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Abstract. Low-alloyed TRIP steels are often used in the automotive industry due to their favor-
able mechanical properties such as high ductility and strength and their moderate production
costs. These steels possess a heterogeneous multiphase microstructure, initially consisting of
ferrite, bainite and retained austenite which is responsible for the mechanical properties. Upon
deformation, a diffusionless, stress-induced, martensitic phase transformation from austenite to
martensite is observed, enhancing ductility and strength.
We focus on multi-scale methods in the sense of FE2 to describe the macroscopic behavior of
low-alloyed TRIP-steels, because this approach allows for a straightforward inclusion of var-
ious influencing factors such as residual stress distribution, graded material properties which
can hardly included in phenomenological descriptions of these heterogeneous multiphase ma-
terials. In order to allow for efficient computations, a simplified microstructure is used in an
illustrative direct micro-macro simulation. The inelastic processes in the austenitic inclusions
involve the phase transformation from austenite to martensite and the inelastic deformation of
these two phases. The isotropic, rate-independent, hyperelastic-plastic material model of Hall-
berg et al. (IJP, 23, pp.1213–1239, 2007), originally proposed for high-alloyed TRIP steel, is
adopted here for the inclusion phase. Minor modifications of the model are proposed to improve
its implementation and performance. The influence of various material parameters associated
with the phase transformation on the evolution of retained austenite is studied for different
homogeneous deformation states. The non-monotonic stress-state dependence observed in ex-
periments is clearly captured by the model. A numerical two-scale calculation is carried out
to enlighten the ductility enhancement in low-alloyed TRIP-steels due to the martensitic phase
transformation.
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1 INTRODUCTION

Low-alloyed TRIP-steels offer a favorable combination of both high strength and pronounced
ductility, leading to a high energy absorption capacity. This is desired especially for automotive
applications, because it allows for light-weight and crashworthy constructions and therefore
leads to safer and more efficient automobiles. These favorable mechanical properties can be
achieved at lower costs compared to high-alloyed TRIP-steels, due to the reduced amount of
alloying elements required. In contrast to high-alloyed, initially fully austenititc TRIP-steels,
low-alloyed TRIP-steels possess a multiphase microstructure, consisting of ferrite, bainite and
retained austenite. In order to obtain the favorable mechanical properties the microstructure is
optimized by a sophisticated heat treatment procedure and a smart alloy design, cf. [1]. Mi-
cromechanical considerations [2] lead to the conclusion that the high ductility of these steels
cannot be solely attributed to the deformation-induced martensitic phase transformation from
the metastable, retained austenite to martensite, because its volume fraction is typically in the
range of 10-15% and therefore simply too low. Therefore, the multiphase character of the mi-
crostructure is responsible for the pronounced ductility. However, the phase transformation in
the retained austenite plays an important role in this type of steel as it dynamically influences the
stress and strain partitioning between different phases during deformation [3, 4, 5] and delays
microcracking [6], leading to composite type microstructure with adaptive properties. The rate
of the austenite to martensite transformation depends on various factors: (i) ambient tempera-
ture cf. [7], (ii) stress-state cf. [8], (iii) austenite grain size and morphology [9], (iv) neighboring
constituents [9].
A variety of constitutive models has been proposed for the description of the deformation
and transformation behavior of low-alloyed TRIP-steels. Phenomenological approaches such
as [10, 11, 12, 13] mainly focus on capturing the influences of temperature and stress-state on
the transformation kinetics. They are mostly used in single scale (macroscopic) simulations
due to their low computational costs. Modeling approaches that incorporate analytical homog-
enization schemes, like for instance [14, 15, 16, 17, 18, 20] are better suited to account for the
strengthening effect of the evolving martensite and multiphase character of the microstructure.
However, simplifying assumptions regarding the microstructure morphology and field fluctua-
tions within the phases have to be made, which may lead to inaccurate assessment of failure
initialization. Direct microstructural simulations allow for a straightforward incorporation of
all of the above mentioned influencing factors (i)-(iv). However, they are computationally very
demanding as the macroscopic constitutive response is obtained by the solution of microscopic
boundary value problems for a suitable representative volume element. In the context of low-
alloyed TRIP-steels a two-dimensional microstructural section [21] or artificial inclusion type
microstructure [22] as well as polyhedral inclusions representing single crystalline phases [23]
have been used as representative volume elements.
In the current contribution, we follow the direct micro-macro simulation approach as this frame-
work is in general sufficient to study the above mentioned influencing factors on the phase trans-
formation behavior of low-alloyed TRIP-steels. The paper is organized as follows. In section 2,
the basic equations for the direct micro-macro scale transition are summarized, whereas in sec-
tion 3 a suitable material model for the phase transformation from austenite to martensite is
adopted from the literature. In section 4, the influence of model parameters on the phase trans-
formation behavior is illustrated and the effective mechanical behavior of a simplified three-
dimensional microstructure for low-alloyed TRIP-steel is presented. Section 5 summarizes the
main findings.
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2 DIRECT MICRO-MACRO SCALE TRANSITION

