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Abstract. The Blue Brain Project (BBP) uses the NEURON simulator to model the electrical
activity of large networks of morphologically detailed neurons. Each individual neuron is typ-
ically described by a model that couples the actions of localized membrane mechanisms with
an electrical system described by the cable equation on a topology derived from the neuron’s
dendritic tree. NEURON discretizes the electrical problem in space with finite differences. The
system is then solved in time with an implicit Euler or Crank–Nicolson scheme, using Strang
splitting to decouple the evolution of the mechanisms from the membrane potential. A typical
spatial discretization of a single neuron will have hundreds of elements, and the resulting linear
system for the implicit solver is almost tridiagonal.

In this paper, we present a detailed analysis of the different sources of error arising from the
biological and mathematical models underlying NEURON simulations. We provide a detailed
account of the mathematical model, identify and evaluate the sources of uncertainty in the
biological and numerical models and quantify the errors resulting from the model discretization
and from the choice of the integrator. Post-processing based techniques are applied to assess
the numerical error in the solution. Of particular interest is the analysis of the discontinuities
arising from the pointwise synaptic processes that constitute part of the model, including the
effects of voltage-proportional synaptic conductance.

We validate our analysis through a series of numerical experiments on a branched dendrite
model incorporating Hodgkin–Huxley distributed ion channels with simple alpha-synapes and
biologically realistic AMPA/NMDA activated synapses. This model exhibits the action-potential
behaviour with fast dynamics characteristic of a typical simulation of a network of neurons.
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1 INTRODUCTION

The assessment of the errors and uncertainties associated with the numerical simulation of
mathematical models describing physical phenomena represents a topic of crucial importance
in both scientific and engineering research. Several techniques have been developed to provide
information on the different sources of error and thereby provide assessments of the accuracy
of simulation results.

The motivations for this error analysis are twofold: firstly, confidence in the accuracy and
reliability of simulation results requires bounds on the errors of those simulations; secondly,
the choice of discretization in space and time should be chosen such that the global error is
constrained to lie within certain user-specified bounds. The latter is particularly pertinent when
considering the implementation of numerical methods that involve mesh adaptivity and variable
step-size integrators.

The results of a numerical simulation are subject to four main classes of error.
• Modelling errors are produced when translating the real world physical phenomena into

the mathematical model consisting of a set of differential equations.
• Parameter errors are due to the uncertainties in the measurements of the quantities nec-

essary for the determination of the parameters of the mathematical model.
• Discretization errors arise from the choice of the numerical discretization methods uti-

lized for the numerical solution of the differential equations.
• Round-off errors are introduced by the finite-precision arithmetic of the floating point

representation used by the computer.
We aim in this paper to address a perceived gap in the literature concerning error bounds and

estimates for the results obtained using NEURON simulator[3], the primary tool employed by
the BBP for the analysis of the electrical behaviour of morphologically detailed neural networks.

The outline of the paper is as follows. The modelling and parameter errors for this problem
are discussed in Section 2. As a prelude to the numerical error analysis, we present in Section 3 a
formal statement of the mathematical model. In Section 4 we discuss the space discretization of
the differential equations using the finite difference method and we consider the implementation
of an error estimator based on the Zienkiewicz–Zhu post-processing technique. In Section 5 we
examine the numerical integration methods currently implemented in the NEURON simulator
and propose different techniques that allow an improvement in the accuracy of the simulation
results. We provide results of numerical experiments in Section 6, using a simplified dendrite
model with a single branching point. While consideration of round-off error is important, we
do not address it in this paper.

2 MODELLING AND PARAMETER ERRORS

Three simplifying assumptions underlie the derivation of the mathematical model of neu-
ronal electrical behaviour used by NEURON: the Maxwell quasi-static approximation, the 1-D
approximation, and the distribution of ion channels and point processes.

