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Abstract. Grid requirements for LES of wall-bounded flows are considered. The setting is a
zero pressure gradient turbulent boundary layer on a flat plate, but the results are intended to
be of use generally for the simulation of flows with an important influence of turbulent bound-
ary layers. The basis for the grid estimates are expressions for the thickness and the viscous
length scale of a turbulent boundary layer. The literature is reviewed, and a new power law
is proposed, the coefficients of which have been determined using recent high-Re experimental
data. An estimation for the number of grid points required for NWM-LES is derived, which
is more general than previously published such estimates. A complete simulation methodol-
ogy, including a numerical tripping device for transition to turbulence in the boundary layer, is
demonstrated for NWM-LES of a flat plate turbulent boundary layer. The predictive accuracy
is assessed by comparison with DNS data.
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1 INTRODUCTION

The number of application areas in which large-eddy simulation (LES) of turbulent flows
is employed is currently growing rapidly, a development which is facilitated by the level of
computational resources available today. The main alternative to LES for turbulent flows is
Reynolds Averaged Navier-Stokes (RANS) modelling, which generally requires less computa-
tional resources since only the mean flow and turbulent quantities are computed. For free shear
flows, there are compelling arguments for the use of LES. The main reason is that the energy
cascade makes it possible to resolve a large part of the turbulent kinetic energy with a grid which
is relatively coarse as compared to the viscous (Kolmogorov) length scale. Thus turbulent mo-
mentum transport, largely determined by the resolved scales, can be expected to be modelled
more accurately by LES than RANS. Furthermore, since the large scale flow structures are di-
rectly simulated, LES provides significantly more information about the flow, as compared to
RANS.

The present paper considers wall-bounded flows which put very different requirements on
the simulation, as compared to free shear flows. The main reason for this is that the structure
of turbulent boundary layers (TBLs) is quite different, as compared to turbulence away from
walls. For instance, the peak in the Reynolds stress component 〈u′u′〉 occurs at y+ ≈ 12 in a
zero pressure gradient (ZPG) TBL, e.g. [13]. Here u′ are the fluctuations of the streamwise
velocity, 〈·〉 denotes averaging, and y+ = y/δν , where δν is the viscous length scale. This
fact has two implications, which are closely related, for the application of LES: i) energetic
flow structures are present in the TBL on a length scale which is not very much larger than the
viscous length scale, ii) with increasing Reynolds (Re-)number, the length scale of these flow
structures decreases. Both of these items are in contrast to the free shear case, and make the
application of LES to wall-bounded turbulence more difficult.

Three different broad approaches to LES of wall-bounded turbulence have generally been
considered. i) Hybrid RANS-LES methods, where the TBL is modelled using RANS and the
flow away from wall is modelled using LES. This means that the turbulence in the TBL is
handled by the turbulence model, and that there are no resolved fluctuations in the TBL in the
simulation. ii) Near-wall modelled (NWM-)LES in which the computational grid is constructed
to resolve fluctuations the size of fractions of the TBL-thickness δ. The grid is, however, not
adapted to the viscous length scale δν , and the fluctuations in the innermost part of the TBL are
handled by a near-wall model. This approach is in focus of the present paper. iii) Near-wall
resolved (NWR-)LES in which the computational grid is constructed and adapted to resolve
fluctuations the size of the viscous length scale.

For these three approaches it is clear that, from i) to iii), more of the flow is directly resolved
and less is handled by turbulence modelling. Associated with this is the rising computational
cost caused by the increasing requirements on grid resolution. It is thus of utmost importance to
precisely formulate the grid requirements and to have a good understanding of how they depend
on the parameters of the flow problem, in particular the Re-number. It is the aim of the present
paper to make a contribution to this, in particular for the case of NWM-LES.

Chapman derived grid requirements for RANS, NWM-LES and NWR-LES in a pioneering
paper, [1]. However, as was pointed out by Choi and Moin [2] (see also section 3 of the present
paper) the NWM-LES estimate is too optimistic, in that it leads to an underestimation of the
required grid resolution. The reason for this is that in the derivation Chapman employed the
mean (over the wall surface) thickness of the TBL. A more correct approach, as suggested
by Spalart et al. [20], is to use the local TBL-thickness, and to obtain the grid estimate using
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integration, as was done in [2], and also in section 3 of the present paper. A note on terminology:
often these requirements are described as estimates on the number of grid points, or grid point
estimates. The basis for the argument is however, both here and in [1, 2] is the grid length scale.
Thus the derivations are equally applicable to grid points, grid elements (in the finite element
framework), and grid cells (in the finite volume framework).