Employing the direct micro-macro scale transition approach enables the computation of ef-
fective, macroscopic material behavior for a representative volume element with arbitrary com-
plex microstructure by means of the solution of microscopic boundary value problems and ap-
propriate averaging schemes of the microscopic fields. Here, we focus on a purely mechanical
setting and state the basic relations, required for the computations. According to Hill [24] the
stress power per unit reference volume at the macroscopic scale, expressed in terms of average
quantities, should be equal to the microscopic counterpart, yielding

〈P : Ḟ 〉 = 〈P 〉 : 〈Ḟ 〉 , (1)

where P denotes the 1st Piola-Kirchhoff stress tensor, Ḟ is the material time derivative of the
deformation gradient and the volume average over the reference configuration is defined as
〈·〉 = 1

V

∫
B0
· dV . As the current study relies on representative volume elements with a peri-

odic microstructure, it is convenient to apply periodic boundary conditions in order to enforce
eq. (1). Based on the decomposition of the deformation field in a homogeneous deformation
and fluctuation as

ẋ = Ḟ ·X + ˙̃w , (2)

the periodic boundary conditions require a periodic fluctuation field w̃ and antiperiodic traction
vectors t0 along the boundary, namely

˙̃w
+

= ˙̃w
−

and t+0 = −t−0 on ∂B0 . (3)

3 MATERIAL MODEL AT THE MICRO-SCALE

In order to obtain reliable predictions of the macroscopic, effective deformation and transfor-
mation behavior of low-alloyed TRIP-steels, suitable material models that capture the essential
features of inelastic processes are required at micro-scale. The aim of the present contribution
is to describe the overall behavior of low-alloyed TRIP-steels under isothermal conditions and
excluding rate-dependent effects. Therefore, rate-independent models that incorporate the two
main inelastic processes, plasticity and the austenite to martensite phase transformation, should
be chosen. Furthermore, assuming a polycrystalline microstructure at the micro-scale, the con-
stitutive model proposed by Hallberg [25] for high-alloyed TRIP-steels is a suitable choice,
because it is contains only a relatively small number of material parameters, but still includes
plasticity and phase transformation as two independently evolving inelastic processes and their
interaction in a simplified manner. In contrast to the originally proposed model, we apply some
minor modifications which allow for a more convenient implementation, but the essential fea-
tures of the model remain and in particular the thermodynamic consistency is still guaranteed.
The material model is based on the multiplicative split of the deformation gradient

F = F e · F in (4)

into an elastic and an inelastic part where the latter is associated with any inelastic process oc-
curring in the material. Employing the assumption of isotropic elastic behavior and an additive
split of the free energy according to

ρ0Ψ(be, α1, α2, . . .) = ρ0Ψe(be) + ρ0Ψin(α1, α2, . . .) , (5)
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with αi representing the internal variables, the Kirchhoff-stress is defined as

τ = 2ρ0
∂Ψ

∂be
· be . (6)

Herein, the elastic left Cauchy-Green tensor is given as be = F e ·F eT . In particular, the elastic
energy function

ρ0Ψe =
λ

2

[∑
A

ln(λe
A)

]2

+ µ
∑
A

[ln(λe
A)]2 (7)

is utilized, which is described in terms of principle elastic stretches λe
A and the Lamé constants

λ, µ. The principle elastic stretches are obtained by the eigenvalue decomposition of be. The
elastic left Cauchy-Green tensor can be related to the inelastic right Cauchy-Green tensorC in =

F inT · F in via
be = F ·C in−1 · F T , (8)

whereas the temporal evolution of be and C in is expressed as

L(be) = F ·
(
C in−1

)· · F T (9)

where L is the Lie derivative. An alternative representation of eq. (9) solely in terms ofC in and
F is obtained if the additive split of the rate of deformation l = Ḟ · F−1 = le + lin is used in
conjunction with the assumption of isotropic elastic and inelastic behavior, which is considered
here, i.e. (

C in−1
)·

= −2F−1 ·
∑
p

λ̇p
∂Φp

∂τ︸ ︷︷ ︸
=din

·F ·C in−1 . (10)

As proposed by Hallberg [25] the inelastic rate of deformation din is additively split into mul-
tiple contributions stemming from different inelastic processes, characterized by independent
limit surfaces Φp and the corresponding consistency parameters λ̇p. Similar to small strain
elastic-plastic formulations, the antimetric part of the inelastic velocity gradient remains unde-
termined.
For the rate-independent plasticity a limit surface of VON MISES-type with nonlinear isotropic
hardening is chosen.

