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Abstract. Computational Fluid Dynamics is widely used for the analysis and the design of
turbomachinery blade rows. A well established method is the application of semi-unstructured
meshes, that uses a combination of structured meshes in the radial direction and unstructured
meshes in the axial as well as the tangential direction. This takes advantage of the approxi-
mately two dimensional flow field through the blade rows, whereby a fine radial discretization,
excepting the near wall region, is not necessary. Otherwise, it is possible to discretize partic-
ular regions, e.g. the leading and trailing edge regions, in the axial and tangential direction
without generating unnecessary nodes in the far field. The meshing approach is based on the
projection of a two dimensional unstructured mesh defined at a reference surface. Once, the
two dimensional mesh is generated the projection is achieved by transfinite interpolation from
the reference surface to further radial surfaces using a structured mesh. Due to the modeling
of geometrical features, especially fillets, advanced methods for the generation of structured
meshes and mesh smoothing algorithms are required.

The paper presents two different approaches for the generation of an appropriate structured
mesh. The first is based on the solution of elliptic partial differential equations. The sec-
ond approach is based on the split of the domain into fourteen appropriately arranged blocks.
Furthermore, two smoothing methods for two dimensional unstructured meshes, a constrained
Laplace smoothing and an optimization based approach, are presented. Regarding a more re-
alistic representation of the geometry, methods for the modeling of cavities, variable clearance
sizes and fillets are presented. Finally, a comparison of the smoothing techniques applied to a
rotor passage is presented and the influence of chosen geometrical features on the flow solution
is evaluated.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) is a widely used method for the analysis and the de-
sign of aircraft engines. Nowadays, the design process of an aircraft engine based nearly to
90% on CFD simulations [1]. An integral part of CFD simulations is the generation of an ap-
propriate finite volume mesh. This paper is concerned with the mesh generation for the analysis
of flows in turbomachinery. Due to the fact, that the computational resources are continuously
growing, it is possible to use meshes with a fine grid spacing in CFD simulations. Otherwise,
large models are required for specific CFD simulations. These are for instance unsteady forced
response analyses, that require the modeling of several blade rows as a full passage, and steady
state analyses of an entire high pressure compressor. Hence, it is necessary to generate meshes,
that can capture the flow features with good accuracy employing a moderate number of nodes.
Another challenge is to generate a mesh, that represents the real geometry as accurately as pos-
sible. Thereby, the modeling of specific geometrical features is required. In addition, for multi
blade row computations an accurate interpolation of the flow field at the interfaces is required.
It is common to generate a finite volume mesh only for a single blade, so that the imposition of
periodicity in circumferential direction is mandatory.

Historically, mainly structured hexahedral meshes are used for the discretization of blade
passages, since the generation of such meshes is comparatively easy. Structured meshes are
obtained either by solving a system of elliptic partial differential equations [2, 3, 4, 5, 6] or by
using algebraic approaches [6, 7, 8]. A major disadvantage of such meshes is the generation
of unnecessary nodes in the far field, because of required local fine discretization, e.g. at the
leading edge and trailing edge of the blade. Another approach is the application of unstructured
triangular meshes, primarily used for two dimensional CFD simulations. Such meshes capture
flow features of interest, like wake and shock effects, via mesh refinement, without generating
unnecessary nodes in the far field. In the three dimensional case the fine resolution at leading
edge and trailing edge leads to a large number of nodes in the radial direction. Considering the
fact that the flow field in the blade passage is approximately two dimensional a fine resolution
in the radial direction is not necessary. Taking into account these facts an alternative and well
established method is the application of semi-unstructured meshes, e.g. proposed by Sbardella
et al. [9] as well as Kim and Cizmas [10]. This method uses a combination of structured meshes
in the radial direction and unstructured meshes in the axial as well as the tangential direction.
Furthermore, it is possible to start with a structured O-grid around the blade surface to resolve
the boundary layer. Such meshes compose of prismatic and tetrahedral cells and are widely
used for viscous CFD simulations, because of a good control of the cell size in the viscous re-
gion [11]. They can capture the flow features with good accuracy applying a moderate number
of nodes. Another advantage is that only two dimensional meshing algorithms are required.
An overview of this strategy is presented in section 2. One part of the generation of semi-
unstructured meshes is the projection of a two dimensional unstructured mesh, defined at a two
dimensional reference surface, to further surfaces using a two dimensional structured mesh,
also denoted as background mesh [10, 12]. In section 3 two approaches for the generation of
an appropriate background mesh are presented. The first approach is based on the solution of a
system of elliptic partial differential equations. The second approach is based on the split of the
domain into fourteen blocks.

