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Abstract. This paper deals with whirl flutter analysis of aircraft structures. It gives the 
theoretical background of the whirl flutter phenomenon and aircraft certification-related 
issues. After that, the ordinary and optimization-based analytical approaches are described. 
The optimization based analytical procedure is used to determine the whirl flutter stability 
boundaries for the certification speed. The focus is on the application of the 
optimization-based approach on a full-span model of an aircraft structure. The necessary 
adjustments of a stick computational model to make it applicable as a full-span and also the 
modification of the optimization solution are described. The methodology is demonstrated on 
the model of a twin-engine turboprop commuter aircraft. The evaluated results include the 
available choices of both propeller rotation directions, i.e. CW-CW and CW-CCW. Finally, 
the outlook and the future work on the described topic is outlined.     
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1 INTRODUCTION

Turboprop aircraft are certified considering the whirl flutter stability. Whirl flutter is a 
specific type of flutter instability caused by the effect of rotating parts as a propeller or a gas 
turbine engine rotor. Rotating mass causes additional forces and moments and increases the 
number of degrees-of-freedom. Rotating propeller also causes aerodynamic interference effect 
with a nacelle and a wing structure. Whirl flutter instability is driven by motion-induced 
unsteady aerodynamic propeller forces and moments acting in the propeller plane. It is quite 
serious phenomenon, that may cause unstable vibration of a propeller mounting, even a failure 
of an engine installation or a whole wing. Airworthiness regulations require flutter analysis 
taking into account the influence of the degrees of freedom of the propeller plane of rotation 
and significant elastic, inertia and aerodynamic forces. Also the changes in the stiffness and 
damping of the propeller–engine–nacelle structure system must be considered (FAR/CS 
§23.629(e)(1)(2)) [1, 2].

The reliable stiffness data regarding the engine attachment are not usually at disposal until 
the ground vibration test of the prototype is done and the final updating of the analytical 
model is possible. Nevertheless, considering timesaving in the final development phase, it is 
worth performing whirl flutter calculations in the earlier phase. For this purpose, an 
optimization based analytical procedure to determine the critical values of an engine 
attachment stiffness parameters was prepared. It allows determination of whirl flutter and 
whirl divergence stability boundaries for the speed, which is set by regulations as the 
certification speed. The solution employs the gradient-based algorithm and includes 
modal-based and flutter-based design responses. Design variables are represented by the 
engine attachment stiffness parameters.

The initial solution was prepared for the half-span models of aircraft with either symmetric 
or antisymmetric boundary condition, which are usually used for flutter analyses. But, the 
applicability of half-span models is limited and application of a full-span model is necessary 
in some cases. The typical example is the whirl flutter. Considering the usual twin
wing-mounted engine aircraft concept, one of the parameters influencing the whirl flutter 
stability is the direction of rotation of both propellers. Therefore, the applicability of the 
optimization-based solution was enlarged also to the full-span models. The optimization 
solution for a full-span model is, compare to a half-span model, more complicated. Also, the 
specific adjustment of a structural model is necessary. The solution is demonstrated on the 
example of the reference model of the twin-engine turboprop commuter aircraft. Whirl flutter 
stability boundaries are constructed for different conditions of propeller rotations.

2 THEORETICAL BACKGROUND

The principle of whirl flutter phenomenon is outlined on the simple mechanical system 
with two degrees-of-freedom. Propeller and hub are considered as rigid. An engine flexible 
mounting is represented by two rotational springs (stiffness KΨ, KΘ) as illustrated in figure 1. 
Such a system has two independent mode shapes (yaw and pitch) with angular frequencies Ψ

and Θ. Considering a propeller rotation with the angular velocity Ω, the primary motion 
changes and the gyroscopic effect makes both independent mode shapes merge into the whirl 
motion. A propeller axis of rotation shows an elliptical movement. A trajectory of this 
elliptical movement depends on both angular frequencies Ψ and Θ. The orientation of the 
gyroscopic movement is backward relative to the propeller rotation for the mode with the 
lower frequency (backward whirl mode) and forward relative to the propeller rotation for the 
mode with the higher frequency (forward whirl mode). Because the yaw and pitch motions 
have a 90° phase shift, the mode shapes in the presence of gyroscopic effects are complex.   
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Figure 1.  Gyroscopic system with propeller.

