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Abstract. Discontinuous Galerkin (DG) methods are attractive tools to integrate several PDEs
in engineering sciences, due to their high order accuracy and their high scalability in parallel
simulations. The main interest of this work is to derive a constant and stable Discontinuous
Galerkin method for two-way electro-thermal coupling analyses.
A fully coupled nonlinear weak formulation for electro-thermal problems is developed based
on continuum mechanics equations which are discretized using the Discontinuous Galerkin
method. Toward this end, the weak form is written in terms of energetically conjugated fields
gradients and fluxes.
In order to validate the effectiveness of the formulation and illustrate the algorithmic properties,
a numerical test for composite materials is performed.
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1 INTRODUCTION

There has been increased a recent interest in electro-thermal coupling due to its application
in energy conversion [3, 4, 7, 8].
The objective of this paper is to extend the DG method to study steady state and response of
electro-thermal material model taking into account the Peltier and Seebeck effects.
Some of the features of DG methods include the use of structured grid and high order approx-
imation, hp adaptivity as there is no need for continuity requirement across element interfaces,
and the flexibility in terms of mesh design. However, for practitioners, it is important to have
methods available which yield reliable results for a wide variety of problems. By using stabi-
lization techniques and inter element flux definitions, the shortcomings of non-stabilized DG
methods can be overcome.
Recently, DG has been used to solve coupled problems. For instance a primal DG method
with interior penalty (IP) terms has been proposed in [10] to solve coupled reactive transport
in porous media. A DG method has also been used in [9] to solve the thermo-elastic coupling
problems due to temperature and pressure dependent thermal contact resistance.
We have recently extended the DG method to solve electro-thermal coupled problems in terms
of energetically conjugated fields gradients and fluxes [1], which to the authors knowledge, has
not been introduced yet. In [1], the numerical properties of the nonlinear elliptic problem, fol-
lowing the method proposed in [2, 5], have been derived. In particular, the convergence rates
of the error in both the energy and L2-norms have been shown to be optimal with respect to the
mesh size in terms of the polynomial degree approximation k (respectively in order k − 1 and
k).
The new formulation proposed in this paper is able to capture the electro-thermal effects, which
describe the direct conversion of electric potential difference into temperature difference and
vice versa. In addition it is able to effectively capture the electro-thermal behavior of the com-
posite materials. This paper is structured as follows. In Section 2, the electro-thermal govern-
ing equations are discussed. In Section 3, the DG weak form of electro-thermal coupling is
presented. Numerical results in the response of composite materials are shown in Section 4.
Section 5 is dedicated to the concluding remarks.

2 Governing equations

Let us consider a volume Ω and let the boundary of the domain ∂Ω be the union of two
disjoint sets: the Dirichlet boundary, ∂DΩ and Neumann boundary, ∂NΩ.
The first balance equation is the electrical charge conservation equation

∇ · jjje = 0 ∀ xxx ∈ Ω, (1)

where jjje denotes the flow of electrical current density vector, which is defined as

jjje = lll · (−∇V) + αlll · (−∇T). (2)

In this equation α is the Seebeck coefficient, and lll is the electric conductivity .
The second balance equation is the conservation of the energy flux

∇ · jjjy = −∂ty ∀ xxx ∈ Ω. (3)

The right hand side of this equilibrium equation is the time derivative of the internal energy
density y

y = y0 + cv T, (4)
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which consists of the constant y0 independent of the temperature and of the electric potential,
and of the volumetric heat capacity cv multiplied by the absolute temperature T.
Moreover the energy flux jjjy, which is a combination of the inter exchanges between the thermal
and electric energies, is defined as

jjjy = qqq + Vjjje, (5)

where, qqq is the heat flux, defined as

qqq = kkk · (−∇T) + βα jjje = kkk · (−∇T) + αTjjje (6)
= (kkk + α2 Tlll) · (−∇T) + αTlll · (−∇V). (7)

In this equation kkk denotes the thermal conductivity and βα = αT is Peltier coefficient.
First we rewrite the equations (2, 5, 6) under the form

jjj =

(
jjje

jjjy

)
=

(
lll αlll

Vlll + αTlll kkk + αVlll + α2Tlll

)(
−∇V
−∇T

)
. (8)

The conservation laws of this problem can then be formulated as finding V, T ∈ H2(Ω) ×
H2+

(Ω) such that

∇ · jjje = 0 ∀ xxx ∈ Ω, (9)
∇ · jjjy = ∇ · qqq + jjje · ∇V = −∂ty ∀ xxx ∈ Ω, (10)

T = T̄ > 0, V = V̄ ∀ xxx ∈ ∂DΩ, (11)
qqq · nnn = q̄, jjje · nnn = j̄e, jjjy · nnn = j̄y ∀ xxx ∈ ∂NΩ, (12)

where T̄ and V̄ are the prescribed temperature and electric potential respectively, and nnn is the
outward unit normal to the boundary ∂Ω.
It should be noted that H2+

(Ω) is the manifold to which T belongs, which is always positive.
The set of equations (9, 10) can be rewritten under a matrix form using Eq. (8)

div (jjj) =

(
0
−∂ty

)
= iii. (13)