In the last years blade geometries became more three dimensional. Thereby, the projected
unstructured mesh can be heavily skewed. The modeling of fillets amplifies this effect because
the domain of the unstructured mesh constricts near the fillet. This leads to the requirement of
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suitable methods to improve the quality of the two dimensional unstructured triangular mesh.
In this paper a combination of edge swapping and smoothing is used. In section 4 two smooth-
ing algorithms, a constrained Laplace smoothing and an optimization-based smoothing, are
presented. Section 5 presents the modeling of some specific geometrical features, those are
cavities, fillets and variable clearance sizes.

2 SEMI-UNSTRUCTURED GRID GENERATION

The geometry of a turbomachinery blade is usually defined as a number of radial sections,
defined in cylindrical coordinates by (r, ϑ, x). The radial distribution of these sections must not
be confused with the radial distribution of the three dimensional finite volume mesh. Addition-
ally, the position of the inlet, outlet and inner as well as outer casing is usually represented by
streamlines, defined in the (x, r) plane. At the beginning, the radial distribution of the mesh
has to be defined. E.g. in case of viscous flow simulations a fine radial discretization near the
boundaries is necessary. In this paper the definition of the axisymmetric surfaces, that define
the radial distribution of the three dimensional mesh, is variable along the machine axis. These
fact allows the modeling of clearances of a varying size. Figure 1 shows the radial distribution
of a variable stator vane with a constant (a) and a variable clearance size (b).

x

r

axisymmetric surface
blade

(a) Constant clearance size

x

r

axisymmetric surface
blade

(b) Variable clearance size

Figure 1: Axisymmetric surfaces, those define the radial distribution of the three dimensional
mesh

To apply the implemented mapping procedure the surfaces are defined by two dimensional
coordinates (u, v). Applying the two dimensional discrete geometry information the blade sur-
face and the outer boundaries can be defined by linear or cubic splines, see figure 2. The outer
boundaries are the inlet, outlet and periodic boundaries. An O-grid is generated around the
blade at each spanwise surface. Afterwards an unstructured triangular mesh, that fills the area
between the outer boundaries and the boundary of the O-grid, is generated at a chosen reference
surface. In this paper the unstructured triangular mesh is generated by applying an advancing
front algorithm, that is a widely used method for the generation of unstructured meshes for
CFD simulations [9, 13, 14, 15, 16, 17]. The O-grid and the unstructured mesh at the reference
surface of a rotor passage are shown in figure 3,

An essential part of the meshing strategy is the projection of the generated unstructured
mesh to all spanwise surfaces. In this paper the Transfinite Interpolation (TFI), explained in
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Figure 2: Blade surface and
outer boundaries defined in
two dimensional coordinates
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(a) Entire domain (b) Detail of the leading edge

Figure 3: Initial two dimensional mesh of a rotor at the
reference surface

section 3, in combination with a background mesh is used. The starting point of the mapping
procedure is the generation of appropriate background meshes with identical topology at all
spanwise surfaces. Each quadrilateral of the background mesh (figures 6, 7) is represented as
an uniform rectangular domain with curvilinear coordinates (ξ, η) applying TFI. In the next step
each node i of the unstructured mesh must be located on a quadrilateral j of the corresponding
background mesh. Afterwards the coordinates of the node are represented in local curvilinear
coordinates (ξ, η) of the corresponding quadrilateral. These coordinates are determined by a
Newton-Raphson method, where this process is referred to as inverse mapping. Now the two
dimensional coordinates (u, v) of each point i of the unstructured mesh can be obtained at all
spanwise surfaces using TFI which is called direct mapping, see figure 4. As a last step the
three dimensional grid is obtained by connecting the corresponding points of adjacent spanwise
surfaces.

