
ECCOMAS Congress 2016 

VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10  June 2016 

 

 
 

 

 

COMPUTATIONAL METHOD OF DETERMINATION OF INTERNAL EFFORTS 

IN LINKS OF MECHANISMS AND ROBOT MANIPULATORS WITH 

STATICALLY DEFINABLE STRUCTURES CONSIDERING  

THE DISTRIBUTED DYNAMICALLY LOADINGS 

 

Zh.Zh. Baigunchekov
1
, M.U. Utenov

2
, N.M. Utenov

3
, S.K. Zhilkibayeva

4 

 
1 
Institute of Industrial Engineering, Kazakh National Research Technical University 

Almaty, Republic of Kazakhstan 

e-mail: bzh47@mail.ru 

 
2
Department of Mechanics, Kazakh National University 

Almaty, Republic of Kazakhstan 

e-mail: umu53@mail.ru 

 
3
Department of Mechanics, Kazakh National University 

Almaty, Republic of Kazakhstan 

e-mail: un.86@mail.ru 

 
4
Department of Mechanics, Kazakh National University 

Almaty, Republic of Kazakhstan 

e-mail: saltanatzhilkibayeva@gmail.com 

 
Keywords: Manipulators, Mechanisms, Distributed Inertia Forces, Internal Loads, Kinematic 

Characteristic, Animation. 

 

Abstract. The technique of analytical determination of internal loads in links of planar rod 

mechanisms and manipulators with static definable structures taking into account the 

distributed dynamic stress, a self weight and the operating external loads is designed in this 

paper. The programs using the MAPLE are made on the given algorithm and animations of 

the motion of mechanisms with construction on links the intensity of cross and longitudinal 

distributed inertia loads, the bending moments, cross and longitudinal stress, depending on 

kinematic characteristics of links are obtained. 
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1 INTRODUCTION 

There are a variety of graph-analytical and numerical calculation methods on durability 

and rigidity of rod robotic systems and mechanisms, in which the distributed inertia forces of 

difficult character aren't considered [1-4]. The groups of Assur, that form the designed 

scheme of mechanism, can be statically definable, and also statically indefinable in concept of 

determination of internal stress. In this paper a new analytical approach of solution of 

problems of dynamic calculation on durability and rigidity taking into account the distributed 

dynamic stress in links of robotic systems and mechanisms with statically definable structures 

is proposed. 

The distributed inertia forces of difficult character appear in links of rod mechanisms 

within the motion process. The intensity of distribution of inertia forces along the link 

depends on the mass distribution along the link and the kinematic characteristics of the 

mechanism changing rapidly. Rise of that sort of loads causes a set of problems, namely, 

breaking problems, which are specified by large-scale inertia forces; significance of elastic 

deformation of mechanism, that puts the mechanism out of action; because of deformation of 

links the mechanism can’t meet kinematic claims. 

Therefore, relations between the intensity of distributed inertia forces and a self weight of 

links with geometrical, physical and kinematic characteristics are determined in our work. 

The laws of distribution of inertia forces and self weight allow to output laws of distribution 

of internal forces on the axis of link in each position of links, where there is a force attached 

to any point of a link. Their maximum values allow to optimize the design data of a link, 

which provides durability and rigidity of links and, entirely, of robotic systems and 

mechanisms. 

As internal loads of each continual link are defined unambiguously by a set of internal 

loads in its separate cross-sections and by the matrixes of approximations, so the task is to 

calculate the internal loads in finite number of cross-sections of elements. 

As a result, we refer to discrete model of elastic calculation of links of rod mechanisms. 

For elastic calculation of rod mechanisms based on Dalamber's principle, mechanisms are 

casted to structures which degree of freedom is equal to zero. For definition of internal loads 

in links of designed scheme of mechanism, the structure is divided into elements, both the 

hinged and rigid joints. The elements are divided into three types of beams for the first time. 

Discrete models of these three types of the beams with constant cross-sections which are 

under the action of cross and the longitudinal distributed loads of a trapezoidal view are 

constructed. The constructed discrete models for these three types of beams with constant 

cross sections along the axis allow to determine quantity of the independent dynamic 

equations of balance, components of a vector of forces in calculated cross-sections and to 

construct discrete model of all structure. 

The dynamic equations of balance for discrete model of an element of the link with 

constant cross-sections which is under the influence of cross and longitudinal inertial loads of 

a trapezoidal look are also received in this work as well as the equations of balance of hinged 

and rigid knots expressed through required parameters of internal forces.  

