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Abstract. The present study deals with the modeling of quasi-brittle softening phenomena 
using the two dimensional C1 continuity triangular finite element. The formulation of damage 
model is based on an isotropic damage law applied to the higher-order stress-strain 
constitutive relations originating from the full strain gradient theory. Both homogeneous and 
heterogeneous materials are considered by employing the second-order homogenization 
procedure to obtain the required constitutive matrices. For this purpose, two different 
heterogeneous representative volume elements are employed, where the results of the 
softening analyses are compared with those obtained for the corresponding homogeneous 
materials with equivalent internal length scales. The derived finite element formulation is 
implemented into the finite element program ABAQUS using user subroutines. Finally, 
accuracy and efficiency of the proposed higher-order gradient model are demonstrated by the 
modeling of a stretched plate weakened in the middle, usually used as a benchmark in strain 
softening analyses.  
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1 INTRODUCTION 

A large number of engineering materials, such as high-strength steels, polymers, 
composites, concrete and rocks can be classified as quasi-brittle, since they exhibit negligible 
plastic behavior before and after the damage is initiated, causing the material to soften 
immediately after reaching the maximum elastic deformation. It is well-known that the 
application of the classical continuum mechanics cannot properly resolve strain softening 
because it leads to the local loss of positive definiteness of the material tangent stiffness. As a 
consequence, the differential equations which describe the deformation process may result in 
the loss of ellipticity. Mathematical description of the model than becomes ill-posed and 
numerical solutions do not converge to a physically meaningful solution [1]. In view of the 
finite elements, solutions are completely dependent on the discretization, with respect to mesh 
refinement and mesh alignment. Energy dissipated in the fracture process tends to zero when 
the size of the elements involved in the softening process is reduced, and the localization zone 
exhibits an extreme tendency to propagate along the mesh lines [2]. Various regularization 
techniques have been developed in the past few decades to overcome this problem. Most of 
them are based on the improvement of the classical continuum model, precisely on its 
enrichment with the internal length scale parameters in several different ways. Micropolar [3] 
and viscoplastic theory [4] can preserve the ellipticity only in some specific cases, while the 
theories related to the nonlocal material behavior have been shown to be the most versatile. In 
the case of the nonlocal models, stress at a material point does not depend only on the strain 
and other state variables at this point, as it is the case with the classical continuum theory, but 
also on the strains and other state variables of the points in the surrounding area. The 
magnitude of this interaction is described by the aforementioned internal length scale 
parameter, which represents the microstructure of the material [5]. Basically, there are two 
different approaches when it comes to describing of non-locality in the model, integral and 
gradient-enhanced approach. The integral approach, introduced in [6], is based on spatial 
averaging of the state variables, typically strains, in the finite neighborhood of a certain point, 
leading to the very complicated constitutive relations made of convolution-type integrals. The 
gradient approach enhances the constitutive relation either by incorporation of the strain-
gradients or by introduction of both strain-gradients and their stress conjugates. In case when 
only strain-gradients are used as an enhancement of the constitutive relation, explicit and 
implicit gradient formulations are usually used when dealing with softening, either in 
elasticity context [7], plasticity context [8] or in the analysis of the elastic wave propagation 
[9]. The second type of gradient approaches where both strain-gradients and their stress 
conjugates enter the constitutive relation has been employed less often, mainly because it is 
numerically more complex. In the recent developments, higher-order stress-strain theory has 
been employed in the context of a damage modeling of an infinitely long bar, where the 
authors concluded that the addition of the higher-order stress terms results in stabilizing the 
positive definiteness of tangent stiffness moduli when entering the strain softening regime. In 
such a way physically consistent solutions can be ensured and strain-softening phenomenon 
can be realistically reproduced [10]. Further development from one-dimensional to multi-
dimensional simulation of a localized failure process has been made in [11]. In [10] and [11] 
element-free Galerkin (EFG) meshless method has been used for finding the approximate 
solutions to the corresponding boundary value problems. Another advantage of the higher-
order stress-strain theory is that it can easily introduce material heterogeneity in the 
constitutive relations through the non-diagonal higher order material stiffness tangents [12]. 
The stiffness tangents can be obtained by applying the second-order homogenization 
technique on the representative volume element (RVE) [13]. 
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This paper presents formulation and numerical implementation of the higher-order stress-
strain damage theory into the C1 continuity displacement based finite element developed in 
[14]. Herein, continuum damage mechanics is realized in its simplest form through isotropic 
damage model. Similar consideration of quasi-brittle damage response has been presented in 
[15]. The proposed damage algorithm is verified on the benchmark example where both 
homogeneous and heterogeneous materials are employed. 

2 FORMULATION OF THE C1 FINITE ELEMENT FOR SOFTENING ANALYSIS 

In this section, an extension of the C1 continuity finite element presented in the authors’ 
former work [14] for the application in a softening regime is described. The developed finite 
element formulation is based on a small strain second gradient continuum theory for which 
more details can be found in [16]. Here the basic relations of the damage constitutive model 
are presented, and afterwards derivation of the finite element with a softening behavior is 
shown. 