Quadrilateral j at

v

u

Uniform rectangular domain
η

ξ

Quadrilateral j at

v

u

the reference surface

Inverse
Mapping

Direct
Mapping

i
i

i

another radial surface

Figure 4: Mapping procedure via Transfinite Interpolation

3 GENERATION OF A BACKGROUND MESH

3.1 Transfinite Interpolation

TFI is a widely used algebraic approach to generate structured meshes and was first described
by Gordon [18]. TFI has the advantage to generate grids, these ensure conformity to the bound-
aries. Thompson et al. [6] give a detailed overview of different interpolation methods used by
TFI. In this paper the TFI is not used for mesh generation but entirely for the mapping of quadri-
laterals from the physical domain with cartesian coordinates (x, y) into the logical domain with
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curvilinear coordinates (ξ, η), as shown in figure 5. The expression for a TFI applying linear
interpolation functions, these are used in this paper, is:

x(ξ, η) =
(
1− η

)
xs(ξ) + ηxn(ξ) +

(
1− ξ

)
xw(η) + ξxe(η)

− ξ
[(
1− η

)
xs(1) + ηxn(1)

]
−
(
1− ξ

)[(
1− η

)
xs(0) + ηxn(0)

]
.

(1)

Here xs(ξ), xn(ξ), xw(η) and xe(η) are the boundary curves of the quadrilateral in cartesian
coordinates, defined by linear or cubic splines.
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η

0
0
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Figure 5: Transfinite Interpolation

3.2 System of elliptic partial differential equations

Solving a system of elliptic partial differential equations is a widely used method to generate
structured grids. To obtain an accurate solution, the physical domain is transformed into a
uniform rectangular domain by employing a boundary-conforming coordinate transformation.
A detailed description is given by Thompson, Thames and Mastin [2, 3, 19]. Consider a system
of elliptic partial differential equations in the physical domain (x, y) formulated as a system of
Poisson equations:

ξxx + ξyy = P (ξ, η)

ηxx + ηyy = Q(ξ, η) .
(2)

Thereby the curvilinear coordinates (ξ, η) are the solution of the system in the physical domain.
The non-homogeneous terms P andQ are the control functions. It is desired to solve the system
in the uniform rectangular domain. To formulate the equations (2) into the transformed domain
the dependent and independent variables must be interchanged [3]. The equations (2) become

αxξξ − 2βxξη + γxηη = −J2(αPxξ + γQxη)

αyξξ − 2βyξη + γyηη = −J2(αPyξ + γQyη)
(3)

where

α = x2η + y2η, β = xξxη + yξyη

γ = x2ξ + y2ξ , J = xξyη − xηyξ .
(4)

The control functions P and Q affect the intersecting angles at the boundaries and the grid
spacing. The choice of the control functions has a large influence of the solution on the system.
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Some forms of the control functions are proposed by Thompson et al. [3], Thomas and Middle-
coff [20] as well as Hsu and Lee [21].

The mapping procedure of section 2 required the generation of a structured mesh in a two
dimensional domain, that is located between the outer boundaries of the blade passage and the
boundary of the O-grid. Firstly, the surface is divided into four parts, marked by the red lines in
figure 6(a). Within these four parts a structured mesh is generated by solving the system of ellip-
tic partial differential equations, that contains suitable control functions. To obtain the solution
of the system a Gauss-Seidel method, especially the method of Successive Over Relaxation, is
used. A resulting mesh for a rotor domain is shown in figure 6(b).

I

II

III

IV

(a) Schematic depiction (b) Rotor domain

Figure 6: Background meshes, generated via solution of elliptic partial differential equations

3.3 Fourteen appropriate arranged blocks

Another way to generate a background mesh is an assembly of fourteen blocks inside the
domain. The boundaries of the blocks are defined by linear or cubic splines. Figure 7(a) shows
a schematic depiction of the background mesh and figure 7(b) an example for a rotor domain.
This kind of background mesh has benefits concerning the computational time for its generation
since no system of partial differential equations has to be solved. Furthermore, the inverse
mapping procedure requires less time since fewer blocks have to be checked, during the search
of the block that contains the regarded node of the unstructured mesh.
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(a) Schematic depiction (b) Rotor domain