Φpl :=
√

3J2 − σy(αpl, fm) (11)

Herein the second invariant of the Kirchhoff stress deviator is defined as J2 = 1
2
dev(τ ) :

dev(τ ), whereas αpl and fm are the isotropic hardening variable and the martensite volume
fraction, respectively. The yield stress is computed from an exponential hardening law and a
nonlinear rule of mixture, according to

σy(αpl, fm) = σy
0m̄(fm) + Hκ(αpl) (12)

with
m̄(fm) = 1 + (exp(f1fm)− 1)f2 (13)

and
κ(αpl) =

R∞
H

[
1− exp

(
− H

R∞
αpl
)]

, (14)
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Figure 1: Limit surface for phase transformation: (a) section containing the hydrostatic axis with tensile (−−)
and compressive meridian (—) and the corresponding cone (· · ·), (b) non-circular cross-section in the π-plane, (c)
evolution of the transformation barrier.

where the hardening variable evolves according to α̇pl = λ̇pl. The equations (12), (13), (14)
introduce three material parameters (σy

0 ,H,R∞) for the hardening and two material parameters
(f1, f2) in the rule of mixture.
The limit surface for phase transformation is taken here as a hyperbolic approximation of Hall-
berg’s conical transformation surface and is inspired by the proposal given in [26]. It possesses
the form

Φpt :=

√√√√(τ eq)2

(
1 + k

J3

J
3/2
2

)2

R2 + ∆2
v(κ2

1(αpt, T )− 1)(τhyd)2 +

∆vκ2(αpt, T )τhyd − Rκ1(αpt, T ) , (15)

with

κ1(αpt, T ) =

√(
1

∆v

(ḡ(αpt)−∆ga→m(T ))
)2

− c2 (16)

κ2(αpt, T ) =
1

∆v

ḡ(αpt)−∆ga→m(T )

κ1

. (17)

The transformation surface introduces the material parameters ∆v,R which correspond to the
volumetric and deviatoric transformation strain, as well as the shape parameters k and c. The
parameter k controls the deviation from the circular cross-section in the π-plane, i.e. the de-
viatoric plane that contains the origin and the parameter c determines the transition from the
hyperbolic surface to the conical surface (see fig. 1). The latter parameter, however, is of minor
importance in the studies considered in this paper. Although it guarantees a continuous differ-
entiable limit surface under purely hydrostatic loading conditions, for the stress states reached
in the loading scenarios considered, the hyperbolic approximation of the transformation surface
is very close to the original conical surface. Furthermore, τhyd, τ eq,∆ga→m(T ) and ḡ(αpt) de-
note the hydrostatic part of the Kirchhoff stress, the VON MISES equivalent Kirchhoff stress,
the temperature dependent energy difference between the austenitic (a) and the martensitic (m)
phase and the transformation barrier, respectively. The evolution equations for the internal
variables associated with the transformation, namely the hardening variable for transformation
hardening α1 := αpt and the martensite volume fraction α2 := fm are derived following the
procedure for generalized standard materials [27]. Therefore, the portion of the free energy
function corresponding to inelastic processes, introduced in eq. (5), is further specified as

ρ0Ψin(αpt, αpl, fm) = ρ0Ψpl(αpl) + ρ0Ψpt(αpt) + ρ0Ψchem(fm;T ) (18)

with
ρ0Ψchem(fm;T ) = (1− fm)ρ0Ψchem

a (T ) + fmρ0Ψchem
m (T ) (19)
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and
ρ0Ψpt(αpt) = ḡ1

((
1− αpt

) (
ln(1− αpt)− 1

)
+ 1

)
. (20)

Herein, Ψpl(αpl) is linked to the isotropic hardening of the VON MISES criterion and chosen
identical to the proposal of Hallberg [25] and is not included here for brevity. Upon defining
the driving forces Kαpt = ρ0

