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Abstract. In most additive manufacturing technologies, support structures are required to
sustain overhanging surfaces. These additional structures have negative effects on both pro-
cessing time and material consumption. Moreover, additional post-processing effort is required
for their removal. Therefore, reducing the use of the supports would have a beneficial impact
on the overall manufacturing process.

An optimization procedure aiming at the optimal placement (and design) of the supports in
additive manufacturing should include the intrinsic time-dependent nature of the process. More
precisely, it should take into account not only the final configuration, but all the intermediate
shapes that are obtained during the additive process. As a consequence, we believe that it is
necessary to go beyond standard topology optimization methods, where typically only the final
shape is optimized.

The model proposed in this work relies on the solution of a time-dependent minimal compli-
ance problem based on the classical Solid Isotropic Material with Penalization (SIMP) method.
In particular, we first introduce a continuous optimization problem with the state equation de-
fined as the time-integral of a linear elasticity problem on a space-time domain. The objective
functional is given by the mean compliance over a time interval. The optimality conditions for
this optimization problem are then derived and a fixed-point algorithm is introduced for the
iterative computation of the optimal solution.

Numerical examples showing the differences between a standard SIMP method, which only
optimizes the shape at the final time, and the proposed time-dependent approach are presented
and discussed.
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1 INTRODUCTION

Additive manufacturing, also known as 3D printing, is widely used to create prototypes from
digital models. Successive layers of material are laid down by a three–dimensional printer under
computer control. In most additive manufacturing technologies, support structures are required
to sustain overhanging surfaces. Up to now, not any shape or geometry can be printed in real
time, because of the need for providing a suitable set of supports when synthesizing the three–
dimensional object. Support structures remarkably affect not only the processing times but
also the material consumption. Therefore, their rational use would greatly improve the overall
process of 3D printing.

Powerful numerical tools that go under the name of methods of topology optimization are
rapidly developing in many branches of engineering to find optimal layouts that maximize any
kind of performance, see [1]. The classical formulation searches for the distribution of the avail-
able amount of isotropic material such that the so–called compliance (twice the elastic strain
energy computed at equilibrium) is minimized. A suitable interpolation depending on the local
values of the unknown density field penalizes the mechanical properties of the elastic body to
achieve 0–1 solutions, see e.g. the well–known SIMP (Solid Isotropic Material with Penaliza-
tion) [2]. Methods of mathematical programming are adopted to solve the arising minimization
problem, see [3], generally resorting to the adoption of the finite element method to solve the
equilibrium equation and compute the objective function and its sensitivity with respect to the
design variables.

Additive manufacturing is a fertile area of research for topology optimization. According to
the recent and comprehensive contribution in [4], additive manufacturing fills the gap between
topology optimization and application, since any computed optimal design can be printed with
minimal limitations on its complexity. Among the others, [5] investigates the issues and oppor-
tunities for the application of topology optimization for 3D printing, addressing the production
of meso–scale structures to cope with intermediated density regions, whereas [6] copes with the
multiple–material topology optimization of compliant mechanisms created via 3D printing.

Topology optimization can be used not only to generate optimal objects to be printed via
additive manufacturing, but even to optimize support structures. An optimization procedure
aiming at the optimal placement (and design) of the supports in additive manufacturing should
include the inherent time–dependent nature of the process. More precisely, it should account
not only for the final configuration, but also for all the intermediate shapes that are handled
during the printing.

Goal of this work is to propose a new approach to this problem, resorting to the solution of a
time–dependent minimal compliance formulation based on the classical SIMP. More precisely,
a continuous optimization problem adopting a state equation defined as the time–integral of
a linear elasticity problem on a space–time domain is formulated. The objective function is
given by the time-averaged compliance, whereas the optimality conditions for this optimization
problem are derived and a fixed-point algorithm is introduced for the iterative computation
of the optimal solution. The discretization of the optimization problem is finally obtained by
considering n intermediate time instants (ti) (and the corresponding spatial domains Ω(ti)) and
solving a sequence of linear elasticity problems on Ω(ti) with the finite element method.

