
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

ENERGY AND MOMENTUM CONSERVING VARIATIONAL BASED
TIME INTEGRATION OF ANISOTROPIC HYPERELASTIC

CONTINUA

Michael Groß1, Rajesh Ramesh2 and Julian Dietzsch3

Technische Universität Chemnitz, Professorship of applied mechanics and dynamics
Reichenhainer Straße 70, D-09126 Chemnitz

1 michael.gross@mb.tu-chemnitz.de, 2 rajesh.ramesh@mb.tu-chemnitz.de, 3 tmd@mb.tu-chemnitz.de

Keywords: Time stepping schemes, finite elasticity, anisotropy, fiber-reinforced continua.

Abstract. For many years, the importance of fiber-reinforced polymers is steadily increasing
in mechanical engineering. According to the high strength in fiber direction, these composites
replace more and more traditional homogeneous materials, especially in lightweight structures.
Fiber-reinforced material parts are often manufactured from carbon fibers as pure attachment
parts, or from steel for transmitting forces. Whereas attachment parts are mostly subjected to
small deformations, force transmission parts usually suffer large deformations in at least one
direction. For the latter, a geometrically non-linear formulation of these anisotropic continua is
indispensable [1]. A familar example is a rotor blade, in which the fibers possess the function of
stabilizing the structure in order to counteract large centrifugal forces. For long-run numerical
analyses of rotor blade motions, we have to apply numerically stable and robust time integration
schemes for anisotropic continua.

This paper is an extension of Reference [2], which is in turn an extension of Reference [3]
to a special anisotropic material class, namely a transversely isotropic hyperelastic material
based on the wellknown concept of structural tensors. In Reference [3], higher-order accu-
rate time-stepping schemes are developed systematically with the focus on numerical stability
and robustness in the presence of stiffness combined with large rotations for computing large
motions. In the former work, these advantages over conventional time stepping schemes are
combined with highly non-linear anisotropic material formulated with polyconvex free energy
density functions [4]. The corresponding time integrators preserve all conservation laws of a
free motion of a hyperelastic continuum, which means the total linear and the total angular
momentum conservation law as well as the total energy conservation law. Both are numerically
advantageous, because it guarantees that the discrete configuration vector is embedded in the
physically consistent solution space. In order to guarantee the preservation of the total energy,
the transient approximation of the anisotropic stress tensor is superimposed with an algorithmic
stress field based on an assumed ’strain’ field.

The presented numerical examples show the behaviour of the non-linear anisotropic material
in Reference [4] under static and transient loads, their conservation laws and the higher-order
accuracy of the variational based time approximation.
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1 INTRODUCTION

We begin by summarizing the kinematical aspects of the considered transversely isotropic
continuum. In Fig. 1 on the right-hand side, we show the reference configuration B0 of the
considered fiber-reinforced continuum body B. The configuration B0 = BM

0 ∪BF
0 is defined

B0
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Bt

x1

x2
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Figure 1: Reference and current configuration of a transversely isotropic continuum.

as the homogenized union of the set BM
0 for the matrix and the set BF

0 for the fibers. The
imaginary fiber at any point X ∈ B0 is directed along the normalized vector a0. Since we
assume that both subsets are perfectly connected, the corresponding stretched vector a in the
deformed configuration Bt is given by

a = F a0 (1)

where
F := ∇u + I (2)

denotes the deformation gradient of B0 and u the displacement vector field. The tensor I desig-
nates the second-order unit tensor. The symbol ∇ denotes the partial derivative with respect to
the material point X ∈ B0. The deformation gradient FF of the fiber continuum BF

0 then takes
the form

FF := a⊗ a0 = F a0 ⊗ a0 = F A0 (3)

where
A0 := a0 ⊗ a0 (4)

designates the structural tensor of the fiber reference configuration BF
0 . The corresponding

right CAUCHY-GREEN tensor CF then reads

CF := FTF FF = [F a0 ⊗ a0]
T [F a0 ⊗ a0] = [a0 ⊗ a0] C [a0 ⊗ a0] = A0 C A0 = [C : A0] A0

(5)
where C := FT F denotes the right CAUCHY-GREEN tensor of B0. Based on these deformation
measures, we consider the strain energy function W of the considered transversely isotropic
elastic continuum on the one hand (i) as the unpartitioned function W (C; A0,κ0), where the
semicolon in the argument separates the parameter A0 and κ0, acting at any X ∈ B0, from the
variable C, and on the other hand (ii) as the partitioned function

W (C; A0,κ0) = WM(C;κ0M
) +WF (CF ;κ0F

) (6)
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The parameter κ0, κ0M
and κ0F

are vectors including material constants with respect to B0.
The second PIOLA-KIRCHHOFF stress tensor S corresponding to Eq. (6) is given by

S ≡ 2
∂W (C; A0,κ0)

∂C
= SM + SF (7)

= 2 DWM(C;κ0M
) + 2 DWF (CF ;κ0M

) :
∂CF

∂C
= 2 DWM(C;κ0M

) + 2 A0 DWF (CF ;κ0M
) A0 (8)

S = 2 DWM(C;κ0M
) + 2 [DWF (CF ;κ0M

) : A0] A0 (9)

The notation D(•) denotes the FRÉCHET derivative of a volume density with respect to its
argument. The strain energy functions W of B0, WM of BM

0 or WF of BF
0 , respectively,

directly depends on the invariants of the corresponding right CAUCHY-GREEN tensors. We
assume (i) the unpartitioned case

W (C; A0,κ0) = Ŵ (I1, I2, I3, I4;κ0) (10)

and (ii) the partitioned case

WM = ŴM(I1, I2, I3;κ0M
) WF = ŴF (I4;κ0F

) (11)

where

I1 := C : I I2 := 1
2

[
(I1)

2 − C2 : I
]

I3 := det C (12)

denotes the tensor invariants of the right CAUCHY-GREEN tensors C, and

I4 ≡ CF : A0 = A0 C A0 : A0 = [a0 · C a0] a0 · a0 = a0 · C a0 = C : A0 = a · a =: CF (13)

the squared fiber stretch CF ≡ λ2
F . Using the fourth invariant I4 =: CF , the right CAUCHY-

GREEN tensor CF and the second PIOLA-KIRCHHOFF stress tensor SF of the partitioned strain
energy function, respectively, can be simply written as

CF = CF A0 SF = 2

[
DŴF (CF ;κ0F

)
∂CF
∂CF

: A0

]
A0 = 2 DŴF (CF ;κ0F

) A0 (14)

Hence, the directions of the fiber deformation tensor CF and fiber stress tensor SF are uniquely
prescribed by the structure tensor A0, as expected.

2 EULER-LAGRANGE EQUATIONS

With regard to the numerical time integration, we now introduce variationally consistent

• temporally continuous assumed ’strains’ C̃ and C̃F , as well as

• temporally discontinuous superimposed stresses S̃ and S̃F , respectively.

The former are necessary for an exact analytical time integration of approximated strain energy
functions [6], and the later for their exact numerical time integration [8]. Hence, the super-
imposed stresses S̃ and S̃F are responsible for the energy consistency of the discrete EULER-
LAGRANGE equations, but they have to vanish identically for guaranteeing energy consistency
of the continuous EULER-LAGRANGE equations. We consider the strain energy function
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1. W (C; A0,κ0) on B0 (unpartitioned strain energy), or

2. WM(C;κ0M
) and WF (CF ;κ0F

) separately (partitioned strain energy).

