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Abstract. This paper introduces a new implicit function based method for topology optimiza-
tion that can: obtain solutions with smooth boundaries, be solved using standard mathemati-
cal programming methods and reduce the number of design variables. Using implicit 
functions for topology optimization is attractive because the solutions have clearly defined, 
smooth boundaries. Most current methods use the zero level-set of the implicit function to de-
fine the boundary. The implicit function is then modified during optimization to move the 
boundary location and connectivity. The new approach proposed in this paper abandons the 
zero level-set idea and instead uses a fixed signed-distance implicit function. The definition of 
the boundary from the fixed implicit function is then modified during optimization. This is 
achieved by using a cutting surface and defining the boundary as the intersection of the cut-
ting surface and signed-distance function. The cutting surface is parameterized and the pa-
rameters become the design variables during optimization. Thus, the optimization problem 
can be solved using mathematical programming and the number of parameters used to define 
the cutting surface is less than the number of elements in the analysis mesh. The new method 
is demonstrated using minimization of compliance, minimization of volume and complaint 
mechanism problems. The results show that the method can obtain good solutions to well-
known problems with smooth, clearly defined boundaries and that this can be achieved using 
significantly fewer design variables compared with element-based methods. 
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1 INTRODUCTION 
The goal of structural topology optimization is to simultaneously optimize the size, shape 

and layout (or topology) of a structure. One benefit of this approach, compared with size or 
shape optimization, is that more efficient designs can be obtained because the optimizer is not 
constrained by a pre-determined layout. 

Many topology optimization methods have emerged over the past 30 years, which have 
been successfully applied to many applications [1, 2]. There are two main categories of 
method: those using element-wise design variables, such as the Solid Isotropic Material with 
Penalization method [3] and Evolutionary Structural Optimization [4], and those using the 
zero-level set of an implicit functions to represent the boundary [5]. 

Topology optimization using an implicit function has several advantages over element-
based methods, such as solutions with smooth boundaries and avoiding some numerical arti-
facts, such as checkerboard patterns [5]. Several methods have been developed to exploit 
these desirable qualities for topology optimization. Some methods use shape derivatives to 
move the implicit boundary by solving a PDE, such as the conventional level-set and phase-
field methods [6, 7]. These approaches often converge slowly, and can require special tech-
niques for solving constrained optimization problems [8]. An alternative approach is to pa-
rameterize the implicit function such that the problem can be solved using mathematical 
programming. This is attractive because advanced algorithms for efficiently solving con-
strained optimization problems can be employed. Some existing implicit function parameter-
ization methods include, radial basis functions [9], geometric shapes [10], Fourier series [11] 
and finite element shape functions [12]. Also, projection methods offer similar features [13], 
as the solutions can have smooth boundaries and the problem can be solved using mathemati-
cal programming. 

Another potential benefit of using parameterized implicit functions for topology optimiza-
tion is that the number of design variables may be reduced, compared with methods using 
element-wise deign variables. This is because the design variables are not tied to the finite 
element discretization used for structural analysis. Reducing the number of variables reduces 
the problem size, which may result in faster convergence. Furthermore, as the number of de-
sign variables decreases optimizers that use full Hessians to speed up convergence, such as 
IPOPT, become more viable [14]. These advantages are particularly useful for large 3D prob-
lems, where a typical element-based method can use 106 (or more) design variables [15]. 

In this paper a new idea for using implicit functions for topology optimization is explored. 
The idea combines a signed-distance implicit function with a cutting surface. The cutting sur-
face is parameterized and the parameters then become the design variables. The new method 
is introduced in Section 2, with numerical implementation issues discussed in Section 3, fol-
lowed by examples in Section 4 and then conclusions. 

2 CUTTING SURFACE PARAMETERIZATION 
First, an initial design is chosen and mapped onto a design domain using an implicit 

signed-distance function, where the boundary is the zero level-set and a positive value indi-
cates a point inside the structure, Figure 1. The structure is then defined by the scalar value of 
an implicit function:  
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where φ (x) is the implicit function, x is a point in the design domain (ΩD), Ω and Γ are the 
structural domain and boundary, respectively. 

 

 

Figure1. a) Original structure, b) Contours of the signed distance function. 