The outline of the paper is as follows. Sections 2 and 3 define the topology optimization
problem to design the supports of a 3D printed object having mean minimum compliance over
a time interval, in the continuous and discrete form respectively. Section 4 provides numerical
examples showing the differences between a standard SIMP method, which only optimizes the
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Figure 1: a) Reference space domain. b) Space domain relative to time t. Ω(t) is located below the dotted line,
corresponding to the height v0t).

shape at the final time, and the proposed time–dependent approach. Section 5 provides final
remarks on the presented preliminary simulations and outlines the ongoing research.

2 THE OPTIMIZATION PROBLEM

The objective of this work is to define a topology optimization problem to design the supports
S of a 3D printed object O so that the manufactured item (i.e. O ∪ S) exhibits the minimum
mean compliance over a given time interval I = [0, T ], being T the duration of the production
process. To achieve this goal, we will first introduce a suitable time-dependent domain together
with a linear elasticity state problem governing the displacement u(t) of the manufactured item
at each time-instant t.

Let us consider an hold-all cylindrical space domain Ω = E × (0, h) ⊂ Rd−1 × R, with
d = 2, 3 and E a subset of Rd−1. Each point in Ω reads as x = (x∗, y), where x∗ denotes the
planar component while y is the vertical one. Once the printing process is complete, i.e. for
t = T , the target object O will occupy a certain subset Ω1 ⊂ Ω, while for t < T it will occupy
intermediate configurations Ω1(t) such that Ω1(t) ⊂ Ω. In view of the above discussion, the
value h represents the height of the object at the final time T . For future use, we also introduce
the subdomain Ω0 ⊂ Ω identifying the region where a priori the user does not want to introduce
any support. Next, we introduce a time-dependent domain Ω(t) that changes during the additive
manufacturing process and represents the region where the 3D printer can add material (either
belonging to the object or to the supports). We assume that Ω(t) grows in the direction given
by the coordinate y with constant velocity v0, i.e. Ω(t) = {(x∗, y) ∈ E × (0, y) : 0 < y < v0t}.
Accordingly, we have Ω1(t) = Ω(t) ∩ Ω1 (see Figure 1). Clearly, at the final time T = h/v0,
we have Ω(T ) = Ω and Ω1(T ) = Ω1.

Now, we describe the topology optimization problem which will be instrumental to optimally
place the supports of the target object to be printed. The first step is to introduce the design
variable which describes the material distribution. As it is common in topology optimization, it
is introduced as a non-dimensional density distribution ρ̃. More specifically, in our framework



M. Bruggi, N. Parolini, F. Regazzoni and M. Verani

we define the set of admissible densities as follows

Uad =
{
ρ̃(x) ∈ L2(Ω) : ρ̃ ≥ ρ̃min a.e. in Ω, (1a)

ρ̃ ≤ 1 a.e. in Ω, (1b)
ρ̃ = ρ̃min a.e. in Ω0, (1c)
ρ̃ = 1 a.e. in Ω1, (1d)∫

Ω

ρ̃ dx ≤ C
}
. (1e)

The density ρ̃ is bounded between ρ̃min and 1. The region where ρ̃ = 1 identifies the subdomain
occupied by the material (either the object to be printed or the supports), while ρ̃ = ρ̃min
identifies the empty region. Clearly, in the region Ω1 occupied by the target objectO the density
is a priori fixed at one. Moreover ρ̃ is subject to the volume constraint

∫
Ω
ρ̃ dx ≤ C, where C

represents the total amount of material available for the printing process.
Let ΓD ⊂ ∂Ω be the portion of the boundary where the object is anchored (usually the

bottom of space the domain). We require that, at each time instant t, the state variable u(t) is
the solution of the following linear elasticity problem on Ω(t) written in weak for

aρ̃(u,v; t) = l(v; t) ∀v ∈ H1
0,ΓD

(Ω) a.e. t ∈ [0, T ], (2)

where we have introduced the bilinear form

aρ̃(u,v; t) =

∫
Ω(t)

E(ρ̃(x))∇su : ∇sv dx (3)

and the linear functional
l(v; t) =

∫
Ω1(t)

ρ0g · v dx, (4)

being E the elasticity tensor, ∇s = ∇+∇T

2
the symmetric gradient, ρ0 the mass density of the

material used by the printer and g the gravity acceleration.
The particular choice of the linear functional l amounts to assuming that the printed object

is subject to an external load represented by the weight of the target object only (i.e. we are
assuming negligible the contributions of the supports).