The paper is structured as follows. The basis for the grid estimates are expressions for the
thickness δ and the viscous length scale δν of the TBL. In section 2, the literature is reviewed,
and new coefficient values are proposed for a power law form of the increase of the length scales
with the downstream coordinate. The basis for the new coefficient values is a data fit to recent
high-Re experimental data. Then, in section 3, a grid estimate is derived for NWM-LES, using
the same approach as Choi and Moin [2]. The derivation is however more general in that it holds
for any power law for δ, and the improved coefficients are then inserted in the final expressions.
Furthermore, the form of the estimate is new, and it highlights the clustering of the grid in the
initial length of the flat plate, for Rex < 106, approximately. In section 4, a complete simulation
methodology is demonstrated for NWM-LES of a flat plate ZPG-TBL, with a length-based Re-
number of 2.42 · 106, and a computational grid of 12 · 106 finite volume cells. This includes a
numerical tripping device to induce resolved fluctuations in the boundary layer. The predictive
accuracy of the simulation is assessed by comparison with data from DNS (direct numerical
simulation). Throughout the paper, the setting is that of a ZPG-TBL on a flat plate. The grid
estimates and the simulation methodology are however intended for application to a wide range
of flow problems where TBLs have a significant role. This includes a large number of important
applications in the marine, aeronautical and automotive engineering as well as other areas of
research.

2 CORRELATIONS FOR TBL INTEGRAL QUANTITIES

For the purpose of grid estimation for NWM- and NWR-LES, it is required to express the
boundary layer thickness δ and the viscous length scale δν = δ/Reτ = ν/uτ in terms of the
streamwise distance x measured from the leading edge of the plate or, equivalently, in terms of
Rex = U0x/ν, in whichU0 denotes the free-stream velocity. These quantities are interconnected
through the definition of the friction coefficient,

cf = 2
(
uτ
U0

)2

= 2
(Reτ

Rex

)2 (x
δ

)2

. (1)

A vast number of correlations to formulate the dependency of cf on various Re-numbers have
been proposed for the ZPG-TBL. They can be divided into several types according to their
functional forms: i) power laws including the 1/5th and 1/7th ones [21] with the general form
cf = cRem, ii) logarithmic laws cf = c1(c2 log Re + c3)

m such as the suggestions of Schultz-
Grunow [14], Schlichting [13], Frenholz-Finley [5], and White [21], and finally iii) other types
such as the Prandtl-Kármán relation that can be found in [21, 13]. The coefficients and powers
in each of these correlations were estimated using the experiential data available at the time,
completely or partially combined with analytical methods. However, as more recent experi-
mental data including those by Österlund [11] and Nagib et al. [9] came out, it was shown by
Nagib et al. [10] that a major part of the existing correlations must be tuned up to achieve a
good agreement with high Re-number experiments.

Among all the available correlations, we look for those having less deviation from available
benchmark data, specifically at higher Re-numbers, while possessing a simple mathematical
formulation making it possible to analytically evaluate integrals arising in the grid estimation
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process, in section 3. The family of power law correlations is a suitable candidate satisfying
the above demands. Dependency between each two quantities among δ/x, cf , and different
Re-numbers can be established given two starting correlations along with combination of (1)
and the integral form of the streamwise momentum equation for ZPG-TBL which reads

cf = 2
dθ

dx
= 2

dReθ
dRex

. (2)

In Table 1, a summary of power law type correlations is presented. The oldest one is the 1/5th
law proposed by Prandtl in 1927 (as quoted in [21]), adjusted by low-Re experiments. The
1/7th law is the outcome of combining White’s [21] correlation, cf = 0.020Re−1/6δ , derived
from Coles’ law of the wake [3] along with an assumption for θ/δ to be constant and equal to
7/72, which corresponds to the 1/7th velocity profile. In these relations, δ was supposed to
be the theoretical thickness of the boundary layer. On the other hand, by combining the latter
assumption with cf = 0.02358Re−1/7x calibrated by Nagib et al. [10], the modified version of
the 1/7th law is derived.