Another way to interpret this representation of the structure is that the boundary is the 
zero-level set of a higher dimensional implicit function. Therefore, we can say that the bound-
ary is the intersection of a plane (defined by all points where φ = 0) and the implicit function 
surface in the higher dimension. This is shown in Figure 2a for the 2D structure in Figure 1. 
To change the position of the structural boundary we can fix the position of the intersecting 
plane and change the implicit function, which is approach in most level-set topology optimi-
zation methods [5]. Alternatively, we could change the position of the intersecting plane. This 
second approach is demonstrated in Figure 2b, where the intersecting plane has been moved, 
resulting in the structural boundary moving position, as shown in Figure 2c. 

 

 

Figure 2. a) Implicit function surface with zero level-set contour, b) new position of the inter-
secting plane, resulting in a change of the structural boundary, c) comparison of structure 

boundaries: zero level-set (black) and new position of intersecting plane (blue). 
The aim of this paper is to create a topology optimization method that exploits the moving 

intersecting plane mechanism for changing the position and connectivity of the structural 
boundary. The position of a plane in 3D can be described by 3 variables and we could proceed 
to develop an optimization method for 2D structures that uses just 3 variables. However, the 
design space would be very limited and thus this approach is not practical. 

To provide more design freedom, the intersecting plane is replaced by a cutting surface 
that is defined in the higher dimension. Therefore, the method introduced in this paper uses 
two scalar valued functions: the implicit signed-distance function of the initial structure, α (x), 



Peter D. Dunning 

and the cutting surface, β (x). The boundary of the structure is then defined by the set of 
points where the value of the signed-distance function equals the value of the cutting surface. 
Alternatively, the structural boundary is defined as the zero level-set of the implicit scalar-
valued function that is the sum of the signed-distance and cutting surface functions. Thus, the 
definition of φ (x) in Eq. (1) can be written as: 

 

€ 

φ x( ) = α x( ) + β x( )  (2) 

The definition of the cutting surface is parameterized and the parameters become the de-
sign variables during optimization. There are several possible methods to parameterize the 
cutting surface, such as radial basis functions, polynomials or spline functions. In this paper, 
the cutting surface is parameterized using finite element shape functions, which is detailed in 
the next section. 

During optimization, the signed-distance function remains fixed and the structure boundary 
changes position (and possibly connectivity) as the parameters of the cutting surface change. 
However, the design space is then limited by the current signed-distance function. Therefore, 
once an optimal cutting surface has been found for the current signed-distance function, a new 
signed-distance function is generated from the boundary of the current structure. The optimal 
cutting surface for the new signed-distance function is then found. This leads to an optimiza-
tion method with an inner and outer loop. The aim of inner loop is to find the optimal cutting 
surface for the current signed-distance function. The outer loop then generates a new signed-
distance function from the new structural boundary (as defined by the old signed-distance 
function and optimal cutting surface). At the start of the inner loop, the cutting surface is ini-
tialized as: β (x) = 0 (identical to the zero level-set), so that the structure boundary is the same 
as the optimum found by the previous inner loop (or initial structure). 

In this paper, the inner loop optimization problem is solved by efficient gradient-based 
mathematical programming methods. Therefore, at least the first order derivatives of the ob-
jective and constraint functions need to be computed. It is usually most efficient to use ana-
lytical derivatives. Thus, an expression for the derivatives in terms of the cutting surface 
parameters is required. Structural quantities of interest can often be stated as integrals of a 
functional over the design domain, for example, compliance:  

 

€ 

C u,φ α,β b( )( )( ) = c u,x( )⋅ H φ x,α,β b( )( )( )dxΩD
∫  (3) 

where C(u, φ) is the total compliance of the structure, u is the displacement vector, c(u, x) is 
the dot product of the stress and strain tensors at point x, b is a vector of the cutting surface 
parameters (the design variables) and H(φ) is the Heaviside function:  
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H φ( ) =
1 φ ≥ 0
0 φ < 0
⎧ 
⎨ 
⎩ 

 (4) 

To compute the integral in Eq. (3) numerically the design domain is usually discretized using 
finite elements:  

 

€ 

C u,φ α,β b( )( )( ) = c ue,g( )
g=1

M e

∑
e=1

N

∑ ⋅ H φ αe,g,βe,g b( )( )( )⋅ we,g  (5) 

where N is the total number of elements, Me is the number of integration points for element e 
and we,g is an integration point weight. Taking the derivative of Eq. (5) with respect to design 
variable bi , gives:  
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Therefore, the derivative of the compliance function (and many functions of interest in struc-
tural design) requires the derivative of the Heaviside function with respect to the implicit 
function, which is the Dirac delta function:  

 

€ 

∂H φ( )
∂φ

= δ φ( ) =
1 φ = 0
0 else
⎧ 
⎨ 
⎩ 

 (7) 

Therefore, the derivative in Eq. (6) is discontinuous and only non-zero at the boundary of 
the structure (where φ = 0). Thus, only integration points that lie exactly on the boundary will 
contribute to the derivative. The discontinuous nature of the derivatives using the exact 
Heaviside approach, Eq. (7), makes it difficult for gradient-based optimizers to find a solution. 
To avoid this problem, the Heaviside function can be approximated with a smooth function 
and this is the approach used in this paper. The choice of smoothed Heaviside function and 
inner loop optimization are discussed in Section 3. 