∂Ψpt

∂αpt and Kfm = ρ0
∂Ψchem

∂fm
= −∆ga→m(T ), the evolution equations

are defined as

˙fm = −λ̇pt ∂Φpt

∂Kfm

(21)

α̇pt = −λ̇pt ∂Φpt

∂Kαpt

. (22)

From the structure of the transformation surface it can be readily verified that αpt = fm. The
transformation barrier evolves according to the transformation hardening law

ḡ(αpt) = ḡ0 − ḡ1 ln(1− αpt) (23)

with the initial transformation barrier ḡ0 and the initial hardening modulus ḡ1. As can be seen
from fig. 1c the barrier is progressively increasing, limiting the hardening variable to αpt ≤ 1.
The material model described above is implemented into the Finite Element Program FEAP and
employs a combination of the operator split and a general return mapping algorithm proposed
by Aurrichio et al. [28] to integrate the set of nonlinear evolution equations. Furthermore, the
return mapping algorithm has been extended to handle non-smooth intersections of multiple
limit surfaces as discussed in [29, p.206ff].

4 RESULTS

4.1 Parameter study

The material model described in section 3 contains 12 material parameters, which need to be
adjusted in order to capture the deformation and transformation behavior of the retained austen-
ite and the evolving martensite. The parameters associated with elasticity and plasticity of the
austenitic/martensitic material can be chosen rather easily, if the individual hardening curves
are known. In the present paper the parameters are set such that the austenite and martensite
hardening curves of an experimental TRIP-steel presented in [19] are reproduced. For later ref-
erence they are listed in table 1. The influence of three of the remaining parameters, namely the

E [MPa] ν σy
0 [MPa] H [MPa] R∞[MPa] f1 f2 ∆v R

200000 0.3 300 3500 420 1.65 1.1 0.04 0.07

Table 1: Material parameters of the austenitic/martensitic material

initial transformation barrier ḡ0, the initial transformation hardening modulus ḡ1 and the shape
parameter k is studied in order to get a reasonable estimate for the range of parameters and
their impact on the transformation kinetics. It is well known from experiments that the phase
transformation in low-alloyed TRIP-steels is stress-state dependent. In particular, this depen-
dence is non-monotonic with respect to the stress-triaxiality measure h = τhyd

τeq
, based on the

experimental results presented in [8] and depicted in fig.2c. Herein, 4 mechanical tests (simple
shear, uniaxial tension, biaxial tension and the Marchiniak test) are carried out, where each of
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Figure 2: Influence on transformation kinetics: (a) variation of initial transformation barrier, (b) variation of trans-
formation hardening modulus, (c) experimentally determined non-monotonic stress-state dependence cf. [8], (d)
simulated non-monotonic stress-state dependence (symbols indicate the experimental trends: lowest transforma-
tion rate in simple shear and highest rate in Marciniak test)

these tests is characterized by a different stress state. These four tests are simulated employing
deformation controlled one element tests with an initially fully austenitic microstructure and
analyzing the evolution of retained austenite as a function of the overall equivalent strain εeq. It
can be seen from fig. 2a,b that initially only phase transformation and no plastic deformation is
predicted by the model for the given choice of parameters. While varying the initial transfor-
mation barrier changes the onset of plasticity, i.e. both inelastic deformation mechanisms are
active at the same time and keeps the asymptotically reached value of retained austenite more or
less unaltered, a modification of the hardening modulus influences both the onset of plasticity
and the asymptotically reached value of retained austenite. In both studies a value of k=0.24
and ḡ1 = 150 mJ

mm3 and ḡ0 = 32 mJ
mm3 is kept while varying the other parameters. Although only

the results for the uniaxial tensile test are presented, the same trend can be observed for all the
homogeneous tests.
In a third study the shape parameter k is altered in the range of −0.24 ≤ k ≤ 0.24 leading to
convex, non-circular cross-sections of the transformation in the π-plane. The initial transfor-
mation barrier and the transformation hardening are chosen in this study as ḡ0 = 40 mJ

mm3 and
ḡ1 = 200 mJ

mm3 . It can be seen from fig. 2d that the non-monotonic stress-state dependency is
clearly captured for the choice k= 0.24, as the transformation rate in biaxial tension (h = 2/3)
is lower than in the Marciniak test (h = 0.42). However, the transformation rate predicted
by the material model in uniaxial tension contradicts the experimentally observed trend, which
indicates the need for further parameter studies. For lower values of k the highest rate of trans-
formation is observed in biaxial tension, leading to a proportional increase in transformation
rate with increasing stress triaxiality.
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Figure 3: Simplified microstructure (a) and overall true stress-strain curve for uniaxial tension (b)