We derive the continuous equations of motion by using a mixed principle of virtual power
or principle of Jourdain, respectively, a differential variational principle [9]. The modivation
for applying this principle from the outset is to satisfy the total energy balance in both the
continuous as well as the discrete setting. Denoting by a superimposed dot the partial time
derivative, in the unpartitioned case, this balance takes the form

Ṫ (u̇, v̇, ṗ; ρ0) + Π̇int(u̇, ˙̃C,S; A0,κ0, S̃) =

∫
B0

ρ0b · u̇ dV +

∫
∂tB0

t · u̇ dA+

∫
∂uB0

h · (u̇− ˙̄u
)

dA

(15)
with the kinetic power

Ṫ (u̇, v̇, ṗ; ρ0) :=

∫
B0

[ρ0v− p] · v̇ dV −
∫

B0

ṗ · [v− u̇] dV +

∫
B0

p · ü dV (16)

where

p = ρ0v and v = u̇ (17)

denotes the linear momentum vector and the material velocity vector, respectively. The scalar
ρ0 denotes the mass density field in B0. The stress power Π̇int is written in dependence on the
second PIOLA-KIRCHHOFF stress tensor S, the superimposed stress tensor S̃ and the assumed
’strain’ tensor C̃ as

Π̇int(u̇, ˙̃C,S; A0,κ0, S̃) :=
1

2

∫
B0

[
2 DW (C̃; A0,κ0) + S̃− S

]
: ˙̃C dV

− 1

2

∫
B0

Ṡ :
[
C̃− C(u)

]
dV +

1

2

∫
B0

S : Ċ(u̇) dV

=

∫
B0

Ẇ dV (18)

where

S = 2 DW (C̃; A0,κ0) + S̃ C̃ = C(u) := (∇u + I)T (∇u + I) (19)

The superimposed stress tensor S̃ = O, with the zero tensor O, has to vanish for energy con-
sistency. On the right-hand side of Eq. (15), there is the external power depending on the body
force vector b per unit mass on B0, the traction force vector t per unit area on the NEUMANN

boundary ∂tB0 and the LAGRANGE multiplier vector h enforcing the constraint

u− ū = 0 on ∂uB0 (20)

of a prescribed displacement ū on the DIRICHLET boundary ∂uB0. Both boundary sets satisfy
the conditions ∂B0 = ∂tB0∪∂uB0 and ∂tB0∩∂uB0 = ∅, where ∂B0 designates the boundary
of the reference configuration.
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2.1 The unpartitioned strain energy function

In the unpartitioned case, we introduce the assumed ’strain’ field C̃ and the superimposed
stress field S̃ for the entire reference configuration variationally consistent by considering the
virtual power principle

δ∗Ḣ(u̇, v̇, ṗ, ˙̃C,S; ρ0,A0,κ0,b, t, ˙̄u, S̃) :=

δ∗Ṫ (u̇, v̇, ṗ; ρ0) + δ∗Π̇
int(u̇, ˙̃C,S; A0,κ0, S̃) + δ∗Π̇

ext(u̇; ρ0,b, t, ˙̄u) = 0 (21)

with the virtual kinetic power

δ∗Ṫ (u̇, v̇, ṗ; ρ0) :=

∫
B0

[ρ0v− p] · δ∗v̇ dV −
∫

B0

δ∗ṗ · [v− u̇] dV +

∫
B0

ṗ · δ∗u̇ dV (22)

the virtual external power

δ∗Π̇
ext(u̇; ρ0,b, t, ˙̄u) := −

∫
B0

ρ0 b · δ∗u̇ dV −
∫
∂tB0

t · δ∗u̇ dA−
∫
∂uB0

h · δ∗u̇ dA (23)

and the virtual internal power

δ∗Π̇
int(u̇, ˙̃C,S; A0,κ0, S̃) :=

1

2

∫
B0

[
2DW (C̃; A0,κ0) + S̃− S

]
: δ∗

˙̃C dV

−1

2

∫
B0

δ∗S :
[

˙̃C− Ċ(u̇)
]

dV +
1

2

∫
B0

S : δ∗Ċ(u̇) dV (24)

The symbol δ∗ denotes the variation with respect to the variables (not the parameter behind the
semicolon) in the function argument. Integration by parts in the last term of Eq. (24) furnishes

1

2

∫
B0

S : δ∗Ċ(u̇) dV =

∫
B0

FS : ∇(δ∗u̇) dV =

∫
∂tB0

FSN · δ∗u̇ dA−
∫

B0

DIV[FS] · δ∗u̇ dV (25)

The vector N denotes the normal field on the NEUMANN boundary ∂tB0, and DIV[•] the di-
vergence operator with respect to X ∈ B0. Rearranging termes in Eq. (21) according to the
variations δ∗ṗ, δ∗v̇, δ∗S, δ∗

˙̃C and δ∗u̇, we obtain the variational form

0 =

∫
B0

[ρ0v− p] · δ∗v̇ dV −
∫

B0

δ∗ṗ · [v− u̇] dV −
∫

B0

[DIV[FS] + ρ0b− ṗ] · δ∗u̇ dV

− 1

2

∫
B0

[
S− 2 DW (C̃; A0,κ0)− S̃

]
: δ∗

˙̃C dV − 1

2

∫
B0

δ∗S :
[

˙̃C− Ċ(u̇)
]

dV

−
∫
∂tB0

[t− FSN] · δ∗u̇ dA−
∫
∂uB0

h · δ∗u̇ dA (26)

Owing to the fundamental theorem of variational calculus, the corresponding continuous EU-
LER-LAGRANGE equations read

v = u̇ with u(t0) = u0 (27)
ρ0v = p ∀t > t0 (28)

DIV[FS] + ρ0b = ṗ with p(t0) = p0 ≡ ρ0v0 (29)

Ċ(u̇) = ˙̃C with C̃(t0) = C(u0) ≡ (∇u0 + I)T (∇u0 + I) (30)

2 DW (C̃; A0,κ0) + S̃ = S ∀t > t0 (31)
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with the corresponding inital conditions in B0 as well as the boundary conditions

FSN = t ∀t > t0 on ∂tB0 (32)
δ∗u̇ = 0⇐⇒ u̇ = ˙̄u with u(t0) = ū(t0) on ∂uB0 (33)

Consequently, the PIOLA-KIRCHHOFF stress tensor field S is temporally discontinuous, but the
displacement vector field u, the material velocity field v, the linear momentum field p as well
as the assumed ’strain’ field C̃ are temporally continuous. The superimposed stress tensor S̃
has to vanish in these EULER-LAGRANGE equations for satisfying the total energy balance in
Eq. (15).