In the original SIMP method [2], the intermediate density values are penalized through the
interpolation scheme E(ρ̃(x)) = ρ̃(x)pE0 (where E0 is the elasticity tensor of the considered
material). The lower bound ρ̃min is required to avoid singularities in the elasticity problem. A
modified version of the power law approach was proposed in [8]:

E(ρ̃(x)) = Ẽρ̃(x)E0 , (5)

Ẽρ̃(x) = Ẽmin + ρ̃(x)p(1− Ẽmin) (6)

and 0 ≤ ρ̃ ≤ 1. In this work, we will consider a hybrid formulation, by using (6) with 0 <
ρ̃min ≤ ρ̃ ≤ 1, so that we can recover the original formulation by setting Ẽmin = 0, and the
modified version by setting ρ̃min = 0.
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2.1 The continuous optimization problem

Now, we are ready to introduce our optimization problem. In particular, we ask that the
unknown optimal density distribution of the supports minimizes the mean compliance of the
printed object over the time interval I . Thus, we consider the following objective functional:

J (ρ̃) =
1

T

∫ T

0

l(u(t); t) dt, (7)

where, for given density distribution ρ̃, the function u(t) solves the state equation (2) at each
time t. Thus, the minimum mean compliance problem reads:

min
ρ̃∈Uad

J (ρ̃)

s.t.
1

T

∫ T

0

∫
Ω(t)

Ẽρ̃(x)E0∇su(t) : ∇sv(t) dx dt =
1

T

∫ T

0

l(v; t) dt ∀v ∈ V
(8)

It is possible to analyze the continuous time-dependent optimization problem (8), recasting
the pointwise-in-time formulation (2) in an equivalent integral-in-time formulation. In this way
the evolutionary problem can be addressed by employing well known solution methods for
the classical SIMP problem, such as OC, MMA and CONLIN, see [1]. The analysis will be
presented in [9].

3 DISCRETIZATION OF THE PROBLEM

In this section, we introduce the discretization of the problem (2) and we derive the dis-
crete counterpart of the optimization problem (8) that will be solved using the OC (Optimality
Conditions) method.

3.1 Finite-element space discretization

At the generic time instant t, we consider a computational grid Th(t) partitioning the domain
Ω(t) and we denote with Xh(t) the continuous linear finite element space defined on Th(t). We
introduce the finite element space of functions compatible with the boundary conditions:

Vh(t) =

{
uh ∈ Xh(t) s.t. uh = 0 on ΓD

}
. (9)

Let {ϕj}
Nh(t)
j=1 be a basis of Vh(t), where Nh(t) is the dimension of the space. The space

discretization of state equation (2) at time t reads:

find uh(t) ∈ Vh(t) s.t.
aρ̃(uh,vh; t) = l(vh; t) ∀vh ∈ Vh(t).

(10)

By writing uh(t) as linear combination of elements of the basis

uh(x, t) =

Nh(t)∑
j=1

uj(t)ϕj, (11)

we get the Galerkin approximation associated to time t:

AtUt = Ft (12)

where
[At]ij = aρ̃(ϕj,ϕi; t), [Ut]j = uj(t), [Ft]i = l(ϕi; t). (13)
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3.2 Discretization in time

We consider a uniform subdivision of the time domain I and we solve the linear system (12)
at the N time instants tn = nT/N, n = 1, . . . , N . The collection of vectors {Ut0 , . . .UtN} is
the full discretization of the state variable u over the time interval I . For the sake of simplicity,
we consider a structured grid with a vertical discretization such that the grid Th on the full space
domain Ω can be split into the N horizontal layers E × [v0tn−1, v0tn] for n = 1, . . . N . Under
this hypothesis, given Th and a basis {ϕj}j∈V of the finite element space Vh defined on Th, we
can recover Vh(t) as the space generated by the subset of {ϕj}j∈V of functions whose support
has non-empty intersection with Ω(tn).