In order to avoid making any presumption on the shape of velocity profile, it was chosen to
tune up cf = c1Re−m1

δ and δ/x = c2Re−m2
x based on Österlund’s experimental observations

[11] employing a least-squares technique and then derive other correlations using (1) and (2)
without any further ad-hoc assumption. The boundary layer thickness was taken to be δ99 (δ
at the point where TBL mean streamwise velocity becomes 0.99U0), which is a meaningful
measurable quantity in an experiment or simulation. However, it was observed that employing
the theoretical δ approximately obtained by plugging experimental values of cf in Coles’ law
[3], for instance, would lead to very similar results for the derived correlations between cf−Rex
and cf − Reθ.

Quantity Suggestion 1/5th law, [21] 1/7th law, [21] Modified 1/7th law
cf 0.0283Re−0.1540x • 0.058Re−1/5x 0.027Re−1/7x • 0.02358Re−1/7x , [10]
δ/x • 0.1222Re−0.1372x • 0.37Re−1/5x • 0.16Re−1/7x • 0.16Re−1/7x

cf • 0.01947Re−0.1785δ 0.0452Re−1/4δ • 0.02Re−1/6δ 0.0174Re−1/6δ

Reδ 0.1222Re0.8628x 0.37Re4/5x 0.16Re6/7x 0.16Re6/7x

Reτ 0.0145Re0.7858x 0.063Re7/10x 0.0186Re11/14x 0.01737Re11/14x

Reθ 0.0167Re0.8460x + cθ 0.0363Re4/5x 0.01575Re6/7x 0.01376Re6/7x

Table 1: Summary of the power law correlations for ZPG flat plate turbulent boundary layer. Symbol • represents
the starting relations in each set. In the first column, cθ = 373.83.

The variation of cf with Rex and Reθ estimated by different correlations is compared to the
experimental measurements as well as direct numerical simulation (DNS) data from different
sources over 5 · 105 ≤ Rex ≤ 1010 in Figure 1. It immediately follows from the the proposed
correlations that

cf = 0.0134 (Reθ − cθ)−2/11 ,
which with a constant-value cθ exhibits a good performance in the whole range of Re-numbers
compared to DNS data [12, 16, 17] and experiments [11, 9].

It is noteworthy that at low Re-numbers only cf = 0.024Re−1/4θ given by Smits et al. [18]
agrees with DNS of Schlatter and Örlü [12], besides the correlation suggested here. However, it,
along with the 1/5th law, diverges from the benchmark values and other curves as Re increases.

4



S. Rezaieravesh, M. Liefvendahl and C. Fureby

Figure 1: The friction coefficient, cf , versus (a) Rex and (b) Reθ. White’s correlation cf ≈ 0.455 [ln(0.06Rex)]
−2,

[21], is modified by replacing 0.455 with 0.4177 as suggested by Nagib et al. [10]. Österlund’s logarithmic fit:
cf = 2

[
1
κ lnReθ + C

]−2
with κ = 0.384 and C = 4.08 [11].

Figure 2: Reθ versus Rex predicted by correlations and given by experimtns.

Relatively better performance of the suggested cf − Reθ curve at low Re-numbers is mainly
due to the additive constant appearing when taking the integral of (2). By using the lowest Re-
number data among Österlund’s measurements [11], cθ is predicted to be 373.83. This constant
can also be seen as a single-point correction for x, taking into account the initial distance from
the plate leading edge through which the boundary layer could have been laminar and then
transited to turbulent. More detailed correction methods for the θ− x dependency can be found
in [10, 8].

According to Figure 2, the deviation between various predictions increases with Reθ which,
along with lack of experimental evidence, makes it impossible to draw a conclusion on the best
performance. However, as suggested by Nagib et al [10], for numerical estimation no preference
can be given to any correlation at high Re-numbers, although it is observed that the modified
1/7th and the suggested correlations are respectively the closest curves to Reθ = 0.016Re0.85x

fitted in 106 ≤ Rex ≤ 109 by Monkewitz et al [8] to their detailed asymptotic expansion for
θ(x), taking into account corrections for the virtual origin.