Let us define the vector of the unknown fields MMM(2× 1) =

(
fV

fT

)
, with fV = −V

T and fT = 1
T ,

[1, 3]. Indeed it can be shown that the fluxes jjje, jjjy and the fields gradients ∇(−V
T ), ∇( 1

T) are
conjugated pairs. Therefore the gradients of the fields vector∇MMM(6×1) in terms of (∇fV,∇fT)
is defined by(

∇MMM
)

=

(
∇fV

∇fT

)
=

(
∇(−V

T )
∇( 1

T)

)
=

( −1
T

V
T2

0 −1
T2

)(
∇V
∇T

)
. (14)

Hence, the fluxes defined by Eq. (8) can be expressed in terms of fV, fT, yielding

jjj =

(
lllT VTlll + αT2lll

VTlll + αT2lll T2kkk + 2αT2Vlll + α2T3lll + TV2lll

)(
∇fV

∇fT

)
= ZZZ ∇MMM. (15)

The fluxes vector jjj(6 × 1) is the product of the gradients fields vector ∇MMM, which derive from
the state variables (fV, fT), by a coefficients matrix ZZZ(6 × 6) which is temperature and electric
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potential dependent.
The symmetric coefficients matrix ZZZ(V,T) in Eq. (15), which is positive definite if T > 0, can
be rewritten in terms of (fV, fT) = (−V

T ,
1
T), as T = 1

fT
,V = − fV

fT
:

ZZZ(fV, fT) =

(
1
fT

lll − fV
f2T

lll + α 1
f2T

lll

− fV
f2T

lll + α 1
f2T

lll kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll

)
. (16)

Therefore, the strong form (8, 13) can be expressed as

div(jjj) = iii ∀ xxx ∈ Ω, (17)
MMM = M̄MM ∀ xxx ∈ ∂DΩ,

n̄nn jjj = j̄jj ∀ xxx ∈ ∂NΩ,

where n̄nn =

(
nnn 0
0 nnn

)
, M̄MM =

(
f̄V

f̄T

)
∈ L2(∂DΩ)× L2+

(∂DΩ), meaning that f̄T belongs to the

space which is always positive, and j̄jj =

(
j̄e
j̄y

)
.

3 Weak Discontinuous Galerkin (DG) form for electro-thermal coupled problems

Let us introduce the finite element space Ωh = ∪eΩ
e, associated with the triangulation of the

domain Ω. If subscript I denotes the boundary between two elements, ∂Ωe = ∂NΩe ∪ ∂DΩe ∪
∂IΩ

e, and ∂IΩh = ∪e∂IΩ
e \ ∂Ωh, where ∂IΩh is the intersecting boundary of the finite elements.

The finite discontinuous polynomial approximation MMMh =

(
fVh

fTh

)
∈ Xk of the solution is thus

defined in the space

Xk =
{

MMMh ∈ L2(Ωh)× L2+

(Ωh) |MMMh|Ωe∈Pk(Ωe)×Pk+ (Ωe) ∀Ωe∈Ωh

}
, (18)

where Pk(Ωe) is the space of polynomial functions of order up to k and Pk+
means that the poly-

nomial approximation remains positive. Moreover we can define the kinematically admissible
counterpart:

Xk
c =

{
δMMMh ∈ Xk |δMMMh=IhM̄MM|∂DΩe

}
, (19)

where IhM̄MM is the interpolation of M̄MM on ∂DΩh.
Let us derive the weak form of the governing equations by multiplying the first equation by
a kinematically admissible test function δMMM ∈ Xk

c . Then performing a volume integral and
using the divergence theorem on each element Ωe, lead to state the problem as finding MMMh =(

fVh

fTh

)
∈ Xk such that

−
∑

e

∫
Ωe
∇δMMMT

hjjj(MMMh,∇MMMh) dΩ +
∑

e

∫
∂Ωe

nnnTδMMMT
hjjj(MMMh,∇MMMh) dS = 0 ∀δMMMh ∈ Xk

c. (20)

Let us define suitable face operators which are required for the definition of the proceeding DG.
For two adjacent elements +, −, who share a common face ∂IΩ

s, the averages of MMM, jjje are
given respectively by

〈MMM〉 =
1

2
(MMM+ + MMM−) , 〈jjje〉 =

1

2
(jjj+e + jjj−e ),
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and the jumps are defined respectively as

JMMMK =
1

2
(MMM+ − MMM−) , JjjjeK =

1

2
(jjj+e − jjj−e ).

For simplicity, we introduce the vector MMMnnn =

(
nnn− 0
0 nnn−

)
MMM, where nnn− is the unit normal

vector pointing from element − toward element + and M̄MMhnnn = n̄nnIhM̄MM.
Then the surface integral of Eq. (20) is rewritten using the boundary condition stated in Eq.
(17) and the notation introduced above, leading to∫

∂NΩh

δMMMT
h j̄jj dS +

∫
∂DΩh

M̄MMT
hnnn

jjj(MMMh,∇MMMh) dS−
∫

Ωh

iiiδMMMT
h dΩ =

∫
Ωh

∇δMMMT
h jjj(MMMh,∇MMMh)dΩ (21)

+

∫
∂IΩh

q
δMMMT

hnnn
jjj(MMMh,∇MMMh)

y
dS ∀δMMMh ∈ Xk

c.