2.2 The partitioned strain energy function

In the partitioned formulation, we introduce the assumed ’strain’ tensor C̃ and the superim-
posed stress tensor S̃M on BM

0 and the assumed ’strain’ C̃F and the superimposed fiber stress
S̃F on BF

0 by considering the virtual power principle

δ∗Ḣ(u̇, v̇, ṗ, ˙̃C,SM , ˙̃CF ,SF ; ρ0,κ0M
,κ0F

,A0,b, t, ˙̄u, S̃M , S̃F ) := (34)

δ∗Ṫ (u̇, v̇, ṗ; ρ0) + δ∗Π̇
ext(u̇; ρ0,b, t, ˙̄u) + δ∗Π̇

int(u̇, ˙̃C,SM , ˙̃CF ,SF ;κ0M
,κ0F

,A0, S̃M , S̃F ) = 0

The virtual kinetic power is identical to Eq. (22) and the virtual external power is identical to
Eq. (23). But the virtual internal power is now given by

δ∗Π̇
int(u̇, ˙̃C,SM , ˙̃CF ,SF ;κ0M

,κ0F
,A0, S̃M , S̃F ) :=

1

2

∫
B0

[
2 DWM(C̃;κ0M

) + S̃M − SM
]

: δ∗
˙̃C dV

1

2

∫
B0

[
2 DŴF (C̃F ;κ0F

) + S̃F − SF : A0

]
δ∗

˙̃CF dV

−1

2

∫
B0

δ∗SM :
[

˙̃C− Ċ(u̇)
]
dV +

1

2

∫
B0

SM : δ∗Ċ(u̇) dV

−1

2

∫
B0

δ∗SF :
[

˙̃CF A0 − ĊF (u̇)
]

dV +
1

2

∫
B0

SF : δ∗ĊF (u̇) dV (35)

with
CF (u) := [(∇u + I) A0]

T [∇u + I] A0 = A0(∇u + I)T (∇u + I) A0 (36)

Bearing in mind the identity

1

2
SF : δ∗ĊF (u̇) =

1

2
SF : A0 δ∗Ċ(u̇) A0 =

1

2
F A0 SF A0 : ∇u̇ = FF [SF : A0] : ∇u̇ (37)

integration by parts leads to

1

2

∫
B0

SF : δ∗ĊF (u̇) dV =

∫
∂tB0

FF [SF : A0] N · δ∗u̇ dA−
∫

B0

DIV [FF (SF : A0)] · δ∗u̇ dV (38)
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Again, by rearranging the terms in Eq. (34) due to the independent variations δ∗ṗ, δ∗v̇, δ∗SM ,
δ∗

˙̃C, δ∗SF , δ∗
˙̃CF and δ∗u̇, we obtain the variational form

0 =

∫
B0

[ρ0v− p] · δ∗v̇ dV −
∫

B0

δ∗ṗ · [v− u̇] dV

−
∫

B0

[DIV[FSM + FF (SF : A0)] + ρ0b− ṗ] · δ∗u̇ dV

−
∫
∂tB0

[t− (FSM + FF (SF : A0)) N] · δ∗u̇ dA−
∫
∂uB0

h · δ∗u̇ dA

− 1

2

∫
B0

[
SM − 2 DWM(C̃;κ0M

)− S̃M
]

: δ∗
˙̃C dV − 1

2

∫
B0

[
˙̃C− Ċ(u̇)

]
: δ∗SM dV

−
∫

B0

[
SF : A0 − 2 DŴF (C̃F ;κ0F

)− S̃F
] δ∗ ˙̃CF

2
dV − 1

2

∫
B0

[
˙̃CF A0 − ĊF (u̇)

]
: δ∗SF dV (39)

Taking the fundamental theorem of variational calculus into account, we arrive at the EULER-
LAGRANGE equations

v = u̇ with u(t0) = u0 (40)
ρ0v = p ∀t > t0 (41)

DIV [FSM + FF (SF : A0)] + ρ0b = ṗ with p(t0) = p0 ≡ ρ0v0 (42)

Ċ(u̇) = ˙̃C with C̃(t0) = C(u0) (43)

ĊF (u̇) : A0 = ˙̃CF with C̃F (t0) = CF (u0) : A0 (44)

2 DWM(C̃;κ0M
) + S̃M = SM ∀t > t0 (45)[

2 DŴF (C̃F ;κ0F
) + S̃F

]
A0 = SF ∀t > t0 (46)

with S̃M := O and S̃F := 0 for satisfying the total energy balance, and the boundary conditions

[FSM + FF (SF : A0)] N = t ∀t > t0 on ∂tB0 (47)
δ∗u̇ = 0⇐⇒ u̇ = ˙̄u with u(t0) = ū(t0) on ∂uB0 (48)

Consequently, the PIOLA-KIRCHHOFF stress fields SM and SF are temporally discontinuous,
but the assumed ’strain’ fields C̃ and C̃F are again temporally continuous.

3 FULLY-DISCRETE WEAK FORMULATION

Next, we derive the temporally and spatially discrete weak variational formulation. In this
section, we restrict ourselves to a linear piecewise continuous time approximation in u, v, p
(compare Reference [5]) as well as C̃ and C̃F , in order to demonstrate the consistency of the
variational derivation of the assumed ’strain’ approximations and the superimposed stress ten-
sors S̃ and S̃F with Reference [8]. But note that in the unpartitioned case both approximations
are new for higher-order time approximations.
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3.1 The unpartitioned strain energy function

The time integrator presented here follows from considering the virtual power principle at
collocation points ξi of the time interval [t0, tN ] of interest, introduced by a time integration∫ tN

t0

δ∗Ḣ(u̇(t), v̇(t), ṗ(t), ˙̃C(t),S(t); ρ0,A0,κ0,b(t), t(t), ˙̄u(t), S̃(t)) dt =

N−1∑
n=0

∫ tn+1

tn

δ∗Ḣ(u̇n(t), v̇n(t), ṗn(t), ˙̃Cn(t),Sn(t); ρ0,A0,κ0,bn(t), tn(t), ˙̄un(t), S̃
n
(t)) dt ≈

N−1∑
n=0

∫ 1

0

δ∗Ḣ(u̇nh(α), v̇nh(α), ṗnh(α), ˙̃Cn
h(α),Snh(α); ρ0,A0,κ0,bnh(α), tnh(α), ˙̄unh(α), S̃

n

h(α))hndα ≈
N−1∑
n=0

δ∗Ḣ(u̇nh(ξ1), v̇nh(ξ1), ṗnh(ξ1),
˙̃Cn
h(ξ1),Snh(ξ1); ρ0,A0,κ0,bnh(ξ1), tnh(ξ1), ˙̄unh(ξ1), S̃

n

h(ξ1))hn

N−1∑
n=0

δ∗Ḣd(un+1, vn+1,pn+1, C̃n+1,Sn+ 1
2
; ρ0,A0,κ0,bn+ 1

2
, tn+ 1

2
, ūn+1, S̃n+ 1

2
)hn

.
= 0 (49)

and the normalized time α ∈ [0, 1] via the linear transformation

τ : [tn, tn+1] 3 t 7→ tn + α (tn+1 − tn) = tn + αhn (50)

with respect to the time step size hn, and after applying the midpoint rule with the one Gauss
point ξ1 = 1

2
to the mentioned piecewise linear time approximations

unh(α) := un + α (un+1 − un) vnh(α) := vn + α (vn+1 − vn) (51)
pnh(α) := pn + α

(
pn+1 − pn

)
C̃
n

h(α) := Cn + α (Cn+1 − Cn) (52)

In the following, we use the common finite difference notation (•)n+ 1
2

for symbols (•)nh(1
2
).