The gyroscopic motion results in changes of the propeller blades' angles of attack and 
consequently, leading to unsteady aerodynamic forces. These forces may under specific 
conditions induce whirl flutter instability. The flutter state is defined as the neutral stability 
with no damping of the system and the corresponding airflow (V = VFL) is called critical 
flutter speed. If the air velocity is lower than flutter speed (V < VFL), the system is stable and 
the gyroscopic motion is damped (see figure 2a). If the airspeed exceeds the flutter speed 
(V > VFL), the system becomes unstable, and gyroscopic motion divergent (see figure 2b).

(a)                                                                            (b)
Figure 2.  Stable (a) and unstable (b) state of gyroscopic vibrations for backward flutter mode.

The analytical solution is aimed to determine the aerodynamic force caused by the 
gyroscopic motion on each of propeller blades. Presented equations of motion were derived 
for the system shown in figure 1 using Lagrange's approach. The kinematical scheme is 
shown in figure 3. We select three angles (φ, Θ, Ψ) as the independent generalised 
coordinates. The propeller angular velocity is considered constant (φ = Ω t). The rotating part 
is assumed cyclically symmetric with respect to both mass and aerodynamics (i.e., propeller 
of three blades in minimum). Non-uniform mass moments of inertia of the engine with 
respect to pitch and yaw axes (JZ  JY) are considered.  
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Figure 3.  Kinematical scheme of gyroscopic system.

Considering small angles, the equations of motion become: 
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where a is the distance between a propeller plane and a vibration mode node point. 

Neglecting the aerodynamic inertia terms ( ΘΘ   ; ΨΨ   ), the propeller aerodynamic 
forces and moments at the propeller plane (PY; PZ; MY,P; MZ,P)  are calculated as:
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where  is an air density and R is a propeller radius. Aerodynamic derivatives (c-terms) are 
given from the propeller blade integrals (by [3, 4] or by [5]). Using the quasi-steady theory [6], 
the effective angles (Θ*, Ψ*) become:
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where (w1/V) and (w2/V) are optional downwash and sidewash terms. Downwash and 
sidewash angles behind the propeller describe the interference between propeller and nacelle. 
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Induced downwash and sidewash angles are added to the effective static angles, which are
represented by the remaining terms of eq. (3). Induced downwash and sidewash angles, which 
are dependent on the reduced frequency, can be obtained from the lift solution by partitioning 
the interference coefficients. The downwash effect influences the aerodynamic stiffness 
matrix; the influence to the aerodynamic damping matrix is neglected. An option to include 
the downwash and sidewash effects may be important for the aircraft configuration with 
wing-mounted engines.  

Finally, seeking for the critical (flutter) state assuming the harmonic motion has a character 
of an eigenvalue problem. The final whirl flutter matrix equation can be expressed as:    
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where [M] is mass matrix, [D] is structural damping matrix, [K] is structural stiffness 
matrix. [DA] and [KA] are aerodynamic damping and aerodynamic stiffness matrix, 
respectively. Finally, [G] is gyroscopic matrix. The critical state emerges when the angular 
velocity ω is real. The critical state can be reached by increasing either V or Ω. Increasing 
the propeller advance ratio (V / (ΩR)) has destabilizing effect. Another important parameter 
is distance of propeller plane and node points of engine vibration modes. Structural damping 
is a significant stabilization factor. The paper [7] describes an experiment during which 
friction was deeply suppressed and whirl flutter occurred. However, the notably slight 
structural damping made the model stable. By contrast, the influence of the propeller thrust is 
negligible. This small influence comes from the fact that the aerodynamic derivatives of the 
thrusted propeller and windmilling propeller variance can be high in the low speed region, but 
at high velocities (where whirl flutter is expected), the variance is less than 5% [8]. The most 
critical state is ωΘ = ωΨ when the interaction of both independent motions is maximal and the 
trajectory of the gyroscopic motion is circular. Considering the rigid propeller blades, the 
whirl flutter inherently appears at the backward gyroscopic mode. A special case of eq. (4) for 
ω = 0 is gyroscopic static divergence, which is characteristic by uni-directional divergent 
motion.