If we unite the equations of dynamic balance of elements and knots in one system, we will 

receive the equations of dynamic balance of all discrete model of system. A sort of systems of 

equations is sufficient for definition of internal forces in links of mechanisms, which structure 

is a static definable. The vector of forces and vector of loads in calculated cross-sections of 

discrete models of mechanisms are formed from vectors of forces and vectors of loads in 

calculated cross-sections of their separate elements. On the given algorithm  the programs in 

the MAPLE system are made and animations of the motion of mechanisms with construction 
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on links the intensity of cross and longitudinal distributed inertia loads, the bending moments, 

cross and longitudinal forces, depending on kinematic characteristics of links are obtained. 

 

2. INERTIA FORCES AND MATRIX OF APPROXIMATIONS 

 

Considering the plane-parallel motion of an kth link of mechanism with constant cross-

sections comparatively fixed system of coordinates OXY, the following laws of distribution of 

the cross and longitudinal inertia forces along a link, that arise from self mass of a link are 

defined [5]: 
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2 ,k k

kn k k

A
b

g


  - an angle, which determines the position of the kth link comparatively fixed 

system of coordinates OXY, respectively, kk  , - angular velocity and angular acceleration of 

the kth link, respectively, 
'
kx

kpw  и 
'
ky

kpw - components of kP (pole) point acceleration of the kth 

link put on the axis of link and perpendicular to it, respectively,  k - specific weight of 

material of  the kth link, kA - square of cross-section of  the kth link, g - acceleration of 

gravity. 

The obtained expressions show that the distribution of cross and longitudinal inertia forces 

along the axis of link with constant cross-sections is characterized by trapezoidal law. 

For the kth link, which is under the influence of longitudinal trapezoidal distributed stress, 

Fig. 1, the bending moments along the length of element are distributed by the law of 

polynomial of third-degree. 
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Figure 1: Longitudinal trapezoidal distributed load acting on the element 

 

Now, let express the bending moments in '

kx  cross-section through the sought bending 

moments 4321 ,,, kkkk MMMM  in the cross-sections demonstrated in Fig. 1, respectively.  

For this purpose it is enough to express coefficients 3210 ,,, aaaa  through 4321 ,,, kkkk MMMM . 

As a result we have [6]: 
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Differentiating  '

kk xM  to '

kx  gives the equation of shear force: 
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Let the element be affected by the longitudinal trapezoidal distributed load, except the 

distributed shear force. In that case, the longitudinal force in arbitrary cross-section of an 

element can be expressed analogously to previous by means of longitudinal forces in 

calculated cross-sections as follows: 
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Thus, for the element which is acted by cross and the longitudinal trapezoidal distributed 

loads, the approximation matrix connecting internal loads in arbitrary cross-section of the 

element with values of internal loads in cross-sections has an appearance: 
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Elements of the first line of this matrix can be seen from the Eq. (3), elements of the second 

line can be seen from the Eq. (4), and elements of the third line can be seen from the Eq. (5), 

respectively. 

 The given expression of a matrix of approximation of loads defines dependence between a 

vector of forces   '

kk xS
 
in arbitrary section of an '

kx
 
element and a vector of forces  kS

 
in 

the appointed cross-sections. For an element of rod system the matrix of approximation is 

obtained accurately as it is solved on the basis of known laws of distribution of sought forces. 

Note, the equations of the bending moment, the cross and longitudinal forces (3,4,5) 

respectively, which are expressed by the same values in calculated cross-sections, show that 

for definition of internal loads of each element of the mechanism it is enough to know values 

of these loads in final number of cross-sections of each of these elements. Number of sections 

in which it is necessary to know values of internal loads, are defined by polynomial degrees of 

external actions. Thus, internal loads of each continual link are determined unambiguously by 

a set of internal loads in its separate cross-sections and by the matrixes of approximations, 

therefore, the task is reduced to calculation of internal forces in final number of cross-sections 

of elements. Hence, we come to a discrete model of elastic calculation of links of rod 

mechanisms.  
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3. DISCRETE MODELS OF ELASTIC CALCULATION OF ELEMENTS AND 

MECHANISMS IN GENERAL 
 

For elastic calculation of rod mechanisms based on Dalamber's principle, all inertial, 

external forces, gravity of links are attached and the unknown driving moments (forces) are 

applied to support assigned laws of their motion. If the ground hinges connecting drive link 

with rigid fixed-end are replaced, then the frames which joint is equal to zero are received. 

For definition of internal stress in links (in elements) of calculated scheme of mechanism, 

the frame is divided into elements and joints. The link or its part can act as the elements, 

whereas the joints are ground hinges connecting links and cross-sections in the middle part, 

where concentrated external stress is occurred. 