3 NUMERICAL IMPLEMENTATION 

3.1 Cutting surface parameterization 
The proposed method uses two meshes that cover the design domain: one to discretize the 

cutting surface (cutting surface mesh) and one to perform the finite element analysis (analysis 
mesh), as shown in Figure 3. 

 

 

Figure 3. a) Analysis mesh using 200 Q4 elements, b) Cutting surface mesh using Q9 ele-
ments and mesh ratio 5 (45 design variables), c) cutting surface mesh with mesh ratio 10 (15 

design variables). 

The value of β (x) is defined at nodes in the cutting surface mesh and interpolated using poly-
nomial shape functions. The nodal values of β (x) are then the design variables b. The implicit 
function, φ , and signed-distance function, α , are discretized on the analysis mesh. Values of 
φ  at analysis element integration points are obtained by interpolating φ using the analysis 
element shape functions. Equation (2) can be written in terms of the discretized variables:  
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€ 

φ = α +A⋅ b (8) 

where φ  and α  are vectors of the discretized implicit and signed-distance functions, respec-
tively, and A is a coefficient matrix that maps the cutting surface values to the nodes of the 
analysis mesh. This matrix remains constant during optimization and is only computed once.  

Typically, the analysis and cutting surface meshes are different and there are advantages to 
decoupling the analysis discretization and design parameterization, such as reducing the num-
ber of design variables [16]. If the same mesh is used for both analysis and cutting surface, 
then A is the identity matrix and the method resembles one using nodal design variables. To 
reduce the number of design variables, the cutting surface mesh uses fewer elements than the 
analysis mesh. To aid future discussion, the ratio of analysis elements to cutting surface ele-
ments in one direction is called the “mesh ratio.” 

In this paper, 4 node bilinear elements (Q4) are used to discretize the analysis mesh and 
second order polynomial elements with 9 terms (Q9) are used to discretize the cutting surface, 
Figure 3. Thus, in this case, a mesh ratio of 2 results in A becoming the identity matrix. 

Finally, the signed-distance function is computed before the start of each inner loop using 
the fast marching method developed by Adalsteinsson and Sethian [17]. 

3.2 Smoothed Heaviside function 

In this paper a polynomial function is used to approximate the Heaviside function [026]:  
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where Δ is the smoothing length of the approximation and ρmin is a parameter that defines the 
stiffness of the void region, in a similar way to the minimum density value in an element-
based topology optimization method. 

One of the benefits of using an implicit function for topology optimization, compared with 
element-based methods, is that the solution has smooth, well-defined boundaries. However, 
this is partially lost when using a smoothed Heaviside function, as the boundary becomes ef-
fectively blurred over the smoothing length [5]. To counter this, two strategies are proposed. 
Firstly a small smoothing length is used throughout the optimization, ideally smaller than the 
element edge length in the analysis mesh. However, this strategy may cause convergence 
problems with some examples, especially those that have a small volume ratio. Thus, a sec-
ond strategy is proposed where the optimization starts with a large smoothing length that is 
then reduced each time the outer loop convergences. The optimization continues until a con-
verged solution using a lower limit of the smoothing length is obtained. This strategy is simi-
lar to continuation techniques used in density-based element methods to reduce the number of 
grey elements [3]. 

3.3 Inner loop optimization problem 

The inner loop optimization problem can be stated as:  

 

  

€ 

Minimize :
b

f φ b( )( )
Subject to : gi φ b( )( ) ≤ 0 , i =1!m
                  bmin ≤ b ≤ bmax

 (10) 
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where f (φ) is the objective function, gi (φ) the constraint functions, m the total number of con-
straints, bmin and bmax are the side limits on the design variables.  

