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Abstract. As the offshore energy industry moves towards deepwater installations, plate 

anchors are increasingly used to moor floating production facilities. The ultimate holding 

capacity of a plate anchor in undrained clay has been widely investigated in scenarios where 

the undrained shear strength is a deterministic parameter, uniform or linearly increasing 

across the soil mass. However, it has been shown that bearing capacity of footings can be 

overestimated if spatial variability is not taken into account. In this paper, a least angle 

regression-based sparse polynomial chaos expansion is used to efficiently study the uplift 

capacity of horizontal plate anchors in spatially variable clay represented by a high-

dimensional random field. The coefficients of the expansion are obtained from a set of finite 

element analyses and a range of anchor embedment ratios are modelled to investigate both 

shallow and deep anchor behaviour. The limiting cases of an attached and vented anchor, 

where the anchor is either fixed to or separable from the soil, are also considered. It is found 

that the probability of failure of vented anchors reduces with embedment depth due to a 

decrease in the variability of anchor capacity as shear planes lengthen. In the attached case, 

the probability of failure is dependent upon whether the anchor fails by a shallow or deep 

mechanism.  
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1 INTRODUCTION 

The recent move towards deepwater energy production has led to an increased interest in the 

analysis and design of anchoring systems. Plate anchors are commonly deployed to moor 

floating production facilities [1]. The holding capacity of plate anchors in undrained clay has 

been widely investigated, using both physical modelling and numerical analysis [2-4]. In these 

studies, the undrained shear strength is uniform or linearly increasing according to a defined 

trend. In reality, natural clay is a highly variable material and the values of engineering 

parameters fluctuate across the soil mass [5]. Spatial variability, generally represented by 

random fields, has been shown to influence mechanical behaviour in a range of geotechnical 

scenarios [6]. In footing problems, bearing capacity can be overestimated if spatial variability 

is not taken into account. This has recently been demonstrated by Li et al. [7] for the case of 

buried footings, representative of applications such as spudcan foundations for offshore drilling 

platforms. The effect on uplift capacity is less well-studied but clearly has important design 

implications.  

In this paper, a least angle regression (LAR)-based sparse PCE [8] is used to efficiently study 

the uplift capacity of horizontal plate anchors in spatially variable undrained clay represented 

by a random field. LAR enables automatic selection of only the most influential terms of the 

expansion, reducing the number of model evaluations required to ensure a well-posed least 

squares regression problem and a good approximation. A finite element model is used to obtain 

the uplift capacity across a range of embedment ratios and the limiting cases of an ‘attached’ 

and ‘vented’ anchor, where the anchor is either fixed to or separable from the soil, are 

considered. The use of the PCE enables an accurate assessment of the probability of failure in 

comparison with current offshore design practice, where the mean undrained shear strength 

value is applied in combination with a partial safety factor. 

2 SPARSE POLYNOMIAL CHAOS EXPANSIONS 

Polynomial chaos expansions are a method for quantifying uncertainty in complex numerical 

models with input parameters represented by random variables. The model output can be 

approximated by expanding the response quantity onto a basis of orthogonal multivariate 

polynomials. If the model is denoted Γ, and is a function of M independent input random 

variables 𝝃 = {𝜉1, … , 𝜉𝑀}𝑇, this can be written as follows: 

 
Γ(𝝃) = ∑ 𝑎𝜶𝜓𝜶(𝝃)

𝜶 𝜖 ℕ𝑀

 (1)  

where 𝜓𝜶 is a multivariate polynomial basis and 𝑎𝜶 are deterministic coefficients which must 

be computed, for example by regression from a set of model evaluations. The sequence of non-

negative integers 𝜶 =  {𝛼1, … , 𝛼𝑀}  is a multi-index representing the polynomial order 

associated with each random variable. The series is known as a polynomial chaos expansion 

and provides an analytical expression for the model response. For optimal convergence, the 

multivariate polynomial basis is chosen to be orthogonal with respect to the joint probability 

density function (PDF) of the input random variables. The multivariate, M-dimensional basis is 

constructed as a product of one-dimensional polynomials. In this paper, Gaussian input random 

variables are used with the corresponding Hermite polynomials.  

The truncation, for computational purposes, of the infinite series in Eq. (1) was originally 

undertaken by keeping only those polynomials with degree less than or equal to the current PCE 

order p, i.e. ∑ 𝛼𝑖
𝑀
𝑖=1 ≤ 𝑝 . The size of this basis is 𝑃 = (𝑀+𝑝

𝑝
) and the number of retained 
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coefficients, and so the computational cost, grows dramatically as either the number of random 

variables M or polynomial order p is increased. 