Without integrating by parts but rearranging termes in Eq. (49) according to the independent
variations, we obtain the semi-discrete variational form

0 =

∫
B0

[
ρ0vn+ 1

2
− pn+ 1

2

]
· δ∗vn+1 dV −

∫
B0

δ∗pn+1 ·
[

vn+ 1
2
− un+1 − un

hn

]
dV

− 1

2

∫
B0

[
Sn+ 1

2
− 2 DW (C̃n+ 1

2
; A0,κ0)− S̃n+ 1

2

]
: δ∗Cn+1 dV

−1

2

∫
B0

[
Cn+1 − Cn − (Fn+1 + Fn)T (Fn+1 − Fn)

]
: δ∗Sn+ 1

2
dV

+

∫
B0

[
pn+1 − pn

hn
+ BT

n+ 1
2

Sn+ 1
2
− ρ0bn+ 1

2

]
· δ∗un+1 dV

−
∫
∂tB0

tn+ 1
2
· δ∗un+1 dA−

∫
∂uB0

hn+ 1
2
· δ∗un+1 dA (53)

with the linearized strain operator Bn+ 1
2

defined by [8]

2 Bn+ 1
2
δ∗un+1 := FT

n+ 1
2
∇(δ∗un+1) +∇(δ∗un+1)

TFn+ 1
2

(54)
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and bearing in mind the differentiation rule

˙
(•) =

d(•)
dα

dα

dt
=

d(•)
dα

1

hn
(55)

as well as the vanishing variations δ∗un, δ∗vn, δ∗pn and δ∗Cn due to the initial conditions

u(t0) = u0 p(t0) = ρ0v0 (56)
v(t0) = v0 C̃(t0) = (∇u0 + I)T (∇u0 + I) (57)

in the first time step [t0, t1]. At this point, we are able to derive spatially local relations of tensor
fields at each point X ∈ B0, which can be used to eliminate variables in the discrete system
of equations of motion without taking spatial integrals. On the other hand, we may keep all
the variables and solve a multifield formulation if we are interested in these variables for post-
processing purposes, or we may eliminate the variables after the spatial integrals have been
taken. The first line of Eq. (53) leads to

pn = ρ0vn pn+1 = ρ0vn+1 hn vn+ 1
2

= un+1 − un (58)

where Eq. (58.1) is obvious from the initial condition in Eq. (56.2), and Eq. (58.3) can be seen
as first equation of motion [2]. The second line of Eq. (58) furnishes the discrete constitutive
relation

Sn+ 1
2

= 2 DW (C̃n+ 1
2
; A0,κ0) + S̃n+ 1

2
(59)

But note that the superimposed second PIOLA-KIRCHHOFF stress tensor S̃n+ 1
2

must not van-
ish for energy consistency as in the continuous setting (compare Reference [7]). We derive it
below in a separate variational problem. In the third line of Eq. (53), we take into account the
symmetry of δ∗Sn+ 1

2
, leading to the identity[

FTn+1Fn − FTnFn+1

]
: δ∗Sn+ 1

2
= 0 (60)

and consequently to the local relation

Cn+1 − Cn = FTn+1Fn+1 − FTnFn ⇐⇒ Cn+1 = FTn+1Fn+1 (61)

according to the initial condition in Eq. (57.2). Hence, we arrive at the following variation-
ally consistent assumed ’strain’ approximation, which is proposed for energy consistent time
stepping schemes at least since the publication of Reference [6]:

C̃n+ 1
2

:=
1

2
[Cn + Cn+1] (62)

The spatial approximation in the variational formulation is based on trilinear shape functions
for an eight-node brick element for the volume and bilinear shape functions for an four-node
quadrilateral element for the boundaries, which approximate the geometry in B0, the displace-
ment vector u and the material velocity vector v at the considered discrete time points tn. Hence,
following the notation in Reference [10], we apply the approximations

u = N u δ∗u = N δ∗u (63)
v = N v δ∗v = N δ∗v (64)

9
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where N denotes the matrix of the trilinear shape functions and the vector u combines the nodal
displacements. An analogous notation is used for the nodal velocities and nodal variations,
respectively. On the boundary ∂B0, we apply the approximations

u = N̄ u δ∗u = N̄ δ∗u (65)

where N̄ denotes the matrix of the bilinear shape functions. The last two lines of Eq. (53) then
leads to the discrete variational formulation

δ∗uTn+1

[
M

vn+1 − vn
hn

+

∫
B0

BT
n+ 1

2
Sn+ 1

2
dV

]
= δ∗uTn+1

[
Ht tn+ 1

2
+ Hu hn+ 1

2
+ M bn+ 1

2

]
(66)

with the system matrices

M :=

∫
B0

ρ0 NTN dV Ht :=

∫
∂tB0

N̄T N̄ dV Hu :=

∫
∂uB0

N̄T N̄ dV (67)

as well as the matrix representations Bn+ 1
2

and Sn+ 1
2

of the linearized strain operator and the
second PIOLA-KIRCHHOFF stress tensor, respectively. Finally, we apply the fundamental theo-
rem of variational calculus and arrive at the discrete system of equations of motion

M
vn+1 − vn

hn
+

∫
B0

BT
n+ 1

2
Sn+ 1

2
= Ht tn+ 1

2
+ Hu hn+ 1

2
+ M bn+ 1

2
(68)

If we now multiply Eq. (68) on both sides from the left by the velocity vector

vn+ 1
2

=
1

2
[vn+1 + vn] (69)

the first term on the left hand side takes the form

vT
n+ 1

2
M

vn+1 − vn
hn

=
1

2hn

[
vTn+1M vn+1 − vTnM vn

]
=
Tn+1 − Tn

hn
(70)

which denotes the discrete time derivative of the total kinetic energy. On the righthand side of
Eq. (68), we obtain the discrete external power

vT
n+ 1

2

[
Ht tn+ 1

2
+ Hu hn+ 1

2
+ M bn+ 1

2

]
=

uTn+1 − uTn
hn

[
Ht tn+ 1

2
+ Hu hn+ 1

2
+ M bn+ 1

2

]
= −Πext

n+1 − Πext
n

hn
(71)

where Eq. (58.3) have been taken into account. Accordingly, we arrive at the discrete total
energy balance if the relation∫

B0

vn+ 1
2
· BT

n+ 1
2

[
2 DW (C̃n+ 1

2
; A0,κ0) + S̃n+ 1

2

]
dV =∫

B0

un+1 − un
hn

· BT
n+ 1

2

[
2 DW (C̃n+ 1

2
; A0,κ0) + S̃n+ 1

2

]
dV =

Πint
n+1 − Πint

n

hn
(72)

10
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or

Wn+1 −Wn =

[
DW (C̃n+ 1

2
; A0,κ0) +

1

2
S̃n+ 1

2

]
: 2 Bn+ 1

2
[un+1 − un] (73)

is fulfilled. On the other hand, employing the assumed ’strain’ tensor in Eq. (61) in the definition
of the linearized strain operator in Eq. (54), we obtain the identity

2 Bn+ 1
2

[un+1 − un] = FT
n+ 1

2
[Fn+1 − Fn] + Fn+ 1

2
[Fn+1 − Fn]T

=
1

2

[
Cn+1 − Cn + CT

n+1 − CT
n

]
= Cn+1 − Cn (74)

which in the end leads to the scalar-valued constraint G(S̃n+ 1
2
) on the superimposed stress field

S̃n+ 1
2

at each point X ∈ B0, given by

G(S̃n+ 1
2
) := Wn+1 −Wn −

[
DW (C̃n+ 1

2
; A0,κ0) +

1

2
S̃n+ 1

2

]
: [Cn+1 − Cn] = 0 (75)

As the superimposed stress tensor is symmetric, ndim(ndim + 1)/2 components of the tensor
S̃n+ 1

2
has to be uniquely determined such that the scalar-valued constraint in Eq. (75) is satisfied.