On the other hand, at high Re-numbers (say Rex > 109), the correlation Reθ = 0.01277Re0.8659x

proposed by Nagib et al. [10] behaves very closely to the 1/7th power law. But it must be em-
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phasized again that a concrete comment regarding accuracy of different correlations at very high
Re-numbers cannot be made.

3 A GRID ESTIMATE FOR NWM-LES

A grid estimate is derived in this section for NWM-LES of turbulent boundary layers. The
setting is a flat-plate ZPG-TBL, but the estimate is intended to be useful for NWM-LES of flows
with TBLs at curved walls as well. The derivation is applicable to any general unstructured grid
generation approach which allows for a change of grid resolution throughout the computational
domain. Isotropic grid elements/cells are considered, i.e. there is no systematic directional
stretching of grid cells.

As was also the case in [1, 2], the starting point is an expression for the growth of the
thickness of the TBL, along the flat plate, of the following power law form.

δ(x) ≈ αxReβx = α
(
U0

ν

)β
x1+β (3)

In the previous section, different suggestions for the coefficients α and β were given and their
agreement with experimental and DNS data was discussed. Note that another notation (ci) was
used there. The use of α and β here avoids subscripts. The derivation below is carried out
without fixing the coefficient values and can hence be used with all such suggestions of the
power law type.

A Cartesian coordinate system is used such that the free-stream velocity is directed in the
positive x-direction, and the plate is located at, 0 < x < l, y = 0, 0 < z < b. Thus the length
of the plate is l, and its width is b. The volume is divided into three different regions based
on the characteristics of the flow. The first region, denoted V1, is the fully developed TBL,
x0 < x < l, where equation (3) is an accurate description of the boundary layer thickness. Here
x0 is a suitably chosen location which has an important effect on the resulting grid estimate,
as discussed below. The second region, denoted V2, is the initial part of the boundary layer,
0 < x < x0. Typically, this includes laminar flow and then transition to turbulence in the
boundary layer. Here, the situation is considered when the focus is on the TBL (and not on
transition). Thus, it is only required to “initialize” the resolved fluctuations in the NWM-LES.
How this can be done with a numerical tripping device is briefly illustrated in the next section.
Finally, the third region is what remains of the domain in which the flow is to be simulated.
This region is discarded from the grid estimate, as it is well-known that the grid resolution
requirements are driven by the TBL, [1]. In the context of unstructured grid generation, a very
significant coarsening of the grid can then be used outside of the boundary layer.

In order to obtain the grid estimate, the local cell density is introduced, ρN(x) = ∆N/∆V .
Here, ∆N is the number of cells in the volume ∆V . The total number of cells in a volume V is
then obtained by integration,

N =
∫
V
ρN dV. (4)

For an unstructured grid with isotropic cells, and the cell size adapted to the local boundary
layer thickness, the cell density is given by ρN = n0/δ

3(x). Here n0 is the target value for the
number of cells in a cube with a side length equal to δ. In the literature, 103 < n0 < 104, is
considered to be a suitable range for NWM-LES, [1, 20, 4]. For definiteness, n0 = 2 500, as
suggested in the paper by Chapman, [1], is used below.
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The required number of cells in region V1 (the TBL) can now be estimated by,

N1 =
∫ b

0

∫ δ(x)

0

∫ l

x0

n0

δ(x)3
dxdydz = bn0

∫ l

x0

dx
δ(x)2

=
bn0

α2

(
ν

U0

)2β

I1, (5)

where the integral I1 is given by,

I1 =
∫ l

x0

dx
x2+2β

=
1

1 + 2β

(
1

x1+2β
0

− 1

l1+2β

)
<

1

1 + 2β

1

x1+2β
0

=: Ī1.

Here the last relation is used to define Ī1. The following somewhat surprising property is em-
phasized. In the limit l→∞, the integral I1 is finite (and has the value Ī1), whereas it diverges
as x0 → 0. Inserting the integral into equation (5) the grid estimate and its upper limit (denoted
N̄1), are obtained in the following forms.