In a sparse polynomial chaos expansion (SPCE), only significant terms are retained in the 

polynomial basis, thus reducing the number of coefficients that must be computed. Firstly, the 

candidate set of terms can be reduced prior to analysis to remove high-order interactions likely 

to be insignificant. Blatman and Sudret [8] proposed a ‘hyperbolic’ PCE in which a q-norm of 

the multi-indices should be smaller than the current order as follows: 

 

‖𝜶‖𝑞 = (∑(𝛼𝑖)
𝑞

𝑀

𝑖=1

)

1
𝑞⁄

≤ 𝑝 (2)  

where 0 < q ≤ 1. This is a stricter requirement than the classical truncation scheme, which is 

recovered by setting q = 1. 

The PCE is finally obtained as: 

 
Γ(𝝃) ≅ Γ̂𝑝(𝝃) = ∑ �̂�𝜶𝜓𝜶(𝝃)

‖𝜶‖𝑞 ≤ 𝑝

 (3)  

However, even after the size of the truncation set has been reduced, not all remaining terms 

will be significant. An efficient solution is to use least angle regression (LAR) [9] to select the 

basis functions that have most effect on the model response. In LAR, the predictors are 

progressively activated based on their correlation with the set of model outputs until either all 

predictors are active or, if the number of model evaluations n ≤ P, n – 1 predictors are active.  

The LAR-SPCE method [8] does not actually use the coefficients computed by LAR but 

instead uses the predictors retained in each step along the LAR path in a least squares regression.  

Hence a series of SPCEs are produced and their approximation performance is assessed by a 

corrected leave-one-out cross-validation error, denoted Q2*, in order to select the best expansion 

for subsequent use. Details of the error estimate Q2* can be found in [8]. To minimise the 

number of deterministic model evaluations an adaptive method is implemented in this study, 

with q = 0.7 and a maximum expansion order of 4. 

3 PLATE ANCHOR UPLIFT CAPACITY 

3.1 Description 

Figure 1 shows the layout and notation of the plate anchor scenario analysed in this study. 

The dimensionless ratio H/B is used to describe the embedment depth at which the plate anchor 

is installed. Loads are applied perpendicular to the longitudinal axis of the anchor, with the 

ultimate pullout capacity denoted 𝑄𝑢(= 𝑞𝑢𝐵). The pullout capacity in an undrained clay is 

generally expressed in terms of a dimensionless factor: 

 

𝑁𝑐 =
𝑄𝑢

𝐴𝑠𝑢
 (4)  

where A is the area of the plate and su is the undrained shear strength. In the deterministic 

analysis the clay is weightless and uniform, with su constant across the soil mass. If the anchor 

is embedded to such a depth that the failure mechanism becomes localised, the anchor can be 

described as ‘deep’. In contrast, the failure mechanism of a shallow anchor will extend to 

ground level as the anchor is pulled out of the soil. It should be noted that this distinction is 

only relevant if soil and anchor are attached. Vented anchors only reach the ultimate capacity 

once the failure mechanism reaches the surface. 
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Figure 1. Layout and notation. 

3.2 Representation of spatial variability 

The spatial variability of undrained shear strength, su, is modelled as a lognormal random 

field. The mean (𝜇) of su is 10kPa and the coefficient of variation (COV) is taken to be 0.2, 

representing a typical variability based on results reported by Lacasse and Nadim [5]. In 

addition a constant rigidity index of 𝐸 𝑠𝑢⁄  = 500 is assumed, where E is the elastic modulus. In 

statistical terms, E is therefore perfectly correlated with su and is generated from the same set 

of random variables.  

An anisotropic square exponential autocorrelation function is adopted for su, with correlation 

distance 10m and 1m in the horizontal and vertical directions respectively. The lognormal 

random field can be generated as follows: 

 
𝑠𝑢(𝑥, 𝑦) = exp(𝜇L,r + 𝜎𝐿,𝑟𝐺(𝑥, 𝑦)) (5)  

where 𝜇𝐿,𝑠𝑢
 is the mean of 𝑙𝑛(𝑠𝑢), 𝜎𝐿,𝑠𝑢

 is the standard deviation of 𝑙𝑛(𝑠𝑢), and 𝐺(𝑥, 𝑦) is a 

correlated Gaussian random field of zero mean and unit variance. The expansion optimal linear 

estimation (EOLE) method [10] is used to discretise the random field 𝐺(𝑥, 𝑦) on a rectangular 

grid, henceforth referred to as the stochastic mesh to indicate its independence from the 

deterministic model. The expansion is truncated to include M random variables, chosen such 

that at least 90% of the variance of 𝐺(𝑥, 𝑦) is captured. 