The process of frame sectioning consists of giving function and signs for element calculated 

section. While dividing the elements of calculated scheme of frame into calculated cross-

sections and joints, it is necessary to set what internal relations between elements are 

remained or removed. If we reject any internal relations or their combinations in the element, 

so the element breaks up to two elements which can turn, move or be removed relatively each 

other. With the purpose to prevent it, internal forces-loads have to be applied at the joint 

rejecting places. Thereafter, these loads are regarded as primary unknowns. 

Let’s decompose an element of planar rod mechanisms on three types of beams, for 

convenience of working up the solving equations to determine the internal loads in the 

appointed cross-sections of elements of the mechanism [7]. 

Such beams can be the rods of basic linkage, if they are connected among themselves 

rigidly. 

 

 

 
 

 

Figure 2: Beam’s both ends are fixed rigidly (first type of a beam) 

 

For determination of coefficients of expressions of the bending moment, it is necessary to 

know values of the bending moments in four cross-sections, and for determination of 

coefficients of expressions of longitudinal force, it is necessary to know values in three 

sections of an element. Therefore, we will choose four sections with unknown bending 

moments and three sections with unknown longitudinal forces in this beam. Then, by means 

of conditional schemes with the corresponding unknown, we will construct discrete model of 

the considered beam, Fig. 3. 

 

 

 

 

 

 

 
 

 

Figure 3: Discrete model of the first type beam under the action 

 of the distributed trapezoidal load 

 

Then the vector of forces in calculated cross-sections of the beam’s discrete model is 

expressed by the following vector: 
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   T

kkkkkkkk NNNMMMMS 3214321 ,,,,,,                             (7) 
 

There is dependence between degree of freedom of discrete model m , number of the 

attached external loads n  and degree of redundancy of calculated scheme k  [8]: 
  

knm                                                          (8) 
 

The matter is that total number of loads n  of calculated cross-sections is counted easily, and 

degree of  redundancy of calculated scheme is obtained by formula ,3 ШKk   where K - 

number of the closed contours, Ш - number of simple (single) joints, k - degree of  

redundancy of calculated scheme of mechanism. 

Degree of freedom of discrete model m  determines the quantity of necessary independent 

equations of statics. 

Let’s define the degree of freedom of discrete model of this beam. For this discrete model of 

beam the number of unknowns 7n , the redundancy of beam 3k , so the degree of freedom 

of discrete model .4m  In other words, it is possible to work out four independent 

equilibrium equations for this discrete model of beam. 

 

 
 

Figure 4: Discrete model of the four-link mechanism 

        with constant cross-sections of links 

 

The second type of an element is this beam, which one end is fixed rigidly and other end – 

joint-fixed. As an example, it can be drive links of planar rod mechanisms. The elements of 

the third type are beams of interlinks. They can be considered as the beams joint-fixed on the 

ends. The discrete models for beams of the second and third type are constructed similarly to 

the first type of beams. 

The discrete model of the four-bar mechanism is constructed on Fig. 4; all sought values are 

shown here, these help to define all internal forces in any cross-section of rods of the 

mechanism. 

For the first link (the second type of a beam) of this mechanism the vector of forces in cross- 

sections  1S  has the following components: 
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   T
NNNMMMS 1312111312111 ,,,,,                                        (9) 

 

For the second and third links (the third beam type) regard to this mechanism, the vector of 

forces in calculated cross-sections have the following components, respectively: 
 

       TT
NNNMMSNNNMMS 3332313332323222123222 ,,,,;,,,, 

 
           (10) 

 

For all discrete model of the mechanism the vector of forces in calculated cross-sections has 

an appearance: 
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4. DYNAMIC EQUATIONS OF EQUILIBRIUM OF DISCRETE MODELS OF 

ELEMENTS AND JOINTS 
 

Let’s remove the equations of dynamic equilibrium of an element. From the attached 

concentrated external loads  11, kk MQ  and from the cross trapezoidal distributed loads on the 

axis of element, in arbitrary cross-section of '

kx  element there is a bending moment 

determined by Eq. (2). On the other hand, the bending moment in cross-section of '

kx  

element, which is expressed through the sought moments in calculated cross-sections, is 

solved by Eq. (3). 

If the Eq. (2) and Eq. (3) will be differentiated three times on '

kx , then they will be equated 

and substituted to value
kqb , respectively, then the primary equation of dynamic equilibrium of 

element will be: 
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Relation between the values of the unknown quantities of bending moments in the calculated 

cross-sections and geometric, physical and kinematic characteristics of kth element of 

mechanism is found. Thus, the second equation is expressed through relation of the sum of 

moments of all the acting forces on k - element to center of gravity of 4k  cross-section, Fig. 