When multiple layers (N > 1) are used in the computation of the optimal time-averaged
compliance, the resulting approach will be referred to as multi-layer approach. Otherwise,
for N = 1 we recover the standard minimal compliance optimization that we will refer to as
single-layer approach.

3.3 Full discretization

Let Ke be a generic element of the mesh Th, with index e ∈ B. We denote with B0 and
B1 the sets of indexes of elements belonging to Ω0 and Ω1, respectively. The subset of mesh
elements contained in the domain Ω(tn) is denoted as Bn ⊂ B. Moreover, let ne indicate the
value of the smallest time step such that the element Ke belongs to Ω(tn) and let Ve be the set
of indexes of degrees of freedom associated with the element e. Thus the following relations
hold: ⋃

e∈B

Ke = Ω,⋃
e∈Bn

Ke = Ω(tn),

e ∈ Bn ⇐⇒ n ≥ ne.

(14)

We remark that the finite element approximation ρh of the density is piecewise constant over
the triangulation Th, while the state variable u is discretized by continuous in space (with basis
{ϕj}j∈V ) piecewise constant in time finite elements, i.e.

ρh(x) =
∑
e∈B

ρ̃e1Ke(x),

uh(x, t) =
N∑
n=1

∑
j∈V

unjϕj(x)1(tn−1,tn](t).

(15)

We define

Ke
ij =

∫
Ke

E0∇sϕi : ∇sϕj dx,

f ei =

∫
Ke

ρ0g ·ϕi dx,

(16)

and the following SIMP interpolation holds:

Ẽ(ρ̃e) = Ẽmin + ρ̃pe(1− Ẽmin). (17)
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Finally, the constraint (1e) reads as follows:∑
e∈B

|Ke|ρ̃e ≤ C. (18)

In view of the above discussion, the discrete counterpart of the minimization problem (8)
reads as follows:

min
ρ̃e

1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

f ei u
n
i

s.t.
1

N

N∑
n=1

∑
e∈Bn

Ẽ(ρ̃e)
∑
i,j∈Ve

Ke
iju

n
i v

n
j

=
1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

f ei v
n
i ∀{vni }i∈Vn=1,...,N ⊂ R∑

e∈B

|Ke|ρ̃e ≤ C

ρ̃min ≤ ρ̃e ≤ 1 ∀e ∈ B
ρ̃e = ρ̃min ∀e ∈ B0

ρ̃e = 1 ∀e ∈ B1.

(19)

The Lagrangian function for the discretized problem is defined as follows:

L =
1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

f ei u
n
i −

1

N

N∑
n=1

∑
e∈Bn

(
Ẽ(ρ̃e)

∑
i,j∈Ve

Ke
iju

n
i u

n
j − 1B1(e)

∑
i∈Ve

f ei u
n
i

)
+ Λ

(∑
e∈B

|Ke|ρ̃e − C
)

+
∑
e∈B

λ+
e

(
ρ̃e − 1

)
+
∑
e∈B

λ−e
(
ρ̃min − ρ̃e

)
.

(20)

where Λ is the Lagrangian multiplier for the constraint (1e), λ+
e for the constraint (1b) and λ−e

for (1a). The constraints (1c) are (1d) are not plugged in the Lagrangian, but will be considered
later by projecting the solution on the space Uad in (24).