The solution to the inner loop problem is affected by the choice of optimizer, design vari-
able side limits and convergence criteria. In this paper the inner loop problem is solved using 
the method of moving asymptotes, as implemented in the package NLOPT [18]. The side lim-
its are defined from the maximum and minimum signed-distance values of the current struc-
ture, with considerations for the boundary of the design domain, ΓD , and fixed, non-
designable regions within the design domain, Ωfixed . First, a parameter is obtained from the 
discrete values of the signed-distance function: 
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ˆ α = max min max α i{ },−min α i{ }{ },  2h⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 (11) 

The side limits for a design variable are then defined as:  

 

€ 

bi,min =
0 if bi ∈Ω fixed

− ˆ α else
⎧ 
⎨ 
⎩ 

       bi,max =
−φi if bi ∈ΓD
ˆ α else

⎧ 
⎨ 
⎩ 

 (12) 

Three convergence criteria are used for the inner loop: the maximum number of iterations, 
the relative change of the objective function and relative change of the design variables. The 
relative change criteria are both set to 10-3 and the maximum number of iterations to 10. The 
inner loop stops when any of these criteria are met. The criteria are intentionally slack, as this 
reduces the number of inner loop iterations spent fine tuning the structure, whereas quicker 
progress is often made by obtaining an approximate solution and generating a new signed-
distance function for the next inner loop. 

4 EXAMPLES 

4.1 Minimization of compliance 
First, the method introduced in this paper is used to solve two classic problems. The objec-

tive is to minimize compliance, with an upper limit on the total volume. The first problem is a 
cantilever, ratio 2:1, shown in Figure 4a, with volume constraint set to 50% of the design do-
main. The second is a Michell arch, shown in Figure 4b, with a volume constraint of 40%. 
The grey areas show fixed regions within the design domain. For both examples, the material 
properties are Young’s modulus 1.0 and Poisson’s ratio 0.3, and the load magnitude is 10 
units. The initial design for both examples is shown in Figure 4c. The parameters for the 
smoothed Heaviside, Eq. 9, are: Δ = 0.25h and ρmin = 10-6. Both examples use an analysis 
mesh composed of 160 × 80 unit sized plane stress elements. They are solved using different 
cutting surface meshes, defined by mesh ratios: 5, 10 and 20. This corresponds to problems 
with: 2145, 561 and 153 design variables, respectively. 

The solutions for the cantilever are shown in Figure 5 and the solutions for the Michell 
arch are shown in Figure 6. The topologies and general shapes of the solutions compare well 
with the known analytical solutions and the solutions obtained using other methods [3, 8, 19]. 
For the cantilever, the solution using a mesh ratio of 5 is more topologically complex than the 
other solutions that use fewer cutting mesh elements. The compliance values for the three so-
lutions are 5985, 6040 and 6131, for mesh ratios 5, 10 and 20, respectively. Thus, the objec-
tive value increases with a decrease in the number of design variables (or number of cutting 
surface elements). In this case using 153 design variables returns a compliance value 2.4% 
higher than the solution obtained using 2145 design variables. Also, for the mesh ratio 20 so-
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lution, some parts of the structure boundary are not as straight as the boundaries of the other 
two solutions. 

For the Michell arch, the topology of the main structural members is the same for all three 
solutions. The compliance values are 1095, 1090 and 1128, for mesh ratios 5, 10 and 20, re-
spectively. Thus, there is a 3.5% increase in compliance for the mesh ratio 20 solution, com-
pared with the mesh ratio 10 solution. Again, parts of the boundary for the mesh ratio 20 
solution are not straight, which contributes to the increase in compliance. 

Overall, these two examples demonstrate that the proposed method can obtain solutions to 
well-known compliance minimization problems. Also, there is a limit to how far the design 
space can be reduced (by reducing the number of cutting mesh elements), before the objective 
value and quality of the boundary become significantly affected. Note that, for these examples, 
a mesh ratio of 10 uses 23 times less design variables than the number of analysis mesh ele-
ments. 

 

 
Figure 4. Examples. a) Cantilever, b) Michell arch, c) Initial design. 

 

 
Figure 5. Cantilever minimization of compliance solutions. a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
 

 
Figure 6. a) Michell arch minimization of compliance solutions a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
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4.2 Minimization of volume 
The two examples used in the previous section for compliance minimization and now 

solved for the complimentary problem: minimization of volume, subject to an upper limit on 
compliance. For the cantilever, the upper limit is 6000 units and for the Michell arch the limit 
is 1100 units. These limits are approximately the optimal compliance values obtained in the 
previous section. Again, both problems are solved using different cutting surface meshes, de-
fined by mesh ratios: 5, 10 and 20. All other parameters are the same as the previous section. 