1: 
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coefficients of unknowns of the same name, and also known quantities in the right end of the 

equation, the second equilibrium equation can be written as: 
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From the longitudinal trapezoidal distributed loads acting on the element, as well as from the 

force 1kN  of the 1k  cross-section, in the '

kx  cross-section of element the longitudinal force is 

occurred, which can be solved by equation: 
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On the other hand, the longitudinal force in the '

kx  cross-section of the element, expressed 

by means of longitudinal forces in the calculated cross-section, has the form (5). 

Differentiating twice on '

kx  the Eq. (12 and 5), respectively, equating them and substituting 

the value knb , the third equation of equilibrium can be expressed as: 
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Projecting all forces acting on the kth element on the '

kx axis and substituting the values

knkn ba ,  the third equation of equilibrium is found. Thus 
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Obtained system of equation, which consist of Eq. (9), (11), (13) and (21) are assembled in a 

matrix form as: 
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Then, in the section of the element adjacent to the site (for kinematic pair) there are internal 

forces, as shown in Figure 5. For these units have two equilibrium conditions: 

Let the two elements j  and k  of mechanism form a rotational kinematic pair, i.e. permit 

rotational motion relative to each other. Also let the length of these elements has a constant 

cross-section. Cut out of the mechanism a kinematic pair with surrounding cross-sections of 

the elements constituting this pair. Then, in the cross-section of the element adjacent to the 
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joint (to kinematic pair) there are internal loads, as shown in Fig. 5. There are two equilibrium 

conditions for these joints: 

 

 
 

Figure 5: The hinge joint mechanism with constant cross-section elements 

 

The equation of equilibrium for this joint can be described as: 
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Further, the values will be expressed by means of sought moments in the calculated cross-

sections of discrete model of the element, for this purpose we use the Eq. (4), substituting 

here the values 0' kx  and jj lx '
, respectively, hence: 
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Now, substituting the values 1kQ  and 
4jQ  in the Eq. (19), the following equilibrium 

equations for joint have an appearance: 
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The linkage cross-sections can be as rigid joints, the concentrated external loads are attached 

here. For example, the concentrated forces '
kkx

P , '
kky

P  and the concentrated moment kM
 
are 

occurred in the G  cross-section of kth link, Fig.5. 

Then the k  link is divided into two elements, for k th and i th. If the cross-sections of 

elements are constant along the length of the link, then by means of cutting the G joint out of 

mechanism, the scheme of G joint with adjacent internal loads in cross-sections is displayed 

below. For this joint it is possible to write the three equilibrium equations that are expressed 

through sought parameters of elements. 
 

 
 

Figure 6: Rigid joints of a link with a constant cross-section of elements, 

where the external concentrated forces are attached 

 

5. RESOLVING EQUATIONS OF DETERMINATION OF INTERNAL FORCES 
 

By combining the equilibrium equations of elements and joints into a single system, the 

equilibrium equations of the discrete model of entire mechanism is obtained. They can be 

written in general form: 
 

    FSA                                                            (21) 
 

Such systems of equations are sufficient to determine the internal forces in the links of the 

mechanism, which frame includes a statically definable group of Assur. 

The matrix of equilibrium equations for the discrete model of mechanisms consists of 

matrices of equilibrium equations of their individual elements, as well as the equilibrium 

equations of their joints. The matrix of dynamic equilibrium equations of discrete models of 

mechanisms is as follows: 
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 The vector of force and the vector of load in calculated cross-sections for discrete models of 

mechanisms is formed by vector of forces and loads in calculated cross-sections of their 

separate elements. These vectors in vector form, respectively, have the following species: 
 

               T

n

T

n SSSSFFFF .,.,.,;.,..,, 2121 
 

 

Now, for determination of internal loads in links, we give an example of six-bar second class 

mechanism with single drive linkage as shown in Fig. 7. The computer programs for 
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determination and construction of the inertia forces and internal loads on the links by means 

of using the MAPLE system are made. Therefore, the results of obtained inertia forces and 

internal loads for some positions of the mechanism are shown in Figs. 7-12. 
 

 

 
 

Figure 7: A six-bar second class mechanism with single drive linkage 

 

 
 

Figure 8: The investigating mechanism, 

on which links the diagrams of cross inertia forces are constructed 

 

 
 

Figure 9: The investigating mechanism, 

on which links the diagrams of longitudinal inertia forces are constructed 
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Figure 10: The investigating mechanism, 

on which links the diagrams of bending moments are constructed 

 

 

 
 

Figure 11: The investigating mechanism, 

on which links the diagrams of shearing forces are constructed 

 

 

 
 

 
 

Figure 12: The investigating mechanism, 

on which links the diagrams of longitudinal forces are constructed 
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6. CONCLUSIONS 
 

The developed technique can be applied in the study of stress-strain state of the projected 

and existing mobile and fixed beam systems with statically definable structures (planar rod 

mechanisms, manipulators, frames, etc.).  
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