The quasi-electrostatic approximation to Maxwell’s equations assumes that inductive effects
and wave propagation delays are negligible (see for example [13]). In the NEURON model, it is
assumed the only significant capacitive phenomena are those caused by the difference in extra-
and intra-cellular potentials at the membrane of the dendrite, and that the frequencies involved
are sufficiently low that the behaviour lies in the quasi-electrostatic domain. This simplification
was first justified by the research on electro-physiological systems of Plonsey and Heppner [16].
However, Bossetti et al. [2] have recently argued that in the case of short and fast impulses the
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argument of [16] may be undermined. To test their ideas, Bossetti et al. relaxed the quasi-static
assumption and simulated the resulting inhomogeneous Helmholtz equation. Their results show
that whilst propagation and induction effects can be quite safely neglected, the system exhibits
a higher sensitivity with respect to capacitive and conductive effects. In any case, numerical
results obtained by the authors find a relative error of 5 to 13% for pulse widths within the range
of typical neural events (25µs to 1 ms).

The unbranched sections of the dendritic tree of a neuron are typically much thinner than they
are long, and so are amenable to a one-dimensional approximation that represents the potential
within the dendrite as a function of the axial distance along a section. This assumption leads to
a description in terms of electrical cable theory. A study of Lindsay et al. [12] has criticized this
approach by observing that dendritic currents have an essential radial component that may not
be neglected in the case of dendritic tapering. Lindsay et al. compared numerical simulations of
the simplified 1-D model with ones incorporating higher order perturbations capturing the radial
variation, and found that when synaptic input is weighted towards the distal end of the dendrite,
the generated spike trains showed statistically significant differences between the models. On
the other hand, if the weighting is towards the proximal end of the dendrite the spike trains are
statistically indistinguishable, even though the actual firing patterns might differ.

Lastly, the third approximation concerns the distribution of ion channels and synapses. Ion
channels are proteins that reside on the membrane of the cell, and are responsible for gating the
flow of charged ions through the cell membrane. As such, ion channels are discrete phenom-
ena, giving a spatially localised contribution to the transmembrane current by allowing single
particles of charged ions to pass through their selectivity filters. As a consequence of the con-
ductance based formalism these ion channels are not modelled individually. Rather, NEURON
operates under the assumption that the contributions of these channels can be averaged across a
section of dendrite where the density of their distribution can be considered uniform. Synapses,
on the other hand, are modelled as discrete processes but are located on the dendrite only at
nodes arising from the spatial discretization.

Once the appropriate model has been chosen for representing a neuron, the computational
neuroscientist is still required to specify the value of some input parameters. Here we consider
two sources of parameter error: morphology reconstruction and matching electrophysiological
data.

Computer reconstructions are commonly used to provide cell-type specific morphologies
as input to neural simulations. In this process, an expert controls a microscope to analyse a
set of brain slices that have been stained in order to enhance visibility of cellular structures
such as the soma, dendrites and axons. Unfortunately, during staining an error due to tissue
shrinkage can be introduced; [18], for example, observed a shrinkage of approximately 10%
in the X and Y directions and 25% in slice thickness. The work of Blackman et al. [1] inves-
tigated the effects of shrinkage and other reconstruction artefacts on the results of computer
simulations conducted using the NEURON software. They consider two popular reconstruction
techniques: biocytin histology and two-photon imaging. The authors identify some systematic
defects introduced by both techniques. They note, however, that clustering of morphological
types was successful with both techniques, and that electrophysiological parameters that could
be affected by morphological properties of the dendrite, such as length constants, did not seem
to be affected significantly by the uncertainty introduced by the two methods. Although recent
techniques allow 3-D imaging of intact brains [4], many computer reconstruction techniques
in use today require the reduction of the three dimensional brain to a set of two-dimensional
slices. This process carries an intrinsic source of error: not only may some branches may be
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severed, distorted or deformed during the slicing process; the human expert or image recon-
struction software may also make mistakes while connecting multiple two dimensional slices
into a three dimensional shape. It is important to consider these sources of error even if they are
extremely difficult to quantify, as a neuron’s morphology plays an important role in determining
its electrophysiological properties [11].