Figure 7: Background meshes consisting of fourteen blocks
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4 Mesh quality

The mesh quality affects the efficiency and accuracy of CFD simulations. There are many
investigations regarding this topic in the literature. Exemplary Katz and Sankaran [22] studied
the mesh quality effects on the accuracy of CFD simulations on unstructured meshes by perturb-
ing them randomly. The quality can be improved through several techniques, including point
insertion/deletion, edge swapping and mesh smoothing. Canann et al. [23] give a detailed lit-
erature review about mesh improvement techniques, especially mesh smoothing. Batdorf et al.
[24] use edge swapping as well as mesh smoothing to improve unstructured triangular meshes
and performed CFD simulations, that quantify the effect on the solution time and convergence
rate. Especially, mesh smoothing algorithms have been shown to be effective in improving the
mesh quality. The most common and simplest smoothing technique is the Laplace smoothing.
Another common technique is optimization-based smoothing, while it is more computationally
expensive than Laplace Smoothing. But it gives better results, especially near concave regions
[23]. Freitag [25] as well as Canann et al. [23] studied approaches to combine Laplace and
optimization-based smoothing.

Quality measures, also denoted as distortion metrics, are used to determine the quality of a
mesh. Stimpson et al give a collection of metrics for evaluating triangles, quadrilaterals, tetrahe-
dra and hexahedra [26]. Amenta et al. [27] represent quality measures especially for triangles.
Following Canann et al. [23] the quality measure q for a triangular element can be formulated
as follows

q = ε
4
√
3A

l21 + l22 + l23
with

{
ε = 1, regular element
ε = −1, inverse element

(5)

whereA is the area of the triangle and l1, l2 and l3 are the edge lengths. To improve the quality of
the unstructured two dimensional mesh a combination of edge swapping and several smoothing
techniques is applied. The smoothing techniques are a constrained Laplace smoothing and an
optimization-based smoothing.

4.1 Constrained Laplace smoothing
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Figure 8: Submesh consisting of six triangular elements

The standard Laplace smoothing is an iterative process, where each node is placed at the
average of the adjacent nodes. The left hand side of figure 8 shows a submesh consisting of six
triangular elements, where p

i
is the position vector of the regarded node and q

j
are the position

vectors of the m adjacent nodes. The new position vector p∗
i

of the regarded node results to

p∗
i
=

1

m

m∑
j=1

q
j

. (6)
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It is recommendable to introduce a relaxation factor ω to increase the stability of the smoothing
process. The factor should lie within the range 0.0 < ω < 1.0. The adapted formula to
determine p∗

i
reads

p∗
i
= p

i
+ ω · ri (7)

where

ri =
1

m

m∑
j=1

(q
j
− p

i
) . (8)

This method usually works quite well for meshes in convex regions, but can results in distorted
or inverted elements near concave boundaries [23]. In the flow passage the leading edge and
trailing edge of the blade are such concave boundaries. Hence, the constrained Laplace smooth-
ing, that is a variant of the Laplace smoothing, is used. This algorithm relocates the regarded
node only if the submesh is improved in terms of a chosen quality measure. The mesh quality
of the submesh is defined as the minimum quality qmin of the m triangular elements calculated
by equation (5):

qmin = min
j∈{1,...,m}

(qj) (9)

Now the algorithm relocates the regarded node only if q∗min ≥ qmin, where q∗min is the minimum
quality obtained by equation 9 if the node would be relocated. To increase the flexibility of the
algorithm it is useful to introduce inner iterations ni within that the relaxation factor ω is halved
if q∗min < qmin. The resulting algorithm is presented for an initial ω of 1.0 in algorithm 1. In
some cases, especially near concave boundaries, the constrained Laplace smoothing is unable
to improve heavily skewed elements [23]. Hence, it is necessary to use alternative techniques,
e.g. optimization-based smoothing to repair these elements.