3.3 Finite element model 

The geotechnical FE software Plaxis 2D [11] is used as the deterministic model. The plate 

anchor, of width B = 2m, is modelled in plane strain and a range of embedment ratios are 

considered (H/B = 1, 2, 3, 6, and 10) in order to analyse both shallow and deep anchor behaviour.  

Figure 2 shows a typical mesh, consisting of 15-node triangular elements, for an anchor 

embedded at H/B = 6. The anchor is modelled by a stiff plate element and the analysis is 

displacement-controlled. The clay is undrained and behaves according to the Mohr Coulomb 

model with friction angle φ = 0° and cohesion c = su. In the vented condition, an interface 

element is applied along the underside of the anchor with extensions at either end of 0.25B to 

avoid stress concentrations at the anchor tips. The section of interface adjacent to the anchor 

has no tensile strength so that separation of clay and plate occurs immediately when the anchor 

is displaced in the pullout direction. An interpolation procedure is used to transfer information 

from the stochastic mesh to the FE mesh. The deterministic capacity factors (𝑁𝑐,𝑑𝑒𝑡), using the 

mean value of su in a uniform soil profile, showed an overestimation of less than 2% compared 

with those reported by Yu et al. [4]. 
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Figure 2. Typical FE mesh (H/B = 2). 

4 RESULTS AND DISCUSSION 

4.1 Performance of the LAR-SPCE method 

Figure 3 shows the SPCE prediction of anchor capacity at H/B = 6 for the regression (or 

‘training’) set and a test set of an additional 100 FE simulations not used in the regression. In 

this case, the random field is discretised using 50 standard Gaussian variables. To achieve the 

target accuracy, 1100 FE model evaluations were necessary in the attached condition, with 400 

needed for a vented anchor. In both cases, a 3rd order expansion was found to be optimal, 

meaning the terms in the retained expansion have a maximum order of 3.  

 

 

Figure 3. Retained SPCE approximation of FE model for a horizontal anchor with H/B = 6: training and test 

data for (a) attached and (b) vented anchor. 

The strong linear relationship between the output of the FE and SPCE models demonstrates 

that the SPCE is able to produce an accurate approximation of the pullout capacity. This ensures 

that valid conclusions can be drawn about the probability distribution of the plate anchor 

capacity using an SPCE in place of the expensive FE model. The target accuracy of Q2∗
= 0.99 

also provides acceptable performance for the number of simulations required; the rate of 

convergence tends to slow as the error reduces. 

The number of FE model evaluations required to construct an SPCE of target accuracy is 

given in Table 1. In general, the computational effort is related to the number of variables 

necessary to discretise the field. However, in certain cases the nature of the failure mechanism 
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can slow convergence. For example, the target value of Q2* was not achieved for the attached 

anchor at H/B = 2. A very slow convergence was observed and the number of simulations was 

limited to 5000 for practical reasons. This slow convergence rate is a result of the anchor failing 

in a variety of different modes due to the spatial variability of the clay.  

 

H/B Random variables Interface Q2* FE simulations Max. order 

1 50 Attached 0.9915 800 3 

Vented 0.9908 400 3 

2 60 Attached 0.9863 5000* 4 

Vented 0.9921 300 3 

3 60 Attached 0.9908 1200 3 

Vented 0.9910 300 3 

6 50 Attached 0.9906 1100 3 

Vented 0.9908 400 3 

10 120 Attached 0.9910 3300 3 

Vented 0.9903 800 3 

Table 1. Details of the retained SPCEs (*indicates target Q2* was not reached). 

In uniform (i.e. not spatially variable) clay, a deep mechanism forms with the shear plane 

localised around the anchor. In contrast, as shown in Figure 4, if the clay is spatially variable 

the failure mechanism can either be deep, being fully localised around the anchor, or shallow, 

involving a reverse end bearing mechanism, depending on the particular realisation of the 

random field. For this case the function Γ(𝝃) is not smooth, resulting in slow convergence of 

the SPCE. Note that 4th order terms were retained whereas in all other expansions only 3rd order 

polynomials were necessary. It is also clear that the critical embedment ratio, when the anchor 

transitions from a shallow to deep mechanism, is difficult to define exactly in spatially variable 

soil.  

 

Figure 4. Failure mechanisms for an anchor embedded at H/B = 2 for two different random field realisations. 

4.2 Statistics of the uplift capacity 

The mean and standard deviation of the anchor capacity are obtained analytically from each 

SPCE. Figure 5 shows the mean, �̂�𝑁𝑐, and standard deviation, �̂�𝑁𝑐, of the capacity factor in 

spatially variable clay across a range of embedment ratios. For comparison, the figure also 

shows the deterministic capacity factors. In both interface conditions, it can be seen that the 

mean capacity factor has a similar relationship with the embedment ratio as in the deterministic 

case and tends to be marginally (no more than 5%) lower than the equivalent deterministic 

capacity factor. 
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Figure 5. Mean, standard deviation, and deterministic capacity factors, Nc. 