Just as the different components of a computer chip give rise to meaningful emergent be-
haviour by exploiting differences in their electrical behaviours, it is thought that the ability of
a neuron to integrate in a very specific way the synaptic input from other cells is at the core of
the brain’s ability to perform computations. As such, the main goal of developing a detailed
neuron model is to be able to reproduce with high fidelity its experimentally measured electro-
physiological behaviour, thus distinguishing it from other cells. Often this requires a two step
process, which begins by obtaining valid experimental data. In this phase, errors may come
from measurement sensitivity and noise. The comprehensive guide on patch clamp experiment
setups [19] estimates that a realistic value for noise in patch clamp experiments is around 0.2 pA
rms, which considering a typical cell resistance of 100 MΩ leads to a negligible noise amplitude
of around 20 µV. Moreover, a typical value of the resolution of such experimental setups is in
the order of 0.01 pA to 1 pA, which leads again to a resolution on the membrane potential of
roughly 1 µV to 100 µV.

Once the experimental data has been obtained, computational neuroscientists often use an
optimization algorithm to find the best set of model parameters to fit such data. Recently the
community has shown interest in the use of evolutionary algorithms (see e.g. [5]). As fitting the
raw experimental observations can be difficult or overwhelmingly costly in some cases, more
and more focus is being placed on feature-based fitting, which consists of trying to replicate a
set of secondary measures that can be computed from the experimental data (e.g. a neuron’s
firing rate under a certain stimulation protocol) rather than replicating the raw data directly
(see [20] for a review). These optimization algorithms can suffer from intrinsic uncertainties and
errors: they may get stuck in local minima, produce results that are not biologically plausible,
incorrectly overfit the data or fail to replicate certain aspects of a neuron’s electrophysiology
due to a poor choice of the features. In addition, it is hard to quantify the degree of uncertainty
in the raw experimental data that will affect the final uncertainty of the input parameters.

3 MATHEMATICAL MODEL

Before discussing numerical recipes for the simulation of neural circuits and error estimation,
we need to clearly state the mathematical expression of the biological model. In this section we
present the complete formulation of the equations typically solved by NEURON.

The behaviour of electrical signals in neurites is described by cable theory, which is derived
from an electrical model with a constant axial resistivity and a leaky capacitive membrane.
While a great variety of ion channel models are supported by NEURON, we restrict ourselves
to the Hodgkin–Huxley model of voltage-gated sodium and potassium ion channels [10].

The model is defined over a domain Ω, comprising a disjoint collection of closed intervals of
the real line; each interval corresponds to an unbranched section of dendrite, and the branching
structure will be captured by additional boundary conditions applied at the interval end-points.
Within the cable theory model, the membrane potential v(x, t) is described by a variable de-
pending only on time t and position x on the axis. In addition to these variables, we have to
consider some quantities regulating the behaviour of the ion channels. The ion channel states
in the Hodgin–Huxley model are described by dimensionless quantities n(x, t), m(x, t), and
h(x, t) with a voltage-dependent evolution in time. Finally, we consider the contribution of



F. Casalegno, F. Cremonesi, S. Yates, M. L. Hines, F. Schürmann, and F. Delalondre

discrete synaptic receptors on the surface of a section, which are governed by a dimensionless
per-synapse state y(t).

3.1 Differential equations

The governing equations for the systems are obtained through a balancing of trans-membrane
currents and axial currents. The resulting system is the cable equation with additional terms
capturing the ion channel currents,

10−3cm
∂v

∂t
=

104

2aR

∂

∂x

(
a2 ∂

∂x
v

)
− gKn

4(v − eK)− gNam
3h(v − eNa)− gl(v − el)

− 102gsyn(y, v)

2πa
δsyn(x)(v − esyn),

(1)

where: the membrane potential v is expressed in mV; a is the dendrite radius [µm]; cm is the
membrane specific capacitance [µF·cm-2]; R is the cytoplasmic resistivity [Ω·cm]; gK, gNa, gl,
and gsyn(y, v) are specific conductances [S·cm-2] (the latter depending on other variables); eK,
eNa, el, and esyn are reversal potentials [mV]; and δsyn(x) is a Dirac delta centred on the synaptic
receptor location xsyn.