Algorithm 1 Constrained Laplace smoothing
for i = 1, n do
ω = 1.0
qmin = min

j∈{1,...,m}
(qj)

ri =
1
m

∑m
j=1(qj − pi)

for k = 1, ni do
p∗
i
= p

i
+ ω · ri

q∗min = min
j∈{1,...,m}

(q∗j )

if q∗min < qmin then
ω = ω/2

else
exit

end if
end for

end for
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4.2 Optimization-based smoothing

Optimization-based smoothing directly improves the mesh quality, whereby heavily skewed
and inverted elements can be improved. Canann et al. [23] give a detailed literature review about
existing optimization-based smoothing techniques and distortion metrics. There are global and
local optimization techniques, whereby recursive local optimization is the more feasible option
[23]. In this paper a local optimization is presented. The goal of the optimization is to determine
the new position vector p∗

i
of the regarded node inside a submesh that maximizes the composite

function fi(pi)

min(−fi(pi)) , fi(pi) = σf1,i(pi) + (1− σ)f2,i(pi) (10)

where

f1,i(pi) =
1

m

m∑
j=1

qj , f2,i(pi) = min{q1, . . . , qm} . (11)

Here σ is a relaxation factor and should lie within the range 0.0 < σ < 1.0. The function
f1,i conforms to the mean value of the qualities qj and f2,i is the minimum quality qj of all
concerned triangles. For the investigated turbomachinery meshes σ = 0.0 has exposed as the
most feasible choice. To obtain min(−fi(pi)) a line search strategy in gradient direction is
used.

4.3 Application

The outlined smoothing algorithms are applied to improve the mesh of a rotor blade of a high
pressure compressor consisting of rather 473 thousand nodes. Figure 9 shows the percentage of
triangles, that have a quality measure inside a specific interval, in the non-smoothed mesh and
after application of the several smoothing algorithms. In the non-smoothed case it is obvious
that some triangles have a really small quality. The smallest quality measure qmin is even
negative, which signifies the presence of inverse elements. The application of the smoothing
algorithms considerably improves the mesh quality. The standard Laplace smoothing as well as
the constrained Laplace smoothing lead to a significant reduction of triangles with really small
quality. The optimization-based smoothing leads to a minimum quality measure of qmin = 0.59,
while the number of equilateral triangles decreases. Figure 10 shows the distribution of the
inner angle φ of the triangles within the mesh. The standard Laplace smoothing as well as the
constrained Laplace smoothing lead to a reduction of small and large angles. The optimization-
based smoothing leads similar to the results of Freitag [25] to more angles in the regions of
45◦ and 90◦, while the number of angels near 60◦ decreases. Table 1 gives an overview of the
minimum quality measures q and the minimum as well as the maximum angles φ. Additionally,
the computational time required for the smoothing process including edge swapping is shown.

qmin[−] φmin[
◦] φmax[

◦] time [s]

no smoothing -0.02 0.04 179.8 -
Laplace smoothing 0.23 8.6 152.6 4.7
Constr. Laplace smoothing 0.34 12.9 138.3 12.9
Opt.-based smoothing 0.59 23.4 114.5 420.0

Table 1: Results of mesh quality improvement
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Figure 9: Distribution of quality measures q in a non-smoothed rotor passage and after applica-
tion of several smoothing techniques
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Figure 10: Distribution of angle φ in a non-smoothed rotor passage and after application of
several smoothing techniques
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5 GEOMETRICAL FEATURES

5.1 Modeling of cavities

Traditionally, the flow in turbomachinery blade rows has been simulated using a simplified
computational domain consisting of just the blade surface and the main annulus. A more realis-
tic representation of the geometry requires the modeling of cavities and bleed volumes. Burgos
et al. [28] presented a method to generate semi-unstructured meshes, especially tailored for
the meshing of turbomachinery blade passages and their associated cavities. In this work an
analogous method is presented. The geometry of a cavity exhibits a large variation inside the
(x, r) plane, while the variation in circumferential direction is usually negligible. Hence, the
cavities are meshed in the (x, r) plane using an unstructured triangular mesh, that is extruded in
circumferential direction. To connect the three dimensional mesh of the blade passage and the
three dimensional mesh of the cavity it is necessary to ensure conformal grids at the interfaces.
Since the interface mesh of the cavity has a structured topology, an adaption of the mesh of the
blade passage is required. Therefore, a structured mesh at the inlet or outlet is attached. Figure
11(a) shows the structured mesh at the outlet of a stator domain. The figures 11(b,c) show the
merged three dimensional mesh of a stator passage including a modeled bleed volume.