Therefore, we solve the separate constraint variational problem

δ∗L(µ, S̃n+ 1
2
) = 0 (76)

with
L(µ, S̃n+ 1

2
) :=

1

2
C̃n+ 1

2
S̃n+ 1

2
: S̃n+ 1

2
C̃n+ 1

2
+ µG(S̃n+ 1

2
) (77)

using the corresponding discrete EULER-LAGRANGE equations

∂L
∂S̃n+ 1

2

≡ C̃n+ 1
2

S̃n+ 1
2

C̃n+ 1
2
− µ

2
[Cn+1 − Cn] = O

∂L
∂µ
≡ G(S̃n+ 1

2
) = 0 (78)

Note that in Eq. (77) the right CAUCHY-GREEN tensor C̃n+ 1
2

operates as metric tensor as in
the physically consistent deviator stress in Reference [12]. Therefore, this constraint variational
problem could be also pushed forward to the current configuration Bt, and formulated with the
KIRCHHOFF stress tensor τ and the metric g in Bt. After inserting Eq. (78.1) in Eq. (78.2),
we arrive at the two spatially local discrete EULER-LAGRANGE equations for the superimposed
stress field S̃n+ 1

2
and the scaling factor µ at each point X ∈ B0, given by

S̃n+ 1
2

=
µ

2
C̃
−1

n+ 1
2

[Cn+1 − Cn] C̃
−1

n+ 1
2

(79)

2G(O) =
µ

2
C̃
−1

n+ 1
2

[Cn+1 − Cn] : [Cn+1 − Cn] C̃
−1

n+ 1
2

(80)

We are able to search numerically for the LAGRANGE multiplier µ, but usually it is eliminated
analytically. This leads to the stress tensor [8]

S̃n+ 1
2

= 2
G(O)

C̃
−1

n+ 1
2

[Cn+1 − Cn] : [Cn+1 − Cn] C̃
−1

n+ 1
2

C̃
−1

n+ 1
2

[Cn+1 − Cn] C̃
−1

n+ 1
2

(81)
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Consequently, using the superimposed discrete stress tensor in Eq. (81), the discrete equation
of motion in Eq. (68) leads, by design, to the discrete energy balance

Tn+1 − Tn + Πint
n+1 − Πint

n + Πext
n+1 − Πext

n = 0 ⇐⇒ Hn+1 = Hn (82)

which indicates exact algorithmic total energy conservation. But note that in a numerical im-
plementation, the exact algorithmic total energy conservation is indicated by

|Hn+1 −Hn| < tol (83)

where tol denotes the tolerance of the applied NEWTON-RAPHSON method for solving the non-
linear discrete EULER-LAGRANGE equations [11]. Further, you should be careful with solution
steps where Cn+1 ≈ Cn when applying the stress formula in Eq. (81). You should generally
implement a prestep formula for the displacements un+1 taking into account all applied loads
and initial conditions [13]. If the tensor S̃n+ 1

2
is neglected then a TAYLOR series expansion of

the strain energies Wn and Wn+1 at the assumed ’strain’ tensor C̃n+ 1
2
, given by

DW (C̃n+ 1
2
; A0,κ0) : [Cn+1 − Cn] = Wn+1 −Wn +O (‖Cn+1 − Cn‖3

)
(84)

shows that Eq. (83) can be guaranteed only for ‖Cn+1−Cn‖ < tol. Therefore, we conclude that
energy consistency of the discrete EULER-LAGRANGE equations is only given if the discrete
superimposed stress tensor S̃n+ 1

2
is non-vanishing.

3.2 The partitioned strain energy function

The time stepping scheme for the partitioned strain energy also follows from a time integra-
tion of the corresponding virtual power principle on the time interval [t0, tN ] of interest. Thus,
we obtain a discrete variational condition at the collocation point ξ1, given by

δ∗Ḣd(un+1, vn+1,pn+1, C̃n+1,SM
n+1

2

, C̃Fn+1 ,SFn+1
2

;

ρ0,κ0F
,κ0M

,A0,bn+ 1
2
, tn+ 1

2
, ūn+1, S̃M

n+1
2

, S̃F
n+1

2

)hn = 0 (85)

The assumed squared fiber stretch C̃F is also linear piecewise continuous approximated by

C̃n
Fh

(α) := CFn + α
(
CFn+1 − CFn

)
(86)

with the ’initial’ condition on the time step [tn, tn+1], given by

CFn = CFn : A0 = FTFn
FFn : A0 (87)

12
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Rearranging termes in Eq. (85) according to the independent variations δ∗pn+1, δ∗vn+1, δ∗un+1,
δ∗SM

n+1
2

, δ∗Cn+1, δ∗SF
n+1

2

and δ∗CFn+1 , we obtain the semi-discrete variational form

0 =

∫
B0

[
ρ0vn+ 1

2
− pn+ 1

2

]
· δ∗vn+1 dV −

∫
B0

δ∗pn+1 ·
[

vn+ 1
2
− un+1 − un

hn

]
dV

− 1

2

∫
B0

[
SM

n+1
2

− 2 DWM(C̃n+ 1
2
;κ0M

)− S̃M
n+1

2

]
: δ∗Cn+1 dV

− 1

2

∫
B0

[
SF

n+1
2

: A0 − 2 DŴF (C̃F
n+1

2

;κ0F
)− S̃F

n+1
2

]
: δ∗CFn+1 dV

−1

2

∫
B0

[
Cn+1 − Cn − (Fn+1 + Fn)T (Fn+1 − Fn)

]
: δ∗Sn+ 1

2
dV

−1

2

∫
B0

[
CFn+1 A0 − CFn A0 −

(
FFn+1 + FFn

)T (FFn+1 − FFn

)]
: δ∗SF

n+1
2

dV

+

∫
B0

[
pn+1 − pn

hn
+ BT

n+ 1
2

[
SM

n+1
2

+
(

SF
n+1

2

: A0

)
A0

]
− ρ0bn+ 1

2

]
· δ∗un+1 dV

−
∫
∂tB0

tn+ 1
2
· δ∗un+1 dA−

∫
∂uB0

hn+ 1
2
· δ∗un+1 dA (88)

The first line of Eq. (88) also furnishes the Eqs. (58). The second and third line leads to the
discrete constitutive stress relations

SM
n+1

2

= 2 DWM(C̃n+ 1
2
;κ0M

) + S̃M
n+1

2

(89)

SF
n+1

2

=
[
2 DŴF (C̃F

n+1
2

;κ0F
) + S̃F

n+1
2

]
A0 (90)

The fourth and fivth line of Eq. (88) determines the right CAUCHY-GREEN ’strains’ at the time
point tn+1 by the equations

Cn+1 = FTn+1Fn+1 CFn+1 = CFn+1 : A0 = FTFn+1
FFn+1 : A0 (91)

leading to the approximations

C̃n+ 1
2

:=
1

2
[Cn + Cn+1] C̃F

n+1
2

:=
1

2

[
CFn + CFn+1

]
(92)