The evolution of the ion channels states is described by nonlinear functions α×(v) and β×(v)
derived by Hodgin and Huxley [10],

dn

dt
= αn(v)(1− n)− βn(v)n,

dm

dt
= αm(v)(1−m)− βm(v)m,

dh

dt
= αh(v)(1− h)− βh(v)h.

(2)

The evolution of the synaptic receptor state can be described by an ordinary differential
equation (ODE) of the form

dy

dt
= γ(y) (3)

where both the function γ(y) and the behaviour of the specific conductance gsyn depend on the
kind of synapse to be modelled. We consider here two different kinds of synaptic receptors:

• Alpha-synapses (see [3]) are simplified models, where the conductance gsyn(y) is only
dependent on the synapse state y.

• Deterministic AMPA/NMDA-synapses (described in [14]) are more realistic models, in
which the conductance gsyn(y, v) depends as well on the membrane potential to account
for magnesium blocking of the NMDA receptor.

3.2 Initial and boundary conditions

The system of differential equations formed by (1), (2), and (3) are to be combined with
initial and boundary conditions. For given initial conditions on the membrane potential

v|t=t0 = v0 (4)
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we recover the initial values for the ion channels states by considering the steady state solution
of Equation (2),

n|t=t0 =
αn(v0)

αn(v0) + βn(v0)
, m|t=t0 =

αm(v0)

αm(v0) + βm(v0)
, h|t=t0 =

αh(v
0)

αh(v0) + βh(v0)
. (5)

As for the boundary conditions for the membrane potential, we impose the balance of the
axial current to obtain natural boundary conditions on the boundary points of each unbranched
section Ωi of the dendrite. We have to distinguish different cases depending on the position of
the boundary point xb within the dendritic tree, that is whether the boundary of the section is
a terminal end of the dendrite or if it communicates with other sections through a branching
(see [9]).

• On a terminal point xb of the dendrite we have homogeneous conditions

∂v

∂x
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x=xb

= 0. (6)

• On a branching point xb (see Figure 1a) the boundary conditions link together the gra-
dients of the membrane potentials on the section ΩA preceding the branching and on the
sections ΩB1 and ΩB2 following it,(

a2 ∂v

∂x

)∣∣∣∣A
x=xb

=

(
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. (7)
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(b) Space discretization and node ordering

Figure 1: Branched dendrite and its space discretization with an example of the node ordering
used in NEURON to avoid fill-in during Gaussian elimination.

4 DISCRETIZATION IN SPACE

The strategy implemented in NEURON to solve (1) numerically is known as the method
of lines (see [7]), which transforms the partial differential equation (PDE) into a system of
ODEs through a suitable space discretization and then integrates the latter in time using some
numerical scheme. In this section we discuss the discretization in space, while the integration
in time is analysed in Section 5.
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4.1 Numerical methods

The differential equations (1) constituting the mathematical model are discretized by finite
differences to form a system of ODEs. On a given unbranched section, the nodes xj of the mesh
are chosen with an equal spacing h except for the boundary nodes where the spacing is h/2, as
shown in Figure 1b.

It is important to mention that the numbering of the nodes of the dendrite has a critical role
in the structure of the linear system to be solved after space discretization. NEURON adopts
the node ordering scheme described in [9], such that branches that are further away from the
soma have lower node indexes (see Figure 1b). This gives rise to a global stiffness matrix for
the dendrite which is almost tridiagonal and which can be efficiently solved using an ad hoc
version of Thomas algorithm with linear complexity, as the Gaussian elimination step requires
the same number of arithmetic operation for a tree of N nodes as for a cable with N nodes.