N1 =
n0

(1 + 2β)α2

b

x0

(
1

Re2βx0
− x0

l

1

Re2βl

)
<

n0

(1 + 2β)α2

b

x0
Re−2βx0

=: N̄1 (6)

It is clear from this estimate that there is a significant clustering of cells for x ∼ x0, whereas
the grid cell coarsening for increasing x is rapid.

Next, the number of cells in the initial part of the boundary layer, region V2, is estimated by
assuming a constant cell density, ρN = n0/δ

3(x0), in a layer of constant thickness δ(x0), which
leads to,

N2 =
bx0n0

δ2(x0)
=
n0

α2

b

x0
Re−2βx0

. (7)

It is observed that the number of cells in this region is comparable to the number of cells in the
TBL, i.e. N2/N̄1 = 1 + 2β.

It is clear from the estimates (6) and (7) that x0 is a crucial parameter. It was introduced
above as a location after which the expression (3) is an accurate representation of the boundary
layer thickness. This is however not an exactly defined location. For definiteness, Rex0 = 5 ·105

is chosen, which is an approximate location of transition, and it is also a suitable choice for the
type of “tripped” LES which is illustrated in the next section. Thus, Rex0 is considered fixed
and, b/x0 = Reb/Rex0 , is inserted into the estimate for N̄1, see equation (6), to obtain,

N̄1 =
n0

(1 + 2β)α2
Re−1−2βx0

Reb.

From this expression, it is seen that it is the Re-number based on the plate width which deter-
mines the increase in grid cells with increasing Re-number. This fact was not clearly pointed
out in previous investigations, [1, 20, 2]. Another interesting fact is that N̄1 grows linearly with
Reb, and that the coefficient β only affects the proportionality constant.

The growth in the number of grid cells with increasing Re-number is illustrated in Figure 3.
Because of the role of x0 in the estimates, graphs are shown for two different aspect ratios
(b/l) of the plate, 4 and 1/4, respectively. Also included is the estimate from the paper by
Chapman [1],

NChap = 40
b

l
n0Re0.4l , (8)

and the estimate derived by Choi and Moin, [2],

NCM = 54.7
b

l
n0Re2/7l

( Rel
Rex0

)5/7

− 1

 . (9)
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Figure 3: Grid estimates for a flat plate as a function of Re-number based on the plate area, ReA = U0

√
bl/ν. To

the left the aspect ratio is b/l = 4, and to the right the aspect ratio is b/l = 0.25. The black lines (full, dashed,
and dotted, respectively) show the estimates proposed in the present paper, where N1 is given by equation (6), and
N2 is given by equation (7), and the parameters have the values α = 0.1222, and β = −0.1372, see Table 1. The
estimate by Chapman [1], blue line, is given by equation (8), and the estimate by Choi and Moin [2], green line, is
given by equation (9).

As clearly illustrated in Figure 3, the estimate by Chapman is by far the most optimistic, in the
sense that for high Re-numbers it leads to significantly lower estimates of the required number
of grid cells. The main reason for this is that Chapman, [1], does not use integration, i.e.
equation (4), to obtain the estimate. Instead an average boundary layer thickness over the whole
plate is used. That it is more appropriate to use integration was pointed out in [20, 2], and the
authors of the present paper agree with that assessment. Another remark is that the estimate by
Choi and Moin [2], equation (9), only takes into account the part of the TBL downstream of x0,
whereas the estimate N1 +N2, also addresses the initial part of the boundary layer.

4 NWM-LES OF A FLAT PLATE TURBULENT BOUNDARY LAYER

This section contains a brief description of the computational set-up and results for one large-
eddy simulation of a flat plate turbulent boundary layer. The first purpose is to illustrate what
predictive accuracy can be expected with the mesh resolution levels discussed in the previous
section. The second purpose is to demonstrate the practicality of the overall approach, including
components such as the numerical tripping device used to induce resolved fluctuations in the
boundary layer.

Quantity Notation Value Unit
Length l 2.000 m
Width b 0.200 m
Height h 0.133 m
Kin.visc. ν 1.65·10−5 m2/s
Velocity U0 20.4 m/s

Table 2: Parameters of the flat plate simulation. The plate has the aspect ratio 1/10, and the Reynolds numbers,
Reb=2.42·105, and Rel=2.42·106.