The variability of the pullout capacity for the different anchor configurations can be 

compared by considering the COV, as presented in Figure 6. For the vented case, the COV 

reduces with increasing embedment ratio. Li et al. [7] show that, for buried footings, a longer 

shear plane lowers the COV of the bearing capacity due to a greater spatial averaging effect. 

The same conclusion can be drawn from the failure mechanisms of the vented anchors. When 

anchor and soil are separable, the ultimate load is reached once the shear plane reaches the 

ground surface, regardless of anchor orientation. As H/B increases, the length of the shear plane 

is necessarily longer and the COV reduces. When the anchor and soil are attached, there is a 

distinct difference between the COV of ‘shallow’ and ‘deep’ anchors. If H/B is ≥ 3, the 

embedment ratio no longer affects the failure mechanism and COV is relatively constant.  

 

 

Figure 6. Coefficient of Variation (COV) against embedment ratio, H/B. 

4.3 Probability of failure 

The probability of failure can be defined as: 

 

𝑃𝑓 = 𝑃 (𝑁𝑐 <
𝑁𝑐,𝑑𝑒𝑡

𝐹𝑆
) (6)  

where FS is a factor of safety. This represents the probability that the capacity factor in spatially 

variable clay will be less than that predicted in a conventional numerical analysis with 

deterministic soil parameters.  
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Monte Carlo realisations of the SPCE are used to compute the probability of failure. To 

ensure a COV ≤ 0.1 for a probability of failure of 10-5, which tends to be the lowest value of 𝑃𝑓 

considered in practice, the number of samples (𝑛𝑆𝑃𝐶𝐸) is 107. The estimated probability of 

failure is then: 

 

�̂�𝑓 =
1

𝑛𝑆𝑃𝐶𝐸
∑ 𝐼 (𝑁𝑐

(𝑖)
<

𝑁𝑐,𝑑𝑒𝑡

𝐹𝑆
) 

𝑛𝑆𝑃𝐶𝐸

𝑖=1

 (7)  

where I is the indicator function. 

Figure 7 shows the probability of failure across a range of embedment depths as the factor 

of safety is increased from 1 to 3. If no factor of safety is used (FS = 1), the probability of failure 

ranges from 0.53 to 0.71 and is relatively independent of the interface condition. When a factor 

of safety is applied to 𝑁𝑐,𝑑𝑒𝑡, the probability of failure can change greatly depending on the 

anchor configuration. If the anchor is vented, the probability of failure reduces as the anchor is 

embedded deeper into the clay. This is a direct result of the decreasing COV with depth 

observed for vented anchors. For the attached case, a distinction is again observed between deep 

and shallow anchors. As H/B increases, a constant probability of failure is reached as the failure 

mechanism is localised around the anchor.  

 

 

Figure 7. Probability of failure for (a) attached and (b) vented anchors when different factors of safety (FS) 

are applied to the deterministic capacity factor (𝑁𝑐,𝑑𝑒𝑡).  

The recommended practice for the design of plate anchors DNV-RP-E302 [12] suggests a 

partial safety factor of 1.4 to account for uncertainty in “su(z) as it affects Rs(z)” (where z 

indicates depth and Rs is the static resistance), as well as epistemic uncertainties resulting from, 

for example, the analytical model. The Nc values recommended by the design code correspond 

to attached anchors, and the mean of su is used as the characteristic value. The analysis presented 

here suggests that this factor may not be sufficient to account for natural spatial variability if 

the intended probability of failure is less than 10-2. However, further investigation into the effect 

of COV and the autocorrelation structure of su is needed before concluding that the current 

design method is not conservative.  
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5 CONCLUSIONS  

A study of the uplift capacity of a horizontal plate anchor in spatially variable clay has been 

conducted. An LAR-SPCE method was used to efficiently obtain the statistical moments of the 

anchor capacity and the probability of failure with respect to a conventional numerical analysis 

employing deterministic soil parameters. The probability of failure of vented anchors reduces 

with embedment depth due to a decrease in the variability of anchor capacity as shear planes 

lengthen. In the attached case, the probability of failure becomes relatively constant once the 

embedment ratio is large enough to ensure that the failure mechanism is localised around the 

anchor. The results of this study suggest that the partial factor used in current design practice 

may be not be sufficient to account for the spatial variability of undrained shear strength. 

Further research is necessary in order to better understand the effect of spatial variability on the 

ultimate capacity of plate anchors. 
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