Particular care must be paid to the second order term and to the Dirac delta when applying
the finite differences discretization. Among the different finite difference approximations that
are possible for the second order term, NEURON uses the discretization

∂

∂x

(
a2(x)

∂v

∂x
(x)

)∣∣∣∣
x=xj

≈ 1

h

(
a2
j+1/2

vj+1 − vj
h

+ a2
j−1/2

vj+1 − vj
h

)
. (8)

As for the Dirac delta term, NEURON uses the discretization

δsyn(x)v(x)|x=xj
≈
δj,jsyn
h

vj, (9)

where δj,jsyn is the Kronecker delta and jsyn is the index of the node of the synaptic receptor.
Note that the finite difference scheme as described above coincides, up to higher order terms,

with a finite element scheme with piecewise linear elements (see [17]). As a consequence, the
order of convergence in the L2(Ω) norm for the numerical solution vh and its gradient ∇vh can
be expected to be quadratic and linear respectively. In addition, the equivalence of this finite
difference scheme to the finite element method allows us to use error estimation techniques
suited to finite element algorithms.

4.2 Error estimation

By interpreting the finite difference discretization used in NEURON as a variant of the finite
element method, we can consider applying classical error estimation techniques for finite ele-
ment methods. Residual-based estimators cannot be used, however, as the PDE (1) contains a
non-integrable Dirac function. Instead, we use a Zienkiewicz–Zhu (ZZ) post-processing esti-
mator based on a superconvergent patch recovery, as described in [21]. This method has been
proved to be amongst the most robust error estimators available.

In our case, the superconvergent patch recovery technique is used to compute, from the nu-
merical solution vh of the finite difference scheme, a better gradient Gvh converging quadrat-
ically to the exact gradient ∇v in the L2(Ω) norm. The exact error in the gradient is thus
approximated using

‖Gvh −∇vh‖L2(Ω) = ‖∇v −∇vh‖L2(Ω) +O(h2). (10)

The better gradient is a piecewise linear function computed locally using the values of the
discrete solution vh on triples of consecutive nodes xj−1, xj , and xj+1. It is then clear that
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this procedure provides worse estimates on boundary elements. Furthermore, we remark that
this patch recovery fails where the exact solution contains a singularity (see Figure 2a). In
order to adapt the method to our case, we split each section containing a synaptic receptor into
subsections where the solution is smooth and then apply ZZ post-processing on each subsection.
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Figure 2: Singularities in the system: (a) membrane potential on a unbranched section of the
dendrite with a singularity on the synaptic receptor (xsyn = 125 µm); (b) synaptic state over
time with a singularity at spike arrival (trec = 10 ms).

5 INTEGRATION IN TIME

After the space discretization performed with the finite difference method described in Sec-
tion 4, we obtain from (1) a system of ODEs that can be written together with (2) and (3) in the
form 

dv

dt
= A(n,v, y)v + a(n,v, y),

dn

dt
= B(v)n + b(v),

dy

dt
= γ(y).

(11)

where v is the vector of the approximated membrane potential values vj , and n is the vector of
the gate states values nj ,mj , and hj at the mesh nodes xj . We now discuss how to integrate (11)
numerically and estimate the error in time. More specifically, we firstly present the numerical
methods currently implemented in NEURON and we then suggest some techniques to improve
their order of convergence and speed.

5.1 Numerical methods: current NEURON implementation

The structure of the system of ODEs (11) is particularly important for the choice of the nu-
merical integration method. As mentioned in Section 4, the matrix A(n,v, y) has a particularly
convenient almost tridiagonal form, while it is easy to see that B(v) is purely diagonal.

Another important consideration for the choice of the method is the stiffness of the system.
The matrix A(n,v, y) is obtained from the space discretization of the parabolic PDE (1) using
the method of lines and thus it has a very large negative eigenvalue whose magnitude scales as
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1/h2 (see [7]), so that the ODE for v is highly stiff. For the particular form of the Hodgin–
Huxley model’s functions α×(v) and β×(v) in (2) it can be shown that the matrix B(v) has a
spectral radius smaller than 10, so that the ODE for n non-stiff.