The simulation case parameters are summarized in Table 4, and they lead to a length-based
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Re-number of Rel = 2.42 · 106. In fact, this corresponds to the TBL approaching the contoured
ramp investigated by wind tunnel measurements in [19], and by LES in [7], which however
is irrelevant for the present investigation. At the inflow boundary, a constant velocity U0 is
prescribed in the x-direction. A “strip” of grid cells is used for the numerical tripping device.
In these cells the flow is perturbed by introducing a volume force in the momentum equation.
The variation of the volume force is random in space and time. The TBL develops along the
floor of the wind tunnel. On the lateral boundaries, periodic boundary conditions are used, and
on the top boundary patch no-slip is used. The subgrid model employed is the One Equation
Eddy Viscosity Model (OEEVM), [15, 7]. A wall model is used which modifies the viscosity
in the cell-layer adjacent to the wall, as described in [6].

Figure 4: Illustration of the simulated TBL flow. An iso-surface of the second invariant of the velocity gradient
is used to illustrate the turbulent structures in the boundary layer. The iso-surface is colored by the instantaneous
normalized axial velocity, vx/U0. The black lines show the edges of the simulation domain.

A simple grid was used, which consists of hexahedral cells equal in size and shape throughout
the domain. The number of cells was, 760×160×100=12 160 000. This means that the grid
adaption which is the basis of the grid estimates in the previous section, was not taken advantage
of. However, the average grid resolution in the TBL in the simulation is similar to what is
indicated in the grid estimates. Adopting the parameter values α = 0.1222 and β = −0.1372,
given in Table 1, N1 and N2 are estimated to be

N1 = 2.87 · 106,

N2 = 3.03 · 106,

while employing Chapman’s [1] and Choi-Moin’s [2] approaches results in

NChap = 3.61 · 106,

NCM = 1.96 · 106.

Therefore, the simulation results give a rough indication of the level of accuracy which can
be expected with the relevant grid resolution relative to the TBL thickness.
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Figure 5: Left: Graphs for the friction coefficient cf , and the shape factor H , as functions of Reθ. Right: Profiles
of the normalized mean velocity, 〈vx〉/U0, plotted versus y+, at Reθ = 1000 and 3000, respectively. Comparison
of NWM-LES with DNS data, [12].

The flow is shown in Figure 4, by an iso-surface of an invariant of the instantaneous velocity
gradient, to illustrate vortical structures in the TBL. In Figure 5, results from the NWM-LES
are compared with DNS-data, [12]. The comparison includes the friction coefficient, the shape
factor H = δ∗/θ (i.e. the quotient of the displacement thickness and the momentum thickness),
as well as mean velocity profiles at two stations along the flat plate. The curves for the friction
coefficient and the shape factor clearly indicate the adaption length of the NWM-LES boundary
layer. Overall, considering the significantly lower computational cost of the NWM-LES, as
compared to DNS, the agreement of the results is quite good. A detailed elucidation of the
discrepancies between the NWM-LES and DNS results is outside the scope of the present paper.

5 CONCLUDING REMARKS

A grid estimate has been derived for NWM-LES, as summarized in the expressions (6) and
(7), for the number of grid cells in the initial length and the fully developed TBL, respectively.
The derivation follows the approach of Choi and Moin [2], but it is more general as it holds for
any power law for δ. Another novel feature is that an additional grid estimate is proposed for
the initial length of the boundary layer, affected by transition. Furthermore, the grid estimate is
formulated in a new way to highlight the clustering of the grid in the region starting from the
leading edge of the plate up to Rex ∼ 106.

New power law coefficients are also proposed, based on a data fit to recent high-Re exper-
imental data. The coefficients are given in Table 1 together with a review of other proposed
values from the literature.

In section 4, a complete simulation methodology is demonstrated for NWM-LES of a flat
plate ZPG-TBL. The grid resolution level used in the simulation is comparable to that under-
lying the grid estimates. Note, however, that the type of grid coarsening and unstructured grid
generation approach discussed in section 3 is not applied in the example simulation of section 4.
The purpose of the simulation is to assess the predictive accuracy, with the relevant grid reso-
lution relative to the boundary layer thickness. This is accomplished by comparing the friction
coefficient, the shape factor and the mean velocity profile with DNS data.
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