The described model that considers a rigid propeller is obviously applicable to 
conventional propellers, for which the propeller blade frequencies are much higher compared 
to the nacelle pitch and yaw frequencies. Considering the large multi-bladed propellers of 
heavy turboprop aircraft, the consideration of a rigid propeller appears too conservative and 
the blade flexibility must also be modeled. Obviously, the whirl flutter investigation of 
tilt-rotor aircraft must include even more complex analytical models [9].  

The comprehensive information regarding the whirl flutter phenomenon can be found in
[10].

3 STANDARD ANALYTICAL APPROACH

The standard whirl flutter solution is based on the strip aerodynamic theory [11] for the 
propeller at the windmilling mode. The propeller is assumed rigid. For the residual structure 
the unsteady doublett-lattice method including wing–body interference aerodynamic theory is 
used [12]. For the flutter stability solution the p-k method [13] is applied. The basic flutter 
equation in modal coordinates is:
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[Mhh], [Bhh] and [Khh] are modal mass, damping and stiffness matrices, respectively, a 
function of the Mach number (M) and the reduced frequency (k). Aerodynamic loads are 
incorporated into damping and stiffness matrices. [Qhh

Re] and [Qhh
Im] are the real and the 

imaginary part of a complex aerodynamic matrix, also a function of parameters M and k. The 

parameter  is the air density, c is a reference length, and {uh} is a modal amplitude vector. 
The eigenvalue λ is given as:

                                                            j                          (6)

and  is a transient decay rate coefficient. Note that the structural damping coefficient (g)
is expressed as:

                                                                 g = 2.                                       (7)

The standard whirl flutter solution is performed for multiple velocities. The resulting 
quantities are V-g-f curves, i.e. the dependence of the damping and frequency of analyzed 
modes on the flight velocity. The state with the zero damping represents the critical flutter 
state and the corresponding flight velocity is the critical flutter speed. 

4 OPTIMIZATION-BASED ANALYTICAL APPROACH

Optimization-based approach employs the gradient-based algorithms [14] for the whirl 
flutter solution. It makes possible the calculation of the flutter stability boundaries for the 
specified certification speed. In this case, the flutter speed is set equal to the certification 
speed, and the results are critical values of the structural parameters. The stability margin can 
be then obtained from these critical structural parameters. The analyzed states are then 
compared only with respect to the structural parameters and the relationship to the stability 
margin. Such an approach can save large amounts of time because the number of whirl flutter 
analyses required by the regulations is dramatically reduced. 

The whirl flutter optimization employs two types of the design responses (eigenvalue and
flutter). The eigenvalueequation is:
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where n and n are the nth eigenvalue and eigenvector, respectively. [K] is the structural 
stiffness and [M] is the structural mass matrix. Eq. (8) can be differentiated with respect to the 
ith design variable xi:
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When eq. (9) is premultiplied by n
T, the first term becomes zero and eq. (9) can then be 

solved for the eigenvalue derivatives:

                                          

       

    M

x

M

x

K

x
n

T

n

n

i

n

i

T

n

i

n




 






















                    (10)

In practice, the solution of eq. (10) is based on the semi-analytical approach. The 
derivatives of the mass and stiffness matrices are approximated using the finite differences. 
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The equation is solved for each retained eigenvalue referenced in the design model and for 
each design variable.

Aeroelastic flutter stability matrix equation is given by eq. (5). The equation represents the 
p-k method of the flutter solution, which is the only method applicable for the purpose of the 
design optimization. Flutter sensitivity computes the rates of change of the transient decay 
rate coefficient  with respect to changes of the design variables. Eq. (5) is differentiated with 
respect to the design variables for the quantity (/xi). The solution is semi-analytical in 
nature with derivatives approximated using either forward differences or central differences.