Hence, the full symmetric tensor CF has not to be stored at the midpoint tn+ 1
2
, but merely the

scalar ’strain’ C̃F
n+1

2

. Analogous to the unpartitioned case, the last lines of Eq. (88) gives the
discrete system of equations of motion

M
vn+1 − vn

hn
+

∫
B0

BT
n+ 1

2

[
2 DWM(C̃n+ 1

2
;κ0M

) + 2 DŴF (C̃F
n+1

2

;κ0F
) A0 (93)

+ S̃M
n+1

2

+ S̃F
n+1

2

A0

]
dV = Ht tn+ 1

2
+ Hu hn+ 1

2
+ M bn+ 1

2

by taking into account the Eq. (89) and (90). Accordingly, we arrive at exact algorithmic total
energy conservation in the sense of Eq. (82), if for the matrix continuum BM

0 the constraint

GM(S̃M
n+1

2

) := WMn+1 −WMn −
[
DWM(C̃n+ 1

2
;κ0M

) +
1

2
S̃M

n+1
2

]
: [Cn+1 − Cn] = 0 (94)
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is fulfilled, and if the relation∫
B0

vn+ 1
2
· BT

n+ 1
2

[
2 DŴF (C̃n+ 1

2
; A0,κ0F

) + S̃n+ 1
2

]
A0 dV =∫

B0

un+1 − un
hn

· BT
n+ 1

2

[
2 DŴF (C̃n+ 1

2
; A0,κ0F

) + S̃n+ 1
2

]
A0 dV =

∫
B0

[
DŴF (C̃n+ 1

2
; A0,κ0F

) +
S̃n+ 1

2

2

]
A0 : 2 Bn+ 1

2
[un+1 − un] dV =

∫
B0

[
ŴFn+1 − ŴFn

]
dV[

DŴF (C̃n+ 1
2
; A0,κ0F

) +
S̃n+ 1

2

2

]
A0 : [Cn+1 − Cn] = ŴFn+1 − ŴFn (95)

or

GF (S̃F
n+1

2

) := ŴFn+1 − ŴFn −
DŴF (C̃F

n+1
2

;κ0F
) +

S̃F
n+1

2

2

 [CFn+1 − CFn

]
= 0 (96)

is fulfilled. According to Eq. (81), the superimposed stress tensor SM for the matrix continuum
is given by

S̃M
n+1

2

= 2
GM(O)

C̃
−1

n+ 1
2

[Cn+1 − Cn] : [Cn+1 − Cn] C̃
−1

n+ 1
2

C̃
−1

n+ 1
2

[Cn+1 − Cn] C̃
−1

n+ 1
2

(97)

The superimposed scalar stress field S̃F in the equation of motion is defined such that we have
to take into account the identity

ŴFn+1 − ŴFn

CFn+1 − CFn

A0 =

DŴF (C̃F
n+1

2

;κ0F
) +

S̃F
n+1

2

2

A0 (98)

which eliminates completely a FRÉCHET derivative DŴF of the strain energy ŴF in the equa-
tion of motion.

4 NUMERICAL EXAMPLE

As numerical example, we consider a transversely isotropic blade discretized in space by
eight-node brick elements. In the initial configuration, the center of the blade’s hub is positioned
in the origin of the three-dimensional EUCLIDEAN space (see Fig. 2). The material is described
by the unpartitioned strain energy function

Ŵ (I1, I2, I3, I4;κ0) = Ŵ isotr(I1, I2, I3; c1, c2, c3) + Ŵ aniso(I3, I4; c3, c4) (99)

with the functions

Ŵ isotr(I1, I2, I3; c1, c2, c3) =
c1
2

(I
− 1

3
3 I1 − 3) + c2(I3 − 1)2 (100)

Ŵ aniso(I3, I4; c3, c4) =
c3
2c4

exp

[
c4

(
I
−1/3
3 I4 − 1

)2

− 1

]
(101)
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Simulation parameter
spatial mesh Eight-node bricks
element number nel 100
node number nno 238
mass density ρ0 1

strain energy W = W isotr +W aniso

soft material c1 300
c2 100
c3 240
c4 80

stiff material c1 3000
c2 1000
c3 2400
c4 800

fiber vector a0 [1, 1, 1]T/
√

3

initial velocity vA0 = vT + ω0 × qA0
velocity vector vT [2, 0,−0.1]T

angular velocity ω0 [0, 0.7, 0.7]T

NEWTON tolerance tol 10−8

Figure 2: Left: Initital configuration B0 of the fiber-reinforced blade. The colours indicate the VON MISES stress
at the temporal Gauss point t0+1/2 determined by the cG(1) method in the non-stiff case. The arrows show the
initial velocity field of the free flight. Right: Simulation parameter of the motion and of the algorithm.

the parameters c1, c2, c3 and the dimensionless parameter c4 (compare Reference [14]). The
applied material parameter values are summarized in Fig. 2 on the right. We distinguish between
soft and stiff material. The blade are in free flight due to its initial translational velocity field
and its initial angular velocity field (see Fig. 2). We compare two numerical methods:

(i) the variational consistent discrete method presented above, referred to as eG(1) method
in the following, and

(ii) the continuous Galerkin cG(1) method or midpoint rule, respectively, given by Eq. (68)
and the corresponding second PIOLA-KIRCHHOFF stress tensor

Smid
n+ 1

2
= 2 DW (FT

n+ 1
2
Fn+ 1

2
; A0,κ0) (102)

based on a temporally discontinuous ’strain’ approximation.

Considering soft material, both methods show similar current configurations for a moderate
constant time step size. Therefore, we show only the motion of the cG(1) method in Fig. 3. But,
by changing the time step size during the simulation, the NEWTON-RAPHSON method in the
time loop of the cG(1) method aborts after some time steps. This can be shown by plotting the
total energy of the blade versus time (see Fig. 4 on the left). In contrast to the eG(1) method,
the cG(1) method shows an oscillating total energy with an energy blow-up after the time step
size change. Considering stiff material, no time step size change is necessary for illustrating
the unstable behaviour of the cG(1) method in contrast to the eG(1) method (see Fig. 4 on the
right).
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Figure 3: Current configurations Btn of the blade with the non-stiff material determined by the cG(1) method,
starting at t0 = 0 on the left. The colour indicates the VON MISES stress at the temporal Gauss point tn+1/2. The
arrows shows the current Lagrangian velocity field.
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Figure 4: Comparison of the total energy Hn of the cG(1)-method and the eG(1)-method, respectively, using the
soft material (left) and stiff material (right). The time step size is 0.1 for t ≤ 10 and 0.2 for t > 10.

5 SUMMARY

In this paper, we consider transversely isotropic materials from two perspectives. We exam-
ine

1. the general case of formally one free energy function with no separation of tensor invari-
ants (unpartitioned free energy function), and

2. a partition of the free energy function into two separate terms corresponding to isotropic
and anisotropic invariants, respectively (partitioned free energy function).