4.2 Simplified microstructure

In order to study the influence of the martensitic phase transformation on the macroscopic de-
formation behavior of low-alloyed TRIP-steels a simplified microstructure is considered which
consists of a regular cubic arrangement of spherical, retained austenite inclusions embedded in
ferritic/bainitic matrix. Note that more sophisticated but still efficient statistically similar repre-
sentative volume elements may be constructed following the approach in Balzani et al. [30], see
also Brands et al. [31] for an analysis in the context of DP steels. Consistent with experimental
data, the initial volume fraction of retained austenite is chosen fa = 0.12. In the matrix a mix-
ture of ferrite and bainite is employed with the volume fractions set to ff = 0.5 and fb = 0.38,
corresponding to the phase composition of an experimental TRIP-steel presented in [19]. Both
in the matrix and in the inclusion the material model described in section 3 is utilized. In the
inclusion the material parameters given in table 1 and ḡ0 = 40 mJ

mm3 , ḡ1 = 200 mJ
mm3 and k= 0.24

have been selected. As no phase transformation is observed in the matrix a rather high initial
transformation barrier is used to switch off the transformation criterion. The material param-
eters associated with the nonlinear hardening law are computed to reasonable approximate the
ferrite and bainite hardening curves given in [19]. All the material parameters required for the
ferrite/bainite mixture are listed in table 2.
The representative volume element (RVE) containing the simplified microstructure is subjected
to a displacement controlled uniaxial tensile test prescribing an axial true strain of ε̄ = 0.34.
Due to the symmetry intrinsic to the boundary value problem, only 1/8 of the RVE as depicted

EMatr [MPa] νMatr σy
0,Matr [MPa] H [MPa] R∞,Matr[MPa] f1,Matr f2,Matr

200000 0.3 548 1800 550 1.65 1.1

Table 2: Material parameters for the ferritic/bainitic matrix

in fig. 3a is simulated. The overall true stress-strain curve is shown in fig. 3b for the cases of a
transforming and a non-transforming retained austenite inclusion. The latter case corresponds
to conditions of higher ambient temperatures where the retained austenite is stabilized leading
to negligible transformation rates. Although the increase in the overall stress due to transfor-
mation is less than 100 MPa, the ductility is enhanced substantially (+0.05 true strain). The
Considère criterion is employed as a measure of ductility, which estimates the limit of uniform
elongation under uniaxial tension by the intersection of the flow curve and the instantaneous
hardening modulus, i.e. σ̄ = ∂σ̄

∂ε̄
. The increase in ductility cannot be attributed solely to the

transformation strains, but rather to the change in the yield behavior, because the inclusion has
only transformed partly (see fig. 3b), indicating a dynamic stress and strain redistribution during
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(a) (b)

(c)

fm σhyd

σhyd

Figure 4: Distribution of martensite volume fraction (a) and hydrostatic Cauchy stress: (b) with and (c) without
a→m transformation at the micro-scale under macroscopic uniaxial tension (ε̄ = 0.34)

loading.
Also on the micro-scale, significantly different stress distributions are obtained. Comparing
fig. 4b and c, one observes higher hydrostatic stresses in the matrix close to the transforming
inclusion, revealing a potential location of ductile damage initiation, which is absent in the
microstructure with non-transforming retained austenite. Here the highest hydrostatic stress is
observed in the inclusion.

5 CONCLUSIONS

In this contribution a simple material model for the austenite to martensite phase transfor-
mation in high-alloyed TRIP-steels is adopted for the direct micro-macro simulation of multi-
phase, low-alloyed TRIP-steels. Minor modifications of the model are proposed to improve its
implementation and performance. A parameter study is conducted to illustrate the influence of
material parameters, such as the initial transformation barrier, transformation hardening mod-
ulus and a shape parameter of the transformation surface on the phase transformation kinetics
under different homogeneous loading conditions. Comparing the simulated evolution of re-
tained austenite to experiments, it is found that the non-monotonic stress-state dependence can
be reproduced by the model. For a reasonable choice of the material parameters of the single
phases, a direct micro-macro simulation of a low-alloyed TRIP-steel is carried out employing
a simplified, periodic microstructure. It is observed that austenite to martensite phase transfor-
mation enhances the ductility through a dynamic stress and strain redistribution between the
constituents.
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