-

tainty associated with the seismic input is completed by the specification of a stochastic 

ground motion model, considering the properties of the construction site. The intensity of the 

seismic event is described by the moment magnitude M and its uncertainty is modeled by the 

Gutenberg-Richter law defined on the interval  MAXmm ,min  and corresponding to the fol-

lowing PDF of M given an earthquake event [30]:  

  
MAXmm

m

M
ee

e
mp















min

   MAXmmm ,min  (15) 
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where  b10ln  is a parameter related to the number of the expected earthquakes per an-

num with magnitude exceeding m . More precisely, it is assumed that the occurrence of an 

event with mM   is a Poisson process with exceedance frequency   bmam 10  and no 

event is expected for MAXmM  . It is also assumed that no significant response is observed 

for 
minmM  , so the response hazard function, referred to a time interval one year long, can 

be obtained as       min|1 min m>Md>DPedG
m

d


 by starting from the outcomes of 

the subset procedure  min| m>Md>DP .  

The ground motion is generated by starting from a white noise  tw , described by the N-

dimensional vector w  of values iw  assumed at the instant titi  , where t  is the finite 

time interval assumed for the numerical integration. 

Following the Atkinson-Silva model [21, 22], the ground motion is obtained by modulating 

in time the white noise by means of the function  te , which yields the time-function 

     twtetz  . The amplitude and the frequency content are obtained by multiplying its Fou-

rier transform  fz  (normalized to have a mean square amplitude of unity) by the radiation 

spectra  fAmod , where  fA  is a deterministic function of the frequency f while mod  is a 

random scaling factor describing the amplitude variability [31]. The final ground motion ac-

celeration  ta  is obtained by the inverse Fourier transform of    fAfz  . The time modulat-

ing function  and the radiation spectra A depend on the moment magnitude, the distance and 

the local characteristic of soil. The scaling factor mod  is a random variable with lognormal 

distribution and unit median value. Further details on the ground motion model are reported in 

Appendix 1. 

The set of random variables  w,,, rmx   consists of the three scalar quantities ,, rm  

and the vector-valued quantity w  whose dimension N  depends on the discretization of the 

time interval. 

The uncertainties on the structural system are not considered in this work, given their gen-

erally low influence on the probabilistic response when also the seismic randomness is taken 

into account [16, 17]. 

4 STRUCTURAL RESPONSE 

The structural system considered in the study consists of a linear S-DoF system with period 

sT 0.1  and damping rate 05.0 . Two added dissipative systems are analyzed, the former 

is a linear system with 0.10   and the latter is a nonlinear system with 2.00  .  

For what concerns the seismic scenario, the following values have been assumed for the 

seismic hazard parameters 5.4a , 0.1b , 5min m , 8MAXm . An hypocentral distance 

kmR 20  is assumed and the soil conditions are described by Vs=310 m/s. For the time dis-

cretization, a time-interval st 02.0  is considered, corresponding to N=3750. 

The linear system viscous constant c has been designed to add a damping ratio 3.0d  

whereas the nonlinear system viscous constant has been calibrated to provide similar per-

formances at the design conditions. More precisely, the equivalence has been established by 

considering the value assumed by the maximum displacement mean hazard curve 0( )UG u  at 

0P  as performance indicator. The two systems are characterized by very close values of 0u  

for the probability of exceedance )( 00 uGP U =0.0021 (10% within 50 years); this probability 

value is usually assumed for the seismic design at ultimate limit conditions [11, 28, 29]. 
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Table 1 reports the viscous damper properties ( 0  and the 0c ) and the performances for 

the linear and nonlinear damped system at the design conditions. The response parameters 

considered for the performance comparison are: the maximum relative displacement U (con-

trolling the construction damage and the damper failure), the maximum relative velocity V  

and the maximum force on the damper dF  (controlling the damper failure), and the maximum 

absolute acceleration A  (controlling the damage of acceleration sensitive facilities). 

 

Viscous Properties  1.00 0.20 

c0/m     [g-s

/m


] 3.77 0.94 

Performances u0         [m] 0.037 0.037 

v0         [m/s] 0.276 0.285 

Fd0        [N] 208 146 

a0             [m/s
2
] 1.799 1.896 

 

Table 1: Properties of the damping systems and relevant response at the design conditions. 

Subset simulation analyses are performed to estimate the reliability of the damped systems 

for both the linear and nonlinear viscous dampers case. The first part of the next section com-

pares the reliabilities of the reference systems (corresponding to the nominal damper proper-

ties), whereas the second part shows the effects of the variability of the damper viscous 

properties on the reliability. The probabilistic description of the system response is given in 

terms of hazard curves (complementary cumulative distribution function CCDF), providing 

the annual probability of exceedance for each relevant response parameters.  