The reason is that the fundamental theorem of calculus corresponding to partitioned free energy
functions can be split into separate equations as it is well-known from the kinetic and potential
energy of natural systems with respect to inertial reference frames. As the fundamental theo-
rem of calculus serves as a design criterion for energy consistent time stepping algorithms, a
separation into two criteria therefore allows to modify the algorithm in a more targeted manner.
Further, already implemented energy consistent time stepping algorithms for isotropic materials
could be extented rather than modified to transversely isotropic materials or composite materials
with more than one family of fibers.

In this work, we start the design of energy consistent time stepping algorithms by discretizing
a mixed variational principle, because we aim at a unified design procedure for these important
algorithms. Such an unified procedure already exists for momentum consistent time stepping
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algorithms leading to the so-called variational integrators [5]. In this variational framework,
the consistency with the momentum balances does not depend on the numerical quadrature
as in usual finite difference or GALERKIN-based schemes. Energy consistent time stepping
algorithms, however, are hitherto designed for specific mechanical problems [2, 3, 8, 11, 13],
although the corresponding design procedures exhibit many common features. In each of these
references, the discrete total energy balance is satisfied by introducing

• temporally continuous approximations of the independent argument tensors of the total
energy, together with

• temporally discontinuous superimposed work conjugate tensor fields emanating from spa-
tially local formulations of the fundamental theorem of calculus in time.

But, the application of this concept for designing higher-order accurate time stepping schemes
as generalisation of existing second-order accurate schemes raises questions in the details [2, 3],
starting with the temporally continuous approximation of the independent argument tensors
of the strain energy. In these references, a mixture of ’strain’ tensor approximations has to
be used for satisfying energy consistency, which is not obvious from a physical perspective.
These problems and the need of a unified framework have led to the herewith presented idea of
discretizing a mixed variational principle, providing

1. a proof of existing adhoc time approximations, and

2. new higher-order accurate energy consistent time approximations (see Appendix).

The first adhoc time approximation is the midpoint evaluation of the GREEN-LAGRANGE

strain tensor in Reference [6], or later called assumed ’strain’ approximation in Reference [15],
respectively. This approximation is often used as a physically modivated assumption (frame-
invariance of discrete strains), or as an inherent part of energy consistent discrete gradients of
strain energy functions in finite difference schemes [8]. In Reference [6], this temporally contin-
uous approximation of the GREEN-LAGRANGE strain tensor is modivated by the exact quadra-
ture of the approximated strain energy function pertaining to the quadratic SAINT-VENANT

KIRCHHOFF model. The discrete total energy balance corresponding to this strain energy func-
tion is therefore fulfilled without a superimposed stress field, or in other words, a superimposed
stress field vanish for this strain energy function as in the temporally continuous equations of
motion. Hence, inspired by three-field variational functionals of EAS methods [16], we here
introduce a temporally continuous strain tensor with the corresponding natural ordinary differ-
ential equation in time by means of a mixed variational principle. In this way, we actually prove
the variational consistency of the assumed ’strain’ approximation for well-known second-order
accurate methods, and derive a new assumed ’strain’ approximation for higher-order accurate
schemes which avoids unphysical approximation mixtures as in Reference [3] (see Appendix).

The second adhoc time approximation is the superimposed stress tensor in References [2, 3],
based on the well-known discrete gradient in Reference [17]. This superimposed stress tensor
is derived from a constraint variational problem at each point X ∈ B0 in References [3], which
therefore provides a proof of the uniqueness of this superimposed stress tensor. However, this
variational problem is not physically modivated and therefore not invariant with respect to a
push-forward in the spatial configuration Bt. This problem has been caused by not using a
coordinate free and metric independent geometric formulation of continuum mechanics. In fact,
the Euclidean metric δAB is assumed in the reference configuration from the outset. Therefore,
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in this paper, we arrive at the right CAUCHY-GREEN tensor as metric tensor by using a covariant
tensor formulation. The obtained constraint variational problem is therefore invariant under a
push-forward in the spatial configuration Bt, and leads to an equivalent variational problem
with respect to the KIRCHHOFF stress tensor. As special case for a linear approximation in
time, we obtain the superimposed stress field in Reference [8]. Note, however, that a further
improvement of the computational performance in comparison to the superimposed stress tensor
in References [3] is not recognized by considering free flights of stiff materials. But if the
algorithm has to be pushed forward in a computational more efficient spatial setting, the new
superimposed stress field is necessary. Further note that the constraint variational problems are
still separate variational problems of parameters of the mixed variational principle.

A APPENDIX

In this appendix, we show an interesting consequence of the above theory for the new as-
sumed ’strain’ approximation of higher-order accurate time integration schemes, i.e. schemes
which take into account inner time points tn+αi

, αi ∈]0, 1[, beside the time step boundary points
tn and tn+1. This inner time points are usually equidistant distributed over the time step (see
Table 1). Here, we have to start in the unpartitioned case with the discrete principle

N−1∑
n=0

k∑
i=1

δ∗Ḣ(u̇nh(ξi), v̇nh(ξi), ṗnh(ξi),
˙̃Cn
h(ξi),Snh(ξi);

ρ0,A0,κ0,bnh(ξi), tnh(ξi), ˙̄unh(ξi), S̃
n

h(ξi))wi hn = 0 (103)

where ξi, wi, i = 1, . . . , k, denote the quadrature points and weights, respectively, and k the
degree of the shape functions Mj(α), j = 1, . . . , k + 1 in time. Usually, the Lagrangian shape
functions and the Gaussian quadrature rules are used (see Table 1 and Table 2, respectively).
According to this principle, we obtain the weak equation

k∑
i=1

∫
B0

δ∗Snh(ξi) :

[
dC̃

n

h(ξi)

dα
−
◦
C(
◦
u
n

h (ξi))

]
wi dV = 0 (104)

with the assumed ’strain’ approximation

dC̃
n

h(α)

dα
=

k+1∑
j=1

◦
M j+1 (α) Cn

j ≡
k∑
i=1

M̃i(α) C̃
n

i (105)

and the shorthand notation
◦

(•) for the differentiation with respect to α. The tensors Cn
j and C̃

n

i

designate the independend nodal values of the assumed ’strain’ approximation and its deriva-
tive, respectively, at the corresponding time points αi and α̃i (see Table 1). Having again an
elimination of the assumed ’strain’ field in mind, we arrive at the spatially local relation

k+1∑
j=1

◦
M j+1 (ξi) Cn

j−
◦
C(
◦
u
n

h (ξi)) = O (i = 1, . . . , k) (106)

After further algebraic transformations, the unkonwn nodal values Cn
l , l = 2, . . . , k, becomes

Cn
l :=

k∑
i=1

mli

◦
C(
◦
u
n

h (ξi)) + Cn
1 (107)
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by taking into account the initial condition Cn
1 := (Fn1 )TFn1 ≡ Cn. The coefficients Ali are the

components of the k × k matrix

m =


◦
M2 (ξ1) . . .

◦
Mk+1 (ξ1)

... · · · ...
◦
M2 (ξk) . . .