Applying the mathematical identity JabK = JaK 〈b〉 + JbK 〈a〉, and neglecting the second term
because only consistency in δMMMT

h needs to be enforced, the interface flux related to Eq. (21)
becomesJδMMMhnnnK 〈jjj(MMMh,∇MMMh)〉.
Due to the discontinuous nature of the approximation functions in the DG finite element, in-
terelement discontinuity is allowed, so the continuity of unknown variables in the DG formula-
tion is enforced weakly by adding symmetrization and stabilization terms at the interior element
boundary ∂IΩh. Using Eq. (15), the stabilized form can be stated as finding MMMh ∈ Xk such that∫

∂NΩh
δMMMT

h j̄jjdΩ +
∫
∂DΩh

M̄MMT
hnnn

jjj(MMMh,∇MMMh)ds =
∫

Ωh
∇δMMMTjjj(MMMh,∇MMMh)dΩ (22)

+
∫
∂IΩh

q
δMMMT

hnnn

y
〈jjj(MMMh,∇MMMh)〉 dS +

∫
∂IΩh

q
MMMT

hnnn

y
〈ZZZ(MMMh)∇δMMMh〉 dS

+
∫
∂IΩh

q
δMMMT

hnnn

y〈 B
hs

ZZZ(MMMh)
〉

JMMMhnnnK dS ∀δMMMh ∈ Xk
c.

In this equation B is the stability parameter, which has to be sufficiently high to guarantee
stability, and hs is the mesh size.
[1].
Then, the IP discontinuous Galerkin method corresponding to problem Eq. (17) is defined as:
find MMMh ∈ Xk such that

a3(MMMh, δMMMh) = b3(δMMMh)−
∫

Ωh

iiiδMMMT
h dΩ + c3(MMMh;M̄MMh) ∀δMMMh ∈ Xk

c, (23)

a3(MMMh, δMMMh) =
∫

Ωh
∇δMMMT

h jjj(MMMh,∇MMMh)dΩ +
∫
∂IΩh

q
δMMMT

hnnn

y
〈jjj(MMMh,∇MMMh)〉 dS (24)

+
∫
∂IΩh

q
MMMT

hnnn

y
〈ZZZ(MMMh)∇δMMMh〉 dS +

∫
∂IΩh

q
δMMMT

hnnn

y〈 B
hs

ZZZ(MMMh)
〉

JMMMhnnnK dS

∀δMMMh ∈ Xk
c,

c3(MMMh;M̄MMh) =

∫
∂DΩh

M̄MMT
hnnn

jjj(MMMh,∇MMMh)ds, and (25)

b3(δMMMh) =

∫
∂NΩh

δMMMT
h j̄jjdΩ. (26)

The demonstration of numerical properties such as the optimal error estimate, stability of the
formulation and uniqueness of the solution for β high enough is reported in [1].
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4 Numerical Results

The studied problem involves the production of heat by supplying electric power. The bound-
ary conditions shown in Fig. 1 are applied on a composite material consisting of a combination
of two materials: matrix (e.g., polymer) which is a non-conductive material and conductive
fillers (e.g., carbon fiber).

Figure 1: Electrothermal composite domain and the boundary conditions.

A finite element mesh consisting of 114 quadratic elements is used, and a stabilization parameter
β = 100 is considered, to solve the DG discretization. The different material parameters used
in this test are listed in Table 1, where all the material properties are assumed to be independent
of temperature including the Seebeck coefficient.

Material lll[S/m] kkk[W/(K ·m)] α[V/K]
Carbon fiber diag(100000) diag(40) 3 ×10−6

Polymer diag(0.1) diag(0.2) 3 ×10−7

Table 1: Composite material phases parameters.

Fig. 2 presents the distributions of the temperature and the of electric potential. When an electric
potential of 10 [V] is applied on one side, the temperature on the other side increases from 298
[K] to 323 [K], We have also noticed that the temperature and electric potential, see Fig. 2(a), as
well as the thermal flux, see Fig. 2(b), are almost constant in the fiber, as its electrical conduc-
tivity is high, and transfer gradually in the polymer matrix which is a non conductive material.
Also a constant electric current density has been obtained with a value of 1.5× 103 [A/m2].

6



L. Homsi, C. Geuzaine and L. Noels

(a)

(b)

Figure 2: (a) Distribution of the electrical potential and temperature in the electrothermal domain for
composite materials, (b) The distribution of the thermal flux in the electrothermal domain for composite
materials.
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5 CONCLUSIONS

In this work

• A DG method was developed for electro-thermal coupling using energetically conjugated
fluxes and fields.

• The result formulation was then applied to predict behavior of electro-thermal composite,
and was able to compute the temperature and electric potential distributions as well as
their fluxes, as a function of spatial coordinates.

• In the future, this formulation will be used for Electo-thermo-mechanical coupling in
composite materials.
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