4.1 Probabilistic response at the reference conditions 

In evaluating the seismic reliability of the systems at the reference conditions 

( 0,0  p ), the set of uncertain parameters consists of those characterizing the earthquake 

excitation, i.e., magnitude, white-noise components and the model parameter mod. As stated 
before (in Section 3.0), structural system parameters are assumed to be deterministic. 

In order to estimate exceedance probabilities up to 10
-6

, subset simulations are carried out 

using 6 conditional levels (with threshold levels identified by a percentile equal to 10%) with 

600 samples/level and a total number of samples equal to 540x5 + 600 = 3300. The averaged 

result of 10 independent simulations are presented. 

Because of the adopted design criteria, the linearly and nonlinearly-damped systems show 

the same displacement 0u  at the probability of exceedance 0P  while the other response pa-

rameters exhibit different values. The ratios between the demand parameters and the reference 

values corresponding to the design conditions are reported in the Figure 4, so the unit values 

are located at the probability of exceedance P0 and the values reported in the horizontal axis 

coincide with the ratio introduced in eqn.10. The maximum response parameters correspond-

ing to the probability of exceedance 10
-6

 are highlighted in the figure by the coloured dashed 

lines, and relevant numerical values are collected in Table 2. 

The linear and nonlinear damped systems exhibit different probabilistic responses within a 

range of exceedance probabilities up to 10
-6

. In fact, the exceedance probabilities of the 

maximum displacements and velocities are higher for the linear system than for the linear sys-

tem, for values below the design value, and lower for values higher than the design value. An 

opposite trend is observed for the damper force, with the linear system requiring an higher 

strength capacity than the nonlinear one for rare seismic events. The accelerations show also a 
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different trend and the performance required by the nonlinear system are generally higher than 

those required by the linear system both for frequent and rare events. Qualitative trends ob-

served are in agreement with results presented in previous studies obtained by conditional 

based approaches (PEER framework) [8, 10]. 
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Figure 4. Normalized response hazard curves for linear (=1.0) and nonlinear (= 0.2) dampers. 

 

 1.00 0.20  

U(P


) 7.20 14.32  

Fd(P


) 6.93 1.65 

V(P


) 6.64 12.54 

A(P


) 6.86 11.39 

 

Table 2: Numerical values of d at P


. 

4.2 Effect of viscous damper properties variability 

In this section, the influence of the variability of the viscous properties on the hazard 

curves is analyzed. The reference response evaluated in the previous section is compared with 
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the response obtained with the upper and lower bound of variations allowed in control pro-

duction tests, as discussed in Section 2. The two limit values 15.0p  are assumed for the 

force testdF ,0
ˆ  measured in the test at the design conditions, according to the limits suggested in 

[13]. Once p  is assigned, only the parameter   varies and gives the possible pairs of consti-

tutive parameter variations ̂  and ĉ  (see eqns. 4-5).  

The system response sensitivity is carried out by considering an “augmented reliability 

problem” [20] in which the  -variability is added to the seismic uncertainties previously in-

troduced. In order to investigate a realistic field of variation in the damper response, a uniform 

distribution function on [-0.20,+0.20] is assumed for the system parameter,  in this case co-

inciding with the nonlinear exponent variation ̂ . With the aim of increase the accuracy in 

the estimation of the exceedance probabilities a number of conditional samples greater than 

the number used in the previous section and equal to 1500 is used for each simulation level, 

for a total amount of samples equal to 1350x5 + 1500 = 8250. The range of the parameter var-

iation has been discretized in 4 bins Ji  (i=1,..,4), and the hazard curves of the two extreme 

bins, centered at 15.0ˆ  are reported in the following. An average of 50 independent 

simulations is used. 

In Figures 5 the hazard curves of displacements, damper forces and absolute accelerations 

are plotted with a semi-logarithmic representation. Both the linear (left charts) and nonlinear 
(right charts) damped systems are considered, and the response parameters values are normal-

ized by dividing them by the design value obtained in the reference design condition, as in the 

previous section. Each chart shows the reference curve (black solid line), a pair of blue dashed 

curves related to the upper bound 15.0p  and describing the response variation for the two 

extreme bins of the parameter variation 15.0 , a pair of red dashed curve related to the 

lower bound 15.0p  and describing the response variation for the two extreme bins of the 

parameter variation 15.0  

In the linear case, the perturbed condition with p=-0.15 produces (moving towards the 

small probability range) an amplification on both the displacement and acceleration re-

sponses, while the opposite trend is observed for the damper force. The highest displacement 

variations occur when p=-0.15 and  is in the bin centred at the value -0.15. This is a con-
sequence of both the reduction of the damper force due to the negative value of p and the 

nonlinearity introduced by the negative variation of  (<1) in the system behaviour, which 

results in larger displacements for less probable events (see Figure 4 for u parameters). A dif-

ferent trend is observed for the forces, where the worst condition is represented by p=+0.15. 