Flutter sensitivities are computed as the rate of change of the transient decay coefficient 
with respect to changes in design variables (∂/∂xi). 

The optimization-based whirl flutter solution is performed for a single velocity. The 
resulting quantities are structural parameters, for which the flutter speed is equal to the
specified certification speed.   

5 STRUCTURAL MODEL OF AIRCRAFT STRUCTURE

5.1 Half-span Model 

Aeroelastic analyses of aircraft structures are usually performed using simple dynamic 
structural models (stick models). Stiffness characteristics of the structural parts are modeled
by means of the massless beam elements, and inertial characteristics are modeled by 
concentrated mass elements including appropriate moments of inertia. The model also 
includes spring elements, various conditions and auxiliary elements (controls suspension, 
visualization, etc.). In the most cases, the analysis can be performed using half-span model. In 
this case, the half-values of the stiffness and inertial characteristics are applied at the plane of 
symmetry as well as either symmetric or antisymmetric boundary condition. Such a model is 
shown in figure 4. Attachment of the engine to the wing is realized simply by means of two 
spring elements, which model engine pitch and yaw vibration modes. Stiffness constant of the 
spring determines the natural frequency of the mode. Spring element is stationed at the node 
point of the mode. 

Figure 4.  Half-span structural model of twin engine turboprop commuter aircraft.
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5.2 Full-span Model 

The applicability of half-span models is limited and application of a full-span model is 
necessary in some specific cases. In the case of the full-span model, both symmetric and 
antisymmetric engine vibration modes must be modeled. Such a model is shown in figure 5.  

Figure 5.  Full-span structural model of twin engine turboprop commuter aircraft.

The engine attachment includes four modes with diverse natural frequencies and diverse 
node points. The typical order of engine modes (by frequency) is 1) symmetric pitch, 2) 
symmetric yaw, 3) antisymmetric pitch and, 4) antisymmetric yaw. The node points of these 
modes are typically stationed in the direction from the rear to the front (in the flight direction).

The systems to model pitch and yaw engine vibration modes are separate. The appropriate 
rotational degree-of-freedom (i.e., around lateral or around vertical axis) is connected to the 
central system, which consists of the grounded spring element and two rod elements. The 
grounded spring is placed at the plane of symmetry at the station of the node of the symmetric 
mode while rod elements are placed at the station of the node point of the antisymmetric 
mode. Rod elements are oriented in the appropriate direction (i.e., laterally or vertically). 
Node point of the grounded spring is connected with the central node of rod elements by 
means of multi-point constraint. Apart from the appropriate degree-of-freedom, other ones are 
omitted from the analysis. Spring constant of the grounded spring element K and the 
torsional stiffness of rod elements (GIk) then determine natural frequencies of both symmetric 
and antisymmetric mode. Spring constant is decisive for the symmetric mode frequency, 
while rod torsional stiffness is decisive for the antisymmetric frequency. However, there is 
also cross-influence; and therefore, both parameters must be used to set both frequencies. The 
examples of mentioned engine vibration modes are shown in figure 6.

Note, that also both symmetric and antisymmetric control surface and tab flapping modes 
must be modeled on the full-span models. However, no detailed description of the modeling 
technique is provided here as these modes are not important from the whirl flutter 
phenomenon point of view.
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(a)                                                                            (b)

(c)                                                                            (d)
Figure 6.  Engine vibration modes: (a) symmetric pitch, (b) antisymmetric pitch, (c) symmetric yaw, 

(d) antisymmetric yaw.

6 DESCRIPTION OF OPTIMIZATION-BASED SOLUTION

The important parameters influencing the whirl flutter stability are engine pitch and yaw 
frequencies. The solution is therefore demonstrated on the example of variation of these 
parameters. We consider the inertia characteristics of the engine and propeller system as well 
as the characteristics of the residual structure to be reliably determined; thus, we will use the 
engine attachment stiffness properties as parameters for the optimization.