If we derive the Lagrangian with respect to the state variable we get the discrete version of
adjoint equation, while deriving with respect to the design variables ρ̃e we get:

∂L
∂ρ̃e

(ξ) =
∑
e∈B

[
− 1

N

N∑
n=ne

(
pρ̃p−1

e (1− Ẽmin)
∑
i,j∈Ve

Ke
iju

n
i u

n
j

)
+ Λ|Ke|+ λ+

e − λ−e

]
ξ. (21)

By defining

Ψe =
1

N |Ke|

N∑
n=ne

(
pρ̃p−1

e (1− Ẽmin)
∑
i,j∈Ve

Ke
iju

n
i u

n
j

)
(22)

we get the optimality conditions for the discretized problem which reads as follows
Ψe = Λ if ρ̃min < ρ̃e < 1

Ψe ≤ Λ if ρ̃e = ρ̃min

Ψe ≥ Λ if ρ̃e = 1.

(23)
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3.4 A fixed point algorithm

Based on (23), it is possible to derive an Optimality Condition (OC) method that computes
a sequence {ρ̃Ke } approximating ρ̃e by resorting to the following fixed-point algorithm: for
K ≥ 1

ρ̃K+1
e =



ρ̃min if e ∈ B0

1 if e ∈ B1

max {(1− ζ)ρ̃Ke , ρ̃min} if ρ̃Ke (QK
e )η ≤ max {(1− ζ)ρ̃Ke , ρ̃min}, e /∈ (B1 ∪B0)

min {(1 + ζ)ρ̃Ke , 1} if ρ̃Ke (QK
e )η ≥ min {(1 + ζ)ρ̃Ke , 1}, e /∈ (B1 ∪B0)

ρ̃Ke (QK
e )iη elsewhere

(24)
where QK

e = ΨK
e /Λ

K .
Since the space integral of updated density is a continuous non decreasing function of the

multiplier Λ, its updated value ΛK can be computed by employing a bisection algorithm. The
variable ζ is a move limit, and η is a tuning parameter. Both values can be adjusted to improve
efficiency of the algorithm. Typical values are respectively 0.1 and 0.5. In the actual implemen-
tation some filtering procedure must be taken into account to get a well-posed problem, see e.g.
[7].

3.5 Description of the algorithm

In this section, we briefly summarize the different steps required to apply the proposed
methodology, from the pre-processing needed to setup the simulation to the actual optimiza-
tion loop.

1. Pre-processing

• Choose a cylindric reference space domain Ω and identify sub-domains Ω0 and Ω1.

• Subdivide time interval [0, T ] in N time steps.

• Build a spatial mesh Th on Ω, fine enough to describe the geometrical details of
the sub-domains Ω0 and Ω1 and conforming with the horizontal layers at y =
v0t1, . . . , v0tN .

• Build the finite element space Vh with its basis functions.

• Choose an initial design for the variables ρ̃e (for instance a uniform distribution).

2. Optimization

• For each time step tn, compute the displacement field with the current value of the
design variable (see (12)).

• Compute for each mesh element the value of Ψe according to (22).

• Compute the current value of ΛK by bisection.

• Update the design variables ρ̃e as in (24).

• Repeal until a stopping criterion is satisfied.
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4 NUMERICAL RESULTS

In this section we present some numerical test cases to assess the properties of the proposed
topology optimization scheme for the design of support structures. In particular, we will high-
light the differences between the solution obtained with the proposed multi-layer approach min-
imizing the mean compliance during the printing process and the one obtained from a standard
single-layer minimal compliance problem for the whole object.

4.1 Test case 1

In the first test case we consider a self-supporting structure defined by an inclined tapered
beam with the thinner extreme joint to the ground and the thicker extreme supported by a vertical
pillar (in black in Fig 2). The domain is Ω = (0, 1) × (0, 0.5) and the prescribed active region
Ω \ Ω0 ∪ Ω1 (where the supports can be placed) is the area below the structure (in grey in Fig.
2). Both the object and the supports are made of thermoplastic polyurethane with ρ0 = 1.1 · 103

Kg/m3 and E = 3 ·107 Pa. The optimization was performed on three different mesh resolutions
(50×25, 100×50, 200×100) using a sensitivity filter with a fixed filter size of 0.2 (independent
of the mesh size). The results obtained using a standard single-layer approach for the final object
shape are reported in Fig. 3 (left), while the results of the proposed multi-layer using 25 time
intervals are reported in Fig. 3 (right).