2.1 Damage constitutive model  

The isotropic damage constitutive model describing the reduction of the elastic stiffness 
properties in quasi-brittle materials is based on the following stress-strain relationship [17] 

  1 D σ Cε , (1) 

where D is a scalar damage variable ranging from 0 (undamaged) to 1 (damaged), while σ , ε  
and C  are tensors referring to Cauchy stress, strain and elastic stiffness, respectively. In this 
contribution, a simple linear damage evolution law is chosen [5] 
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where 0k   and uk   are the material parameters representing the threshold strain at which 

damage is initiated, and the strain at which material completely loses its stiffness, respectively. 

eqv  is the equivalent elastic strain measure which, considering the damage only due to tensile 

strains, can be expressed as 

    2 2

1 2 1 2for , 0eqv        (3) 

with 1  and 2  as principal strain components of the strain tensor ε . 

2.2  C1 triangular finite element for softening analysis 

The C1 continuity plane strain triangular finite element proposed in [14] shown in Fig. 1 is 
used in the formulation derived in this contribution. The element has three nodes and 36 
degrees of freedom with the displacement field approximated by the full fifth order 
polynomial. The nodal degrees of freedom are the two displacements and their first- and 
second-order derivatives with respect to the Cartesian coordinates.  
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Figure 1: C1 triangular finite element [14] 

As usual, the element equations are derived from the principle of virtual work, which may 
be expressed for the strain gradient continuum as 

  δ d δ d δ d δ grad dT T T T

A A s s

A A s s     ε σ η μ u t u T , (4) 

where A and s are area and perimeter of the element, respectively. In Eq. (4), η  represents the 
second-order strain tensor containing second derivatives of the displacement vector u , while 
μ  is the work conjugate of the second-order strain, the so-called second-order stress or double 
stress tensor. t  and T are the traction tensor and the double traction tensor, respectively. The 
stress and the second-order stress increments, σ  and μ , are computed by the incremental 
constitutive relations which, for the undamaged material are defined as 
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Herein, C , C , C  and C  are the constitutive tangent matrices which can be computed 

from the appropriate RVE using the second-order homogenization procedure. In case of 
material homogeneity, the constitutive tangent matrices C  and C  are assumed to be zero 

[12]. The remaining two tangent stiffness matrices can be found analytically [18], which may 
be written symbolically in the form 
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where L denotes the size of the microstructural representative volume element. It is well-
known that, in the second-order computational homogenization scheme, the RVE size L is 
linked to the internal length scale l of the higher-order continuum as  
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After application of the isotropic damage law, Eq. (1), to the constitutive relations, Eq. (5), 
the constitutive damage model may be expressed in the form 
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where the stress and the second-order stress increments are computed from the values of the 
last converged equilibrium state (i–1). Here the incremental change of the damage variable is 
approximated by 

 
1

d

d

i
D

D


    
 

ε
ε

. (9) 

Employing the relations given in [14], the strain and second-order strain increments can be 
expressed in terms of the nodal displacement increment vector v  by the relations 
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where Bε and Bη are the matrices containing corresponding the first and second derivatives of 
the element interpolation functions. Substituting Eqs. (8)-(10) into Eq. (4), and after some 
straightforward manipulation, the following finite element equation is obtained 

   e i        K K K K v F F ,  (11) 

where the particular element stiffness matrices are defined as 
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The external and internal nodal force vectors, eF  and iF , in Eq. (11) are defined as 
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2.3 Analysis procedure 

The block diagram which concisely shows the analysis procedure is presented in Fig. 2. 
The first step of the analysis is a preprocessing step and includes application of the second-
order homogenization procedure to the appropriate RVE in order to obtain required 
constitutive stiffness tensors. As the linear elastic material behavior is considered in the 
presented damage analysis, the homogenized solutions do not depend on the macroscale 
deformation. Therefore, the homogenization has to be performed only once in each analysis. 
The homogenized stiffness tensors enter the constitutive relations, remaining constant until 
the end of the nonlinear damage analysis. When damage is initiated in the model, all stiffness 
tensors are being reduced by the term including the damage variable, as it can be seen from 
Eq. (8). In each finite element integration point, the incremental procedure is carried out, 
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where the stress and double stress tensors are calculated from the updated strain tensor, 
second-order strain tensor and damage variable, as well as the stiffness tensors obtained in the 
preprocessing step. The presented damage formulation has been implemented into the two-
dimensional C1 continuity triangular finite element [14] using the FE program ABAQUS and 
its user element subroutine UEL [19]. 

 
Figure 2: Scheme of the damage algorithm 

3 NUMERICAL EXAMPLE 

The algorithm presented above is verified on a benchmark problem already studied in [11] 
assuming homogeneous material. Here, the analysis is extended to heterogeneous materials. 