6.1 Solution for Half-span Model 

We define two design variables: 1) effective stiffness of the engine attachment in pitch and 
2) effective stiffness of the engine attachment in yaw. These design variables are directly 
related to the spring constants of two spring elements (pitch-KφV and yaw-KφH ). 

The first preparatory step is intended to set the initial design variables for the main 
optimization. The target frequency ratio (TFR) is set, and both effective stiffnesses are 
adjusted to reach this target ratio. The simplest way is to set any of the mentioned stiffnesses 
as the design variable (while the other one is fixed) and use the optimization solution with the 
objective function (OBJ) defined as:
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where ABS denotes for the absolute value. Symbols f1 and f2 represent both pitch and yaw 
engine frequencies (f2 is the higher frequency while f1 is the lower frequency). Note that the 
yaw frequency is usually higher compare to the pitch frequency; nevertheless, the solution 
may be done regardless the frequency order. This preparatory analysis gives the initial values 
of KφV and KφH for the main optimization. The ratio of both frequencies (pitch-f and yaw-fΨ) 
is equal to the TFR.

The main optimization includes both design variables (KφV and KφH). The design 
constraints include the requirement to keep the target frequency ratio. For the practical 
applications, specification of a constraint with the ±2% band is usually used:
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Another constraint includes the requirement to keep the flutter stability (i.e., negative 
damping) at the selected certification speed Vcert. This requirement is expressed as:

                                                         0 certVVg                                                 (13)

In the practical solution, the constraint is modified as:
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The interval shift from the null value is given due to the numerical character of the solution 
preventing the division by zero. This constraint should also prevent another type of flutter 
instability below the certification speed that may be caused by the design variable changes. 
The constraint should therefore be applied to all modes included in the solution. 

The objective function is defined simply as minimization of pitch and yaw frequency sum 
as:

                                                    2ffminBJO 1                                                     (15)

As the output, we will obtain the engine pitch and yaw stiffness for which the flutter speed 
is equal to the specified certification speed and the yaw-to-pitch frequency ratio is equal to 
specified target value. The optimization is then repeated for a several yaw-to-pitch frequency 
ratios, typically ranging from 1.05 to 2.0 to get enough points to construct a stability boundary 
curve. Note that the described solution is applicable for the whirl divergence as well.

The procedure described above is applicable to the "no downwash" option (see section 2). 
Provided the downwash effects are to be included, the procedure is extended by the extra 
steps described here. The basic assumption is, that the minor change in the engine pitch and 
yaw frequencies will have negligible effect on the downwash terms. The downwash terms are 
therefore calculated only for the structure optimized excluding the downwash as described 
above. After that, the downwash terms are calculated and the main optimization step is 
repeated in the same manner as described above.

Due to the possibility of switching of the engine pitch or yaw mode frequency with the 
other modes, it is worth to re-order the modes at the end of the optimization iteration, 
provided such mode switch appear. The re-ordering is based on the cross-orthogonality 
correlation analysis of both sets of modes (before and after the optimization iteration) using 
the modal assurance criterion, which is expressed as:
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where ψ1 and ψ2 are correlated mode shapes. Only engine pitch or yaw modes are switched, 
if necessary.

6.2 Solution for Full-span Model 

The optimization solution for a full-span model is more complicated. We define four 
design variables: 1) effective stiffness of the engine attachment for symmetric pitch, 2) 
effective stiffness of the engine attachment for antisymmetric pitch, 3) effective stiffness of 
the engine attachment for symmetric yaw and 4) effective stiffness of the engine attachment 
for antisymmetric yaw. These design variables are related to the spring constants of two 
grounded spring elements (K1 and K2) and to torsional stiffness of two pairs of rod elements 
[(GIk)1 and (GIk)2]. However, the relation is not direct here due to the above mentioned 
cross-influences (see section 5.2).