(a) Interface mesh (b) Overall mesh (c) Bleed volume

Figure 11: Modeling of a bleed volume

5.2 Modeling of fillets

The influence of the fillet between the blade and casing on flows in turbomachinery is widely
investigated [29, 30, 31, 32, 33]. Zess and Thole [29] performed experimental measurements
and CFD simulations, that verified the effectiveness of the leading edge fillet on a gas turbine
vane by eliminating the horseshoe vortex. Pieringer and Sanz [30] investigated numerically the
influence of the fillet between the blade and casing of a transonic turbine vane on the aerody-
namic performance. The results show that considering the fillet in the simulation leads to a
significant reduction of mass flow and a change of the specific angular momentum, depending
on the flow situation. Furthermore, the efficiency increases when the fillet leads to an attached
flow at the fillet and vice versa, decreases when the fillet additionally blocks the flow. Kügeler
et al. [31] compared the results of CFD simulations of a 15-stage compressor with measurement
data. The study shows differences in the numerical simulation for a geometry model with and
without fillets. The fillets decrease flow separations and lead to a different flow behaviour, es-
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pecially at the endwalls. This results in a different stage loading, while the overall performance
characteristics are similar.

In this work three methods to model blade fillets are presented. Within the first and the
second one the topology of the semi-unstructured mesh remains. The blade surface is adapted,
while the O-grid is generated as usual. Figure 12(a) shows a plane of the O-grid in normal di-
rection of the blade surface, when no fillet is modeled. Figure 12(b) shows the case, if the fillet
is reproduced completely (method 1). This obviously leads to heavily skewed cells near the
casing. The heavily skewed cells can be prevented, when the fillet isn’t reproduced completely
(figure 12(c), method 2). Another method (method 3) to model blade fillets is the application
of an alternative mesh topology within the O-grid near the casing. Here the two dimensional
structured mesh, that is shown in figure 12(d), is generated by solving a system of elliptic partial
differential equations. Figure 13(a) shows the surface meshes of the blades as well as the inner
casing near the leading edge of a rotor blade without a fillet. Figure 13(b-d) show the surface
meshes, whereas fillets are modeled applying the outlined methods.

(a) No fillet (b) Method 1 (c) Method 2 (d) Method 3

Figure 12: Implemented methods for fillet modeling

(a) No fillet (b) Method 1 (c) Method 2 (d) Method 3

Figure 13: Mesh at the leading edge of a rotor applying different methods for fillet modeling

Steady state CFD simulations were performed for a rotor passage, using the outlined methods
to model a fillet. Figure 14 shows the residuals of the simulations with and without modeled
fillet. The model including a fillet, that is modeled by the first method shows a relatively poor
convergence rate because of heavily skewed cells near the trailing edge. That fact accords with
the investigations of Batdorf et al. [24], that the mesh quality effects the convergence rate.
Additionally the attained residual has a relatively poor level. In the other cases the simulations
converge to an equal level, while the convergence rates are different.
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Figure 14: Residuals of steady state simulations applying different methods for fillet generation

5.3 Modeling of variable clearance sizes

Due to a varying stagger angle of variable stator vanes over the speed range of a high pressure
compressor, the clearances between the blade and the casing vary too. At the design speed
the clearance is approximately constant along the chord length of the blade. If the vanes are
closed at part speed the clearances, especially between blade and inner casing, increase from
penny to trailing edge. The chosen definition of the axisymmetric surfaces (section 2) allows the
modeling of increasing clearances. Figure 15 shows the mesh of a variable stator vane including
a constant clearance size between blade and inner casing (red mesh) as well as another one
including a varying clearance size (blue mesh).

Steady state CFD simulations were performed for both cases. Due to the pressure difference
from the pressure side to the suction side of the blade, the fluid propagates from the pressure
side to the suction side through the clearance. Figure 16 shows, that in the case with the constant
clearance size, the vortex generated at the suction side is significantly larger than in the other
case. This leads to a different flow situation associated with a different pressure field at the blade
surface, caused by the several clearance sizes. Consequently, the solution of unsteady CDF
simulations, e.g. flutter analyses, can differ noticeable, depending on the modeled geometry.