At the minimum probability of exceedance considered, the increment of the maximum dis-

placement threshold is about 35% and the force threshold is about 20% while lower incre-

ments are observed for the absolute acceleration threshold. 
Similar trends are shown in the nonlinear case where both the displacement and the accel-

eration demands grow for p=-0.15, while the damper forces increase when p=+0.15. How-

ever, in this case results are less sensitive to the parameter expressing the percentile 

variation of the nonlinear exponent  
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Figure 5. Effects on the response hazard curves due to the perturbation on the damper parameters. 
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5 CONCLUSIONS 

The paper analyzes the influence of both the seismic uncertainties and the variability of the 

viscous damper behaviour on the probabilistic response of passively protected systems. The 

probabilistic response is evaluated by means of advanced statistical simulation methods (Sub-

set simulation with Markov chains), able to furnish an accurate estimation of the demand haz-

ard for low values of the exceedance probability.  

The effects of the variability of the viscous damper properties coherent with the tolerance 

range allowed by the codes for device control tests is studied via reliability-sensitivity analy-

sis. This analysis is performed by carrying Subset simulations on an “augmented reliability 

problem”.  

A comparison between the performances of two systems consisting of the same structure 

and of added linear () and nonlinear () viscous dampers is presented. The dampers 
are designed to achieve the same seismic performances (displacement response) at the usual 

design conditions suggested by codes of practice and corresponding to an annual probability 

of exceedance of 0.0021.  

It is observed that the variability expected according to control production tests influences 

differently the response hazard curves for rare events. Considering probability of exceedance 

in the range 10
-5

-10
-6

, it is observed that some response parameters are more sensitive to the 

damper parameter variations than others. Liner and nonlinear cases exhibit similar trends of 

variation but the amount of the response variations are very different in the two cases. 

Current design procedures are based on the estimation of the probabilistic response and 

relevant structural safety by means of amplification factors increasing conventional design 

values of the structural response. The results observed in this study provide a contribution to-

wards a more reliable definition of these amplification factors. 
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8 APPENDIX 1 - DETAILS OF ATKINSON-SILVA MODEL 

The Atkinson-Silva ground motion model [21] used in this work is characterized by the ra-

diation spectrum A(f) and the time modulating function e(t). The radiation spectrum gives a 

spectral representation of the ground motion at the construction site, accounting for several 

physical contributions influencing the wave propagation. Its analytical expression is 

 )()()()()( 0mod fVfPfAfAfA fn   (16) 

The (two corner frequencies) point-source spectrum is represented by  fA0  
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where, 0M  is the seismic moment (expressed in dyne·cm), related to the moment magnitude 

M  by 
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and C is a constant given by   
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where R̂ , V , sF  are respectively the radiation pattern ( 55.0ˆ R ), a factor partitioning the 

total shear-wave energy into 2 horizontal components ( 71.0V ) and the free-surface ampli-

fication factor ( 0.2sF );  and   represent the soil density (
3/8.2 mt ) and wave velocity 

( skm/5.3 ) near the source; the multiplicative factor 10
-20

 is in order to obtain cm as unit 

dimension for the ground motion (cm/s
2  

for accelerations). The two corner frequencies af  

and bf  and the   parameter are related to the magnitude by 

   Mfa  496.0181.2log  (20) 

   Mfb  227.0380.1log  (21) 

   M 670.0223.3log  (22) 

The )( fAn  function, characterizing the path effects of seismic waves, is given by  
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where the 1/R term represents the geometrical spreading effect. The effect of the waves-

transmission is accounted by the quality factor )( fQ ,, defined as 

 nfQfQ 0)(   (24) 

whit 1800 Q and 45.0n regional parameters. The )( fPf  function accounts for the path-

independent loss of high-frequency in the ground motion and it is defined by  
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Whit k = 0.03 and fmax = 100 Hz. The soil amplification factor V(f) is taken according to 

[32] for generic soil (VS,30 = 310 m/s). The model-error parameter mod  is the adding log-

normal random variable (ln = 0, ln = 0.5) , according to Jalayer and Beck [31], used for 

increasing the record-to-record variability. For which concerns the envelope function  te , it 

is given by 
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with parameters 
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1exp
and =0.05, =0.2, as sug-

gested in [22]. 

The ground-motion total duration is equal to wn TT 2   with  wT  defined as 
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The distance R  from the earthquake source to the site can be defined as follow, in function 

of the epicentral distance r and the moment dependent nominal pseudo-depth h 

(   05.015.0log  Mh ) 

 22 hrR   (28) 