◦
Mk+1 (ξk)


−1

(108)

In the case of linear time approximations (k = 1), these relations lead to the nodal values

Cn ≡ Cn
1 = (Fn1 )TFn1 Cn+1 ≡ Cn

2 = (Fn2 )TFn2 (109)

(compare Eq. (61). For quadratic time approximations (k = 2), we arrive at the nodal values

Cn ≡ Cn
1 := (Fn1 )TFn1 (110)

Cn
2 :=

1

3

[
Fn1 + Fn3

2
− Fn2

]T [Fn1 + Fn3
2

− Fn2

]
+ (Fn2 )TFn2 (111)

Cn+1 ≡ Cn
3 := (Fn3 )TFn3 (112)

For higher degrees of shape functions, we obtain analogous results. Accordingly, the nodal val-
ues at the time step boundaries tn and tn+1 are solely determined by un and un+1, respectively,
but the nodal values at the inner time points depends on the displacements of all time points.
This is in contrast to the (frame-indifferent) assumed ’strain’ approximation C̄n

h(α) defined in
Reference [3] by the extrapolation

C̄n
h(α) =

k+1∑
j=1

Mj(α) (Fnj )TFnj (113)

of the formula C̃
n

h(α) for linear time approximations (k = 1) known from Reference [15]. As
the first term in Eq. (111) is unknowingly neglected in Eq. (113), the authors of Reference [3]
have to introduce a mixture of time approximations in the superimposed stress tensor for energy
consistency.

On the other hand, looking at Eq. (111), we may recognize a possibility to simplify the
relations for the nodal values C2, . . .Ck−1 by introducing an assumed deformation gradient
field, which for k = 2 takes the form

F̃nh(α) = M1(α) Fn1 +M2(α) F̂
n

2 +M3(α) Fn3 (114)

with the nodal value
F̂
n

2 :=
Fn1 + Fn3

2
6= ∇un2 + I ≡ ∇un+ 1

2
+ I (115)

Thus, the approximated displacement field unh(α) is here connected to the deformation gradient
field only at the boundaries of the time step [tn, tn+1] with the linear approximation

F̃nh(α) = M̃1(α) Fn1 + M̃2(α) Fn3 (116)

The corresponding assumed ’strain’ field reads

C̃
n

h(α) = M1(α) (Fn1 )TFn1 +M2(α) (F̂
n

2 )T F̂
n

2 +M3(α) (Fn3 )TFn3 (117)
= (α− 1)2 (Fn1 )TFn1 + α(α− 1)

[
(Fn1 )TFn3 + (Fn3 )TFn1

]
+ α2 (Fn3 )TFn3 (118)
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However, we have to examine this possibility with respect to the accuracy order of the result-
ing time integration scheme. Further, a linear time approximation of the deformation gradient
field and a quadratic time approximation of the displacement field seems to be inconsistent, in
contrast to an analogous space approximation [14].

Nevertheless, the accuracy order of the time integration scheme corresponding to the approx-
imation C̃

n

h(α) with the nodal values in Eq. (107) is guaranteed for shape functions of degree
up to four (k = 4). We have even implemented this approximation in the finite element code
associated with the thermo-mechanical problem in Reference [13], and obtained the numerical
results in Fig. 5. This approximation is therefore even recommended for mechanically coupled
problems. The higher-order approximation of the superimposed stress tensor of the unparti-
tioned strain energy function at the temporal Gauss point is given by

S̃
n

h(ξi) := 2
G(O)

k∑
l=1

[C̃
n

h(ξl)]
−1

◦

C̃
n

h (ξl) :

◦

C̃
n

h (ξl) [C̃
n

h(ξl)]
−1wl

[C̃
n

h(ξi)]
−1

◦

C̃
n

h (ξi) [C̃
n

h(ξi)]
−1 (119)

with

G(O) := Wn+1 −Wn −
k∑
l=1

DW (C̃
n

h(ξl); A0,κ0) :

◦

C̃
n

h (ξl)wl = 0 (120)

The superimposed stress S̃F corresponding to the partitioned strain energy is due to the scalar-
valued argument C̃F analogous to the dynamical problem of a particle system in Reference [3]
(compare Eq. (98) with the case k = 1). Hence, we obtain the relation

S̃nFh
(ξi) := 2

G(0)
k∑
l=1

◦

C̃n
Fh

(ξl)

◦

C̃n
Fh

(ξl)wl

◦

C̃n
Fh

(ξi) (121)

with

GF (0) := ŴFn+1 − ŴFn −
k∑
l=1

DŴF (C̃n
Fh

(ξl);κ0F
)

◦

C̃n
Fh

(ξl)wl = 0 (122)

and the fiber assumed strain approximation

C̃n
Fh

(α) =
k+1∑
j=1

Mj+1(α)Cn
Fj

(123)

where the nodal values Cn
Fl

, l = 2, . . . , k, take the form

Cn
Fl

:=
k∑
i=1

Ali
◦
C(
◦
u
n

h (ξi)) : A0 + Cn
1 : A0 (124)
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Figure 5: Accuracy orders of the energy consistent time stepping scheme presented above using the new assumed
’strain’ approximation, determined with a flying stiff square discretized by four four-node quadrilateral elements.
We investigated the thermo-mechanically problem in Reference [13]. The plots show the relative L2 errors at the
final simulation time T = 1. For shape functions of degree k in the mechanical and thermal fields (labels ’kkk’),
we obtain the accuracy order 2k. The order of the total energy has the order 2k + 1, because the temperature is
calculated with an energy consistent discontinuous GALERKIN method. Through the strong thermo-mechanical
coupling, the temperature shows the same order as the displacements or current positions, respectively.
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Table 1: Lagrangian shape functions in time of degree k and k − 1 with respect to the parent domain [0, 1].

k Mj(α) αj M̃i(α) α̃i

1 1− α 0 1 1

α 1

2 (2α− 1)(α− 1) 0 1− α 0

−4α (α− 1) 1
2

α 1

(2α− 1)α 1

3 −9
2

(α− 1
3
)(α− 2

3
)(α− 1) 0 (2α− 1)(α− 1) 0

27
2

(α− 2
3
)(α− 1)α 1

3
−4α (α− 1) 1

2

−27
2

(α− 1
3
)(α− 1)α 2

3
(2α− 1)α 1

9
2

(α− 1
3
)(α− 2

3
)α 1

4 32
3

(α− 1
4
)(α− 1

2
)(α− 3

4
)(α− 1) 0 −9

2
(α− 1

3
)(α− 2

3
)(α− 1) 0

−128
3

(α− 1
2
)(α− 3

4
)(α− 1)α 1

4
27
2

(α− 2
3
)(α− 1)α 1

3

64 (α− 1
4
)(α− 3

4
)(α− 1)α 1

2
−27

2
(α− 1

3
)(α− 1)α 2

3

−128
3

(α− 1
4
)(α− 1

2
)(α− 1)α 3

4
9
2

(α− 1
3
)(α− 2

3
)α 1

32
3

(α− 1
4
)(α− 1

2
)(α− 3

4
)α 1

Table 2: Gaussian quadrature with Nqp Gauss points with respect to the temporal parent domain [0, 1].

Nqp ξl wl

1 1/2 1

2 (1− 1/
√

3)/2 1/2

(1 + 1/
√

3)/2 1/2

3 (1−√3/5)/2 5/18
1/2 4/9

(1 +
√

3/5)/2 5/18

4 (1−
√

3/7 + 2
√

6/5/7)/2 (3−√5/6)/12

(1−
√

3/7− 2
√

6/5/7)/2 1/2− (3−√5/6)/12

(1 +
√

3/7− 2
√

6/5/7)/2 1/2− (3−√5/6)/12

(1 +
√

3/7 + 2
√

6/5/7)/2 (3−√5/6)/12
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