We define three frequency ratios: 1) pitch frequency ratio (VFR = fA/fS), 2) yaw 
frequency ratio (HFR = fAΨ/fSΨ) and finally 3) critical frequency ratio (CFR). Critical modes 
are those ones, the combination of which causes a flutter instability. Choice of the critical 
modes is dependent on the relation of directions of rotation of both propellers, and on the 
mode order. Considering the identical directions (i.e., CW-CW or CCW-CCW), the critical 
modes are symmetric pitch and antisymmetric yaw (it corresponds to a half-span symmetric 
case) or antisymmetric pitch and symmetric yaw (it corresponds to a half-span antisymmetric 
case). Considering the inverse directions (i.e., CW-CCW or CCW-CW), the critical modes are 
symmetric pitch and symmetric yaw or antisymmetric pitch and antisymmetric yaw. Note that 
CW denotes for the clockwise direction and CCW denotes for the counter-clockwise direction.

VFR and HFR are not changeable. The values are set according the ground vibration test 
results or guessingly. The typical ratios are ranging from 1.12 to 1.18. CFR is an analogy of 
TFR shown above.

We assume the typical frequency order (i.e. pitch frequency lower compare to the yaw 
frequency) in the following description. The first preparatory step is intended to set the initial 
design variables for the main optimization.

The design constraint includes the requirement to keep the frequency of the selected engine 
vibration mode, typically the highest one (fAΨ), at the selected value (fAΨT) using the ±2% 
band as:
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The objective function is defined as the minimization of the frequency ratio error 
expressed as:
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or as:
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where SSQ denotes for sum of squares. Eq. (18) is applicable for the case of identical 
directions of propeller rotations while eq. (19) is applicable for the case of inverse directions 
of propeller rotations. This preparatory analysis gives the initial values of design variables for 
the main optimization. Frequency ratios are equal to VFR, HFR and CFR values.

The main optimization is performed similarly as for the half-span model. The design 
constraints include the requirement to keep the frequency ratios, again, with the ±2% band as:    
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and

                                         02.0


































CFR

CFR
f

f

BSA S

A

                                              (22)

or
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Again, eq. (22) is applicable for the case of identical directions of propeller rotations while 
eq. (23) is applicable for the case of inverse directions of propeller rotations.

Another constraint including the requirement to keep the flutter stability (i.e., negative 
damping) at the selected certification speed Vcert is expressed in the same way as for the 
half-span model, i.e. by eq. (14).

The objective function is defined as minimization of frequency sum, here expressed as:

                                  f,f,f,f SUMinmOBJ ASAS                                      (24)

As the output, we will obtain the values of design variables ((K1; K2; (GIk)1; (GIk)2), for 
which the flutter speed is equal to the specified certification speed and three specified 
frequency ratios are equal to the specified target values. Similarly as for the half-span model, 
the optimization is then repeated for a several CFR values, typically ranging from 1.05 to 2.0 
to get enough points to construct a stability boundary curve. Also, the notes regarding the 
divergence, downwash effect and regarding the mode switches mentioned in section 6.1 are 
valid also for the full-span model. 
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7 APPLICATION EXAMPLE

The reference model to test the described methodology was derived from the model of the 
new Czech twin wing-mounted engine commuter aircraft for 19 passengers with the maximal 
take-off weight of 7000 kg.

For the purpose of the first test analyses, the simplified model with four 
degrees-of-freedom, which are represented by both the symmetric and antisymmetric engine 
pitch and yaw vibrations, was used. Stiffness characteristics of residual structure, which were 
modeled using beam elements, were replaced by rigid connections and control surface and tab 
actuation drives were blocked.

Aerodynamic model included only the wing, nacelles and tip tanks. This simplification was 
made with regard to the fact, that the aerodynamics of the fuselage and tail surfaces has the 
negligible effect to the whirl flutter phenomenon. Wing was modeled as Doublet-Lattice 
Panels and nacelles and tip tanks were modeled as Slender and Interference Bodies. The 
aerodynamic model included also correction factors for the propeller slipstream applied to the 
appropriate aerodynamic elements of the wing and nacelles. Furthermore, there was also a 
correction in the aerodynamic forces and moments at the nose part of the control surfaces. 
The aerodynamic model is shown in figure 7.   

Figure 7.  Aerodynamic full-span model of reference aircraft - reduced model (wing, nacelles and tip tanks), only 
interference tubes are depicted for bodies.