First, we note that in both approaches the main features of the solution are captured even
with a coarse grid and the solution is robust as the space resolution is increased. However,
position and size of the supports generated by the two approaches are different. In particular,
for the multi-layer approach the supports are shifted on the right and thickened in order to
reduce the compliance in the first phases of the printing process when the tapered beam is not
yet self-supporting.

In order to better understand the reasons behind the difference between the optimal solutions
obtained with the two approaches, we have evaluated, for the two configurations, the history of
the compliance during the printing process by solving a sequence of 50 linear elasticity prob-
lems, each one at a different time instant belonging to the time interval I . The results presented
in Fig. 4 clearly show that the shape optimized using the multi-layer approach guarantees a
significant reduction of the compliance over a large portion of the time interval considered. Ob-
viously, the value of the compliance at the final time is lower for the single-layer approach since
in this case the compliance at t = T is exactly the functional that is minimized.

Figure 2: Computational domain for test case 1
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Figure 3: Results of test case 1: single-layer minimization (left), multi-layer minimization (right). Increasing mesh
resolution from top to bottom.

Figure 4: Time-evolution of the compliance for the two configurations obtained by the single-layer (solid line) and
multi-layer (dashed-line) approaches in test case 1.
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4.2 Test case 2

In the second test case, with the aim of precisely identifying the conditions under which
our novel approach is more appropriate than the standard one, we continue the analysis of
the differences between the single-layer compliance minimization and the multi-layer mean
compliance minimization (on 25 time instants). We consider the two structures (squared and
rounded) displayed in black in Fig. 5 which are fixed on the ground. The domain is Ω =
(0, 1) × (0, 0.25) and the prescribed active region where the support can be added is identified
by the grey region below the structure. The material properties and filtering procedure are the
same as for test case 1.

Figure 5: Computational domains for test case 2: squared structure (left) and rounded structure (right)

Let us first consider the squared structure and compare the results of the support optimization
obtained by using the single-layer or the multi-layer approach (see Fig. 6). Differently from
the previous test case, here the optimal supports obtained by the two approaches are almost
identical. This is not surprising, due to the particular geometry of the squared structure. Indeed,
only the last few layers give a significant contribution to the mean compliance, so that the
functionals to be minimized by the two approaches are quite similar.

Figure 6: Results of test case 2 (squared structure): single-layer minimization (left), multi-layer minimization
(right). Increasing mesh resolution from top to bottom.

Remarkably, when the rounded structure is considered, the two approaches lead to optimal
solutions which are very different as displayed in Fig. 7. Here a double tree-like structure for
the single-layer approach and a pillar structure for the multi-layer approach are obtained. In
the latter case, at the early stages of the printing process, two overhanging structures need to be
supported and this fact drives the optimization towards a structure composed by six supporting
structures distributed non-uniformly along the domain width.



M. Bruggi, N. Parolini, F. Regazzoni and M. Verani

Figure 7: Results of test case 2 (rounded structure): single-layer minimization (left), multi-layer minimization
(right). Increasing mesh resolution from top to bottom.

5 CONCLUSIONS

We have presented a new topology optimization algorithm for time-dependent linear elastic-
ity problems. The algorithm has been devised for facing the time-dependent nature of additive
manufacturing processes, with the aim of computing the optimal material distribution which
minimizes the mean compliance over a time interval.

The algorithm has been derived applying the Optimality Condition framework to the time-
dependent elasticity problem leading to the introduction of a fixed-point iterative scheme.

Numerical tests have been performed with the aim of investigating the properties of the
proposed approach. Moreover, a detailed comparison with the standard minimal compliance
optimization has been carried out. The results show that our method is reliable in handling
situations typical in additive manufacturing where overhangs appear in the early stages of the
printing process aiming at the production of self-sustained structures.
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