The system of ODEs (11) is highly nonlinear but is amenable to being split into two subsys-
tems for v and for n and y respectively, to simplify its numerical integration. The idea of split-
ting methods (see [7]) is to approximate the exact flow ϕτ of an ODE dz/dt = fA(z) + fB(z)
using a composition of the flows of the partial ODEs as

ϕτ ≈ ϕAa1τ ◦ ϕ
B
b1τ
◦ · · · ◦ ϕAaJτ ◦ ϕ

B
bJτ
. (12)

Goldman and Kaper [6] proved that for every splitting method of the form of (12) with order
p > 2 there exist two indices 1 ≤ j1, j2 ≤ J such that aj1 , bj2 < 0 and thus the resulting method
in unstable for stiff systems. Due to this order barrier, the second order Strang splitting

ϕτ = ϕAτ/2 ◦ ϕBτ ◦ ϕAτ/2 +O(τ 3) (13)

is optimal. This is the splitting adopted in NEURON for the integration in time of the system of
ODEs.

Let us now firstly assume that the synaptic receptor is modelled with a conductance gsyn(y)
independent from the membrane potential. Then we can drop the dependence on v of the
terms on the right-hand side of the ODE for v and at each time step we have to compute
vk+1 ≈ v(tk+1) and nk+1/2 ≈ n(tk+1/2), yk+1/2 ≈ y(tk+1/2) by solving

dn

dt
= B(vk)n + b(vk), t ∈ [tk−1/2, tk+1/2],

dy

dt
= γ(y), t ∈ [tk−1/2, tk+1/2],

dv

dt
= A(nk+1/2, yk+1/2)v + a(nk+1/2, yk+1/2), t ∈ [tk, tk+1].

(14)

The value of yk+1 can be often computed exactly, since y(t) is typically a damped exponential or
a similar function. The values of vk+1 and nk+1/2 could be computed by solving exactly (14),
since after the splitting their ODEs are fully linearized. However the exact solution requires
the computation of the exponential of A and B—the matrix A has a tridiagonal pattern, so its
exponential is dense and its computation would be particularly expansive; on the other hand, the
matrix B is diagonal so it is possible to compute its exponential with little effort. In NEURON,
therefore, exp(τB) is computed exactly, whilst a Padé approximation (see [8]) is used to avoid
the computation of exp(τA). Strang splitting introduces a second order error in time, therefore
only Padé approximations of order p ≤ 2 are convenient. Moreover, a stable approximation
has to be chosen due to the stiffness of the ODE. In NEURON the exponential is approximated
using the second order approximation equivalent to the Crank–Nicolson method

RCN(τA) =
(
I − τ

2
A
)−1 (

I + τ
2
A
)

= exp(τA) +O(τ 3). (15)

This second order approximation is obtained in NEURON by computing a half step of the first
order Padé approximation RBE(τA) = (I − τA)−1 corresponding to backward Euler, and then
recovers the Crank–Nicolson approximation through the relationship

RCN(τA) = 2RBE( τ
2
A)− I. (16)
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The resolution of an almost tridiagonal system (which can be solved using a modified Thomas
algorithm with linear complexity) is thereby performed only once while maintaining a second
order method.

Let us now consider the case of the more realistic AMPA/NMDA synapse model, where the
conductance gsyn(y,v) depends as well on the membrane potential. In this case the ODE for v
contains a nonlinear term

dv

dt
= A(nk+1/2, yk+1/2,v)v + a(nk+1/2, yk+1/2,v), t ∈ [tk, tk+1]. (17)

The current implementation in NEURON uses the value vk (which is known) to simplify (17)
and avoid nonlinearities, obtaining

dv

dt
= A(nk+1/2, yk+1/2,vk)v + a(nk+1/2, yk+1/2,vk), t ∈ [tk, tk+1]. (18)

In Section 6 we see that this technique unfortunately has the drawback of reducing the order of
convergence of the numerical integration scheme from quadratic to linear.

5.2 Numerical methods: suggested improvements

We now want to present some numerical integration techniques to improve the results ob-
tained using the aforementioned current implementation of NEURON. Our suggestions are
aimed at enhancing both the speed of the integration in time and the accuracy of the results.