Flight parameters for test analyses were chosen according the aircraft flight envelope. 
Certification speed was Vcert = 191.4 m.s-1, air density  = 0.7963 kg.m-3 (altitude H = 4267 m) 
and reference Mach number M = 0.493. Structural damping was neglected. First set of
analyses, which is presented here, include the symmetric propeller revolutions, i.e. same 
revolutions for both left and right propeller ( = 2080 rpm). Tested directions of propeller 
revolutions include CW-CW and CW-CCW combinations.

For the case of identical directions of propeller revolutions (CW-CW), two mechanisms for 
the whirl flutter appear: 1) a combination of symmetric pitch and antisymmetric yaw modes 
(S/AΨ) and 2) a combination of antisymmetric pitch and symmetric yaw modes (A/SΨ). 
The stability margins were calculated with respect to both of the mechanisms of whirl flutter 
and both are presented in figure 8. As is apparent from the figure, the required engine pitch 
and yaw frequency is higher for the former mechanism of whirl flutter. Therefore, this 
mechanism of flutter is more critical compare to the latter one. Values of VFR and HFR were 
considered at the three levels (1.00; 1.05; 1.10). As the influence of VFR and HFR on the 
stability margin is negligible, the influence of remaining modes on the stability is negligible 
as well.  
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Figure 8.  Whirl flutter stability margins - identical directions of revolutions (CW-CW), 
legend: prim = primary flutter (S/AΨ), sec = secondary flutter (A/SΨ), (1.xx) = VFR, HFR

Figure 9 shows the example of a V-g-f (velocity - damping - frequency) diagram calculated 
by the standard approach. The crossing of the V-g curve from the negative to the positive 
damping values represents a flutter state. The mode nr.1 (S mode) crossing represents the 
primary flutter mechanism (S/AΨ). The flutter speed is here equal to the certification speed. 
The mode nr.2 (A mode) crossing represents the secondary flutter mechanism (A/SΨ). 
The flutter speed is here above the certification speed, i.e. above the stability margin, as this 
type of instability is less critical.  

Figure 9.  Example of V-g-f diagram - identical directions of revolutions (CW-CW)
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For the case of inverse directions of propeller revolutions (CW-CCW), the character of the 
whirl flutter is different. The instability is caused by the combination of antisymmetric pitch 
and antisymmetric yaw modes (A/AΨ). Stability margins are presented in figure 10.
Compared to the CW-CW case, the required engine pitch and yaw frequencies are 
considerably higher. Furthermore, this type of instability is influenced also by the remaining 
modes (S and SΨ) as the influence of VFR and HFR on the stability margin is remarkable.    
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Figure 10.  Whirl flutter stability margins - inverse directions of revolutions (CW-CCW), 
legend: (1.xx) = VFR, HFR

Similarly to the previous case, figure 11 shows the example of a V-g-f diagram for the  
inverse directions of propeller revolutions. The mode nr.2 (A mode) represent the flutter 
mechanism (A/AΨ). The flutter speed is here equal to the certification speed. 

8 CONCLUSION

This paper presents the optimization-based approach to whirl flutter analysis and the 
application of the method to the full-span model of the aircraft structure. The necessary 
adjustments of a stick computational model to make it applicable as a full-span and also the 
modification of the optimization solution are described. The methodology is demonstrated on 
the reference model of a twin-engine turboprop commuter aircraft. First test analyses 
including the symmetric propeller revolutions with both available choices of both propeller 
rotation directions, i.e. CW-CW and CW-CCW are presented. The results include whirl flutter 
stability margins for several flutter mechanisms. The most critical one is the case of inverse 
directions of propeller revolutions (CW-CCW), for which, the critical flutter modes are 
engine antisymmetric pitch and antisymmetric yaw. The future work will be focused on 
additional choices of propeller rotations, including unsymmetrical revolutions representing
the failure cases of a single propeller overspeed, and the absence of a single propeller rotation 
representing a failure case of a single propeller feathering.    
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Figure 11.  Example of V-g-f diagram - identical directions of revolutions (CW-CCW)
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