The solutions for the cantilever are shown in Figure 7 and the solutions for the Michell 
arch are shown in Figure 8. In all cases, a feasible solution is obtained. For the cantilever, the 
final volume values are 6353, 6454 and 6838, for mesh ratios 5, 10 and 20, respectively. Thus, 
there is a 7.6% increase in volume for the mesh ratio 20 solution, compared with the mesh 
ratio 5 solution. A similar trend is observed for the Michell arch, where the volume values are 
5085, 5313 and 5597 for mesh ratios 5, 10 and 20, respectively. In this case the volume in-
crease is 10.1%. The percentage increase in objective value is higher than that observed for 
the compliance minimization problems. This is perhaps because the compliance constraint is 
nonlinear and thus poses a more difficult problem to solve than one with a linear volume con-
straint. Again, the quality and definition of the boundary decreases as the number of design 
variables decreases. 

 

 
Figure 7. Cantilever minimization of volume solutions. a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
 

 
Figure 8. a) Michell arch minimization of volume solutions a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
 

4.3 Compliant mechanism 

The new method is now used to solve an inverter compliant mechanism problem [14], as 
shown in Figure 9a. The objective is to maximize the output displacement, which is defined 
as positive in the opposite direction to the input force, with an upper limit on the total volume, 
set to 15% of the design domain. The material properties are Young’s modulus 100.0 and 
Poisson’s ratio 0.3, and the input load magnitude is 10 units. The stiffness of the input and 
output springs are: kin = 0.001, kout = 1.0. The initial design is shown in Figure 9b. The design 
domain is discretized using 160 × 160 plane stress elements, with element edge length 0.5. 

For this example, a continuation strategy is used to adapt the smoothing length during op-
timization (as discussed in Section 3.2). The initial value is Δ = 2h and the lower limit is 
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0.25h, where h is the analysis mesh grid spacing. The smoothing length is halved each time 
the outer loop convergences. The value of ρmin = 10-2. 

The solutions for mesh ratios 5 and 10 (4225 and 1089 design variables, respectively) are 
shown in Figure 10. These correspond well with solutions for similar problems obtained using 
other methods [3, 20, 21]. The output displacement values are 1.37 and 1.25, for mesh ratios 5 
and 10 respectively. Both solutions have the same topology, with small differences in shape. 
This is particularly noticeable near the input and output locations, where the mesh ratio 5 so-
lution uses very thin structural members to create compliant hinges, whereas the hinges for 
the mesh ratio 10 solution are thicker. This difference results in the 9.8% increase in output 
displacement for mesh ratio 5, compared with mesh ratio 10. However, this increase is partly 
obtained by exploiting the numerical discretization, where a very compliant hinge is created 
around one node in the analysis mesh [22]. It would be interesting to add minimum length 
scale control to the proposed method to avoid this issue. The problem was also solved using a 
mesh ratio of 20. The solution was feasible (the volume constraint was met), but there was no 
physical link between the input and output locations, so it is not a practical design. 
 

 
Figure 9. a) Inverter example, b) Inverter initial design. 

 

 
Figure 10. Inverter solutions. a) Mesh ratio 5, b) mesh ratio 10. 

 

5 CONCLUSIONS 

A new topology optimization method is proposed that uses an implicit signed-distance 
function and cutting surface, where the structure boundary is defined by their intersection. 
During optimization, the implicit function is fixed and the cutting surface modified to change 
the position and connectivity of the boundary. The cutting surface is parameterized using fi-
nite element shape functions and the nodal values become the design variables during optimi-
zation. The analysis and cutting surface meshes are different, where the cutting surface mesh 
uses fewer elements than the analysis mesh, thus reducing the number of design variables 
compared with a method using element-wise design variables. A critical aspect of the new 
method is the use of a smoothed Heaviside function for integrating the structural analysis ma-
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trices. This approach avoids the discontinuous derivatives associated with an exact Heaviside 
approach. The benefits of the new method are that: solutions have clear, smooth boundaries, 
efficient mathematical programming methods can be employed and the number of design 
variables is reduced. 

The new method is demonstrated by solving well-known minimization of compliance, 
minimization of volume and complaint mechanism problems. In each case, feasible, smooth 
boundary solutions are obtained that agree well with solutions obtained using other methods. 
However, there is a limit to how far the number of design variables can be reduced before the 
objective value and quality of the boundary become significantly affected. Despite this, good 
solutions to all problems are obtained using a number of design variables around 23 times 
fewer than the number of elements used for analysis. 
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