As an example, a rectangular plate with an imperfect zone under tension is considered. The 
geometry and boundary conditions are shown in Fig. 3. The constitutive properties have been 
set to: Young’s modulus 220000 N/mmE  , Poisson’s ratio 0.25  , limit elastic strain 

0 0.0001k  , equivalent strain corresponding to the fully damaged state 0.0125uk  . The 

model is loaded by the horizontal displacement of 0.0325 mm at the right edge. In order to 
trigger localization, the Young’s modulus is reduced by 10% in a 10 mm wide zone in the 
middle hatched area of the plate. 

 
Figure 3: Geometry and boundary conditions of the plate model 

The verification of the presented damage model is made using the results from [11], where the 
solutions are obtained in the same numerical example by means of the EFG meshless method. 
Therein, the constitutive tensors are derived for materials with granular microstructure, so the 
underlying microstructural theory differs when compared with the second-order 
homogenization approach. The constitutive model is restricted only to homogeneous materials, 
where the corresponding stiffness tensors are similar to those shown in Eq. (6). In [11] the 
stiffness tensors have been expressed in terms of the particle radius r and they are used for the 
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computation by means of the proposed algorithm. The damage responses obtained for the 
same microstructural values and using different approaches are presented in Fig. 4.  

 
Figure 4: Comparison of damage profiles along the horizontal central axis obtained using the presented damage 

model with the results from the literature  

As can be seen from Fig. 4, the calculated damage profiles show very good agreement with 
the solutions from the literature. The figure also illustrates the effect of the microstructural 
size on the behavior of the macroscale continuum. The increase in microstructural values 
leads to the expansion of the localization zone.  

The evolution of the damage contour obtained with the microstructural parameter l = 1.5 
mm using the analytical expression of the constitutive tensors from [18], for the plate 
considered under imposed end displacement of u = 0.0325 mm is presented in Fig. 5. For the 
same microstructural parameter and the displacement, the contour plot of the equivalent 
elastic strain eqv  is displayed in Fig. 6. 

 
Figure 5: Distribution of damage D for homogeneous material and internal length scale parameter l = 1.5 mm at 

u = 0.0325 mm 
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Figure 6: Distribution of equivalent elastic strain eqv  for homogeneous material and internal length scale 

parameter l = 1.5 mm at u = 0.0325 mm 

In the analysis of the heterogeneous material, the full form of the incremental constitutive 
relations represented by Eq. (8) has to be solved. Therefore, the second-order homogenization 
has to be applied in the preprocessing step to obtain the material stiffness tensors. Here, two 
cases of simple academic RVE examples are analyzed and compared to the corresponding 
homogeneous solutions, i.e. the solutions emerging from the corresponding homogeneous 
materials of the same internal length scales. The two RVEs considered have the same average 
hole radius aver  and porosity e, but different size L, as shown in Fig. 7. 

 
Figure 7: Comparison of damage profiles along the horizontal central axis obtained for two heterogeneous 
materials represented with RVEs of the same average hole radius rave and porosity e, but different size L 

In case of the smaller RVE, damage profile shows notable deviation from that obtained 
using the corresponding homogeneous material, while these differences are much smaller for 
the bigger RVE. This behavior can be explained with the positions of the holes as well as their 
distributions in the RVEs. These different damage responses can be confirmed by looking at 
the component values in the stiffness tensors C  and C , which are much bigger for the 

smaller RVE. It is to note that the influence of the RVE size and average hole radius on the 
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damage response of heterogeneous structures is one of the open questions and should be 
investigated in forthcoming research. 

4 CONCLUSIONS 

A new computational approach employing the full strain gradient theory for the modeling 
of quasi-brittle softening phenomena has been proposed. This model is based on the isotropic 
damage law so that the material tangent stiffness matrices appearing in the constitutive 
relations are pre-multiplied by the same term governing the damage process. The highly non-
linear softening model is implemented into the triangular C1 element using the FE software 
ABAQUS and provided UEL subroutines. The capabilities of the proposed computational 
strategy to simulate the strain localization has been demonstrated in a typical benchmark 
example consisting of a plate with an imperfect zone subjected to a tensile load. The 
verification of the algorithms derived has been made by the comparison with the solutions 
available in the literature, where the same problem has been analyzed using the EFG meshless 
method. Both homogeneous and heterogeneous material have been considered, where the 
latter is done by employing the second-order homogenization procedure to obtain the required 
material stiffness matrices. The homogeneous material has been analyzed employing the 
analytic expressions for the calculation of the stiffness matrices, and the softening state of the 
plate just prior to failure has been displayed by the contour plots of the damage variable and 
equivalent elastic strain field distributions. The heterogeneous material has been analyzed 
using the two different RVEs, where the damage responses have been compared to the 
homogeneous structures. It has been observed that the results depend on the RVE size and the 
number and position of the holes. The influence of heterogeneity on damage behavior requires 
more detailed studies which will be a topic of further research.   
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