Dolphin-Inspired Drag Reduction for Ships

Lars-Uve Schrader1, Jochen Marzi1, Amir Banari2, Christian F. Janßen2, Thomas Rung2

1HSVA Hamburg Ship Model Basin \\
Bramfelder Str. 164, 22305 Hamburg, GERMANY \\
{schrader, marzi}@hsva.de

2TUHH Hamburg University of Technology, Fluid Dynamics and Ship Theory \\
Am Schwarzenberg-Campus 4, 21073 Hamburg, GERMANY \\
{amir.banari, christian.janssen, thomas.rung}@tuhh.de

ABSTRACT

Dolphins are able to sustain an underwater speed of about 9 m/s across long distances1. This fascinating endurance has led to the hypothesis that the thick, pliable dolphin skin ('blubber') keeps a large portion of the boundary layer laminar (delay of transition to turbulence), thus acting as a drag-reducing passive flow-control device. In the project FLIPPER2, we investigate the possibility of transferring the dolphin's control strategy to the flow around the bow of a small ship (Fig. 1a). To this end, blubber-like polymeric coatings are currently being developed and will soon be tested in a water tunnel, using a 1:4.5 scale model of the ship ($Re\sim$36 million). In preparation of these tests, we have carried out RANS-based flow simulations around the ship model coupled to boundary-layer computations, where the laminar boundary layer over the ship bow has been modelled by a Falkner-Skan profile. Spatial Orr-Sommerfeld stability calculations and e^N transition predictions have been conducted for this profile in order to estimate the transition location on the bow and the spectrum of Tollmien-Schlichting (TS) wave frequencies involved (Fig. 1b). The same flow conditions have also been studied in three-dimensional Lattice-Boltzmann simulations so as to capture the nonlinear phase of the TS waves and their breakdown to turbulence.

The Orr-Sommerfeld solver3 was recently augmented by a dynamic model for compliant surfaces4. Preliminary calculations reveal that a substantial stabilisation of the TS waves can be achieved when using compliant coatings with low E modulus (Fig. 1c); on the other hand, wall compliance may foster surface instabilities ('travelling-wave flutter') at the risk of premature transition1. Estimates for the drag-reducing potential of the investigated coating materials will be included in the conference talk.

Keywords: Drag reduction, compliant-coating flow control, boundary-layer transition delay

References