We mentioned above that NEURON, in its current implementation, integrates the ODE for
n in (14), by computing the matrix exponential exp(τB) exactly. Such a high precision com-
putation is however unnecessary, since the global accuracy of the method cannot exceed second
order in time. As a consequence we can consider using a cheaper Padé approximation for the
exponential of B. In this case the ODE is non-stiff, so we can choose an explicit approxima-
tion. The explicit second order Padé approximation of the exponential corresponds to the Heun
method

RH(τA) = I + τA+ τ
2
A2 = exp(τA) +O(τ 3). (19)

This strategy does not reduce the order of convergence of the numerical method and at the same
time avoids the computation of exponential functions performed in NEURON, resulting in a
more efficient integration scheme.

Regarding the integration of realistic model of synapses with a conductance gsyn(y,v) de-
pendent on the potential, such as for the AMPA/NMDA model, we observed that the current
implementation of NEURON simplifies the system of ODEs by eliminating the nonlinear terms
with a technique that destroys the second-order accuracy of the numerical integration (see Sec-
tion 6). We suggest here a different approach that allows us to preserve the quadratic order of
convergence even in case of voltage dependent synaptic conductances. The idea is to use one
Newton–Raphson iteration to solve the nonlinear equations corresponding to backward Euler
with step size τ/2; a second order method corresponding to Crank–Nicolson) is hence obtained
by applying the formula (16) to the result. We point out that this strategy still requires only the
solution of an almost tridiagonal system, so that no additional computational cost is required,
while the accuracy of the method is significantly improved, as we show in Section 6.

Finally, a critical point is represented by the discontinuity in the ODE dy/dt = γ(y). Indeed,
γ(y) = 0 in the intervals between inter-spike intervals; when a spike is received at time t = trec
from a presynaptic neuron, γ(y) presents then a discontinuity, generating a singularity in y (see
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Figure 2b) and hence in the other variables of the system. It has been largely observed (see [7])
that crossing a discontinuity without some specific handling can introduce significant errors.
In our simulations we observed (as we show in Section 6) that the current implementation of
NEURON produces a global error which is O(τ) instead of O(τ 2) in every simulation that
includes spike arrivals, as a result of this lack of adequate discontinuity handling. As shown by
Hairer [7], the best way to compute a solution crossing a discontinuity consists in implementing
an integrator that stops the computation at the point of discontinuity and restarts it with the new
value of the right-hand side of the ODE. This technique is considerably more accurate than even
a variable step size integrator with automatic error control. We therefore adopted this method
for the handling of discontinuity, and the numerical results discussed in Section 6 demonstrate
the recovery of a global O(τ 2) convergence.

5.3 Error estimation

Both local error (i.e. after one time step) and global error (i.e. at the end of the simulation
time T ) can be estimated using Richardson extrapolation. Given a step size τ , the global error
in the numerical solution vτ (T ) can be estimated from the numerical solution vλτ (T ) computed
with a step size λ times larger (in our simulations we use λ = 2). These calculations, being
independent, can be computed efficiently in parallel. A superconvergent approximation is then
obtained using Richardson extrapolation

vR(τ)(T ) =
λ2vτ (T )− vλτ (T )

m2 − 1
, (20)

and the exact global error is then approximated by

‖vR(τ)(T )− vτ (T )‖2 = ‖v(T )− vτ (T )‖2 +O(τ 3). (21)

6 NUMERICAL RESULTS

To test the validity of the different numerical methods discussed in Section 4 and 5 we
considered a simple model of a branched dendrite with uniform space discretization, such as
the one shown in Figure 1b. The codes have been implemented in GNU Octave to replicate the
results obtained in the current implementation of NEURON and to test the new ideas proposed
here.

We first checked the order of convergence in space of the method, given the particular bound-
ary condition at branching nodes (connecting the values of v on different sections) and the
synapse point processes that produce singularities in the solution. The numerical results (see
Figure 3) confirm that with respect to the L2 norm, quadratic convergence in vh and linear
convergence in∇vh is preserved.