Figure 15: Different modeled clearance sizes of a variable stator vane (blue grid: varying clear-
ance size, red grid: constant clearance size)
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(a) Variable clearance size (b) Constant clearance size

Figure 16: Entropy and streamlines near the trailing edge

6 CONCLUSIONS

In this work a library for turbomachinery meshing was implemented. It enables the genera-
tion of semi-unstructured meshes for turbomachinery blade passages, including cavities, fillets
and varying clearance sizes. The focus lies on the generation of a mesh, that represents the real
geometry as accurately as possible, while the mesh quality is preserved.

Two approaches for the generation of background meshes were presented. The first approach
divides the blade passage into four parts. Inside of these parts a structured grid is generated by
solving a system of elliptic partial differential equations. The second approach is based on the
split of the domain into fourteen blocks. It has benefits concerning computational time towards
the first one, because of a faster generation procedure as well as a faster performance of the
inverse mapping.

Another key aspect in mesh generation is the improvement of the mesh quality applying suit-
able methods. Since especially mesh smoothing algorithms have been shown to be effective in
improving the mesh quality two smoothing algorithms, a constrained Laplace smoothing and an
optimization-based smoothing, were presented. Both algorithms have benefits concerning the
achieved mesh quality compared to the standard Laplace smoothing, while the computational
time is longer. For the investigated turbomachinery meshes the constrained Laplace smoothing
has exposed as the most feasible choice, because of a suitable combination of mesh quality and
computational time.

Several methods for the modeling of fillets between blade and the casing were presented.
The methods provide meshes with different qualities, that results into different convergence
rates and residuals. Furthermore, the axisymmetric surfaces are dependent on the axial po-
sition, that enables the modeling of clearances with a variable size. CFD simulations for a
variable stator vane with a constant clearance size between blade and inner casing as well as
with a variable clearance size were performed. The results show a different flow behaviour
near the clearance. This emphasizes the requirement of an accurate representation of the real
geometry for CFD simulations of turbomachinery flows.
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NOMENCLATURE

Symbols
A Area of triangular element
f Composite function
i, j, k Indices
J Jacobian
l1, l2, l3 Edge lengths of triangular element
m Number of adjacent nodes/elements
n Number of free nodes within the unstructured mesh
ni Number of inner iterations (constrained Laplace smoothing)
P,Q Control functions
q Quality measure
(u, v) Local coordinates
(x, y) Cartesian coordinates (2D)
(r, ϑ, x) Cylindrical coordinates
α, β, γ Coefficients (system of elliptic partial equations)
ε sign (1,−1)
(ξ, η) Curvilinear coordinates
σ Relaxation factor (optimization-based smoothing)
φ Inner angle of triangular element
ω Relaxation factor (constrained Laplace smoothing)
p Position vector of the regarded node
q Position vector of the adjacent node
r Displacement vector of the regarded node
x Vector of cartesian coordinates (x, y)
xe, xn, xs, xw Boundary curves in cartesian coordinates (x, y)

Subscripts/Superscripts
∗ Value after smoothing
max Maximum value
min Minimum value

REFERENCES

[1] F. Montomoli, M. Carnevale, A. D’Ammaro, M. Massini, Uncertainty Quantification in
Computational Fluid Dynamics and Aircraft Engines. Springer, Cham Heidelberg New
York Dordrecht London, 2015.

[2] J.F. Thompson, F.C. Thames, C.W. Mastin, Boundary-Fitted Curvilinear Coordinate Sys-
tems for Solution of Partial Differential Equations on Fields Containing Any Number of
Arbitrary Two-Dimensional Bodies. NASA-CR-2729, 1977

[3] J.F. Thompson, F.C. Thames, C.W. Mastin, TOMCAT—A Code for Numerical Generation
of Boundary-Fitted Curvilinear Coordinate Systems on Fields Containing Any Number of
Arbitrary Two-Dimensional Bodies. Journal of Computational Physics, 24(3), 274-302,
Juli 1977

16



Marco Stelldinger, Thomas Giersch, Felix Figaschewsky, Arnold Kühhorn
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