Regarding the order of convergence in time, we tested the different techniques presented
in Section 5 first with alpha-synapses (where gsyn = gsyn(y)) and then with AMPA/NMDA
synapses (where gsyn = gsyn(y, v)), and measured empirically the order of convergence of the
global error in vτ (T ).

In Figure 4a we show the results obtained for alpha-synapses. In particular, we see that
without discontinuity handling, such as in the current NEURON implementation, the order of
convergence is severely degraded. Our technique of discontinuity detection with stopping and
restarting of the integration at the spike arrival time trec allows us to recover a full order 2
convergence.
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Figure 3: Convergence in space looking at the errors ‖v − vh‖L2 and ‖∇v −∇vh‖L2 .
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Figure 4: Convergence in time looking at the global error ‖v(T )− vτ (T )‖2 for different kinds
of synapses and different numerical methods.

Figure 4b presents the results for the more realistic AMPA/NMDA synapse model. In this
case we only considered methods incorporating the discontinuity detection technique. The
simple technique adopted in NEURON (see Section 5.1) to resolve the nonlinearity still present
after Strang splitting is shown to fail, reducing the method’s convergence to order 1. However,
the method we proposed based on performing only one step of Newton iteration to solve the
nonlinear equation proves to be effective and restores quadratic convergence.

To summarise, the quadratic convergence in time is maintained through the use of the in-
tegration methods described in Section 5.2 that more effectively handle discontinuities and
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nonlinearities in the system of ODEs, and is preserved when the computationally expensive
exponential of τB is replaced by the much cheaper Heun method (19).
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(a) ZZ patch recovery
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Figure 5: Superconvergence for error estimator in space (Zienkiewicz–Zhu patch recovered
gradient) and in time (Richardson extrapolation).

Finally, we tested the validity of the post-processing methods for the estimation of the errors
in space and time. In general, we define the efficiency index of an error estimator err∗ for the
true error err as the ratio

θ =
err∗

err
. (22)

It is desirable that the efficiency index θ → 1 at least linearly as the discretization is more
and more refined. A sufficient condition to attain this goal is that the post-processed better
solution is superconvergent with respect to the bare numerical solution itself. In Figure 5 we
can can see that the better gradient obtained using Zienkiewicz–Zhu patch recovery and the
better trajectory obtained using Richardson extrapolation are superconvergent with order O(h2)
andO(τ 3), respectively, while the bare numerical solution converge with orderO(h) andO(τ 2),
respectively. This validates our choice of error estimator.

7 CONCLUSIONS

NEURON is one of the most popular tools in the field of computational neuroscience for
the simulation of morphologically detailed neural networks. We presented here an analysis
of the diverse sources of error that can affect the results of NEURON simulations. Particular
attention has been devoted to the numerical error arising from space and time discretization of
the differential equations representing the mathematical model of the evolution of the membrane
potential in a dendrite.

We examined the finite difference scheme and the numerical integration methods used in the
current implementation of NEURON, and performed numerical experiments to investigate the
orders of convergence of these schemes. In particular, for the time integration method we ob-
served that the expected second order convergence was spoiled by the presence of singularities
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in the solution and due to the simplifications introduced to eliminate the nonlinearities arising
from the AMPA/NMDA synapse model.

We have presented here some techniques for handling the discontinuities in the system of
ordinary differential equations and for addressing the nonlinearity in the AMPA/NMDA synapse
model. These techniques allow the recovery of quadratic convergence without introducing extra
computational cost. Moreover, we proposed the use of a second order Padé approximation for
the computation of the ion channel gate states which reduces the computational cost without
loss of precision.

Error estimators based on Zienkiewicz–Zhu patch recovery and Richardson extrapolation
were presented, allowing a posteriori estimations of the errors introduced in space and time.

These methods have been validated numerically on a simple branched neuron model, demon-
strating the gains in convergence order over the existing NEURON implementation. We plan to
incorporate these methods into a future release of the NEURON simulator.
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