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Abstract. We report on an international effort to develop an open-source computational en-
vironment for high-fidelity fluid-structure interaction analysis. In particular, we will focus on
verification of the implementation for application in computational aeroelasticity. The capabil-
ities of the SU2 code for aeroelastic analysis have been further enhanced both by developing
natively embedded tools for the study of largely deformable solids, and by wrapping it using
Python tools for an improved communication with external solvers. Both capabilities will be
demonstrated on relevant test cases, including rigid-airfoil solutions with indicial functions,
the Isogai Wing Section, test cases from the AIAA 2nd Aeroelastic Prediction Workshop, and
the vortex-induced vibrations of a flexible cantilever in the wake of a square cylinder. Results
show very good performance both in terms of accuracy and computational efficiency. The mod-
ularity and versatility of the baseline suite allows for a flexible framework for multidisciplinary
computational analysis. The software libraries have been freely shared with the community to
encourage further engagement in the improvement, validation and further development of this
open-source project.
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1 INTRODUCTION

The interaction between fluids and structures on complex geometries is a challenging compu-
tational problem that has attracted substantial interest due to its relevance across disciplines, in-
cluding aeronautical and civil engineering, biomechanics, and turbomachinery. In this work, we
will focus on aeronautical applications, and particularly on computational aeroelasticity [1–3].
Due to the complexity of the constitutive equations and the strongly non-linear coupling effects
between fluid and structure, the development of accurate and efficient solvers able to be run
in highly-parallel environments becomes a determining factor, specially when addressing large
problems that require refined discretisations.

With this in mind, the open-source software suite SU2 [4–6] has been used as the basic
infrastructure for the development of a set of tools for Fluid-Structure Interaction (FSI). Due
to its modularity and versatility, it has been possible to develop natively embedded tools for
non-linear structural analysis in SU2, thus allowing for a self-contained, open-source suite ca-
pable to deal with FSI problems involving largely deformable solids [7]. At the same time, the
suite has been wrapped using Python tools for improved communication with external solvers,
which increases the flexibility for the user when aiming to solve problems using other in-house
or commercial platforms. In this paper we will detail the modular implementations we have
included in SU2 in the context of FSI, and we will assess the validity of these methods.

The paper is organized as follows. Section 2 briefly describes the governing equations for
fluid and structural mechanics, and establishes the interface coupling conditions. Section 3
sketches the structure of the code for the fluid and structural solver, and the architecture that per-
mits the coupling of the independent solvers with each other or with external tools via Python.
Section 4 presents the first set of results obtained using the different approaches described. Fi-
nally, section 5 summarizes the current state of the project and outlines some of the planned
future developments.

2 BACKGROUND

2.1 Fluid mechanics

2.1.1 Governing equations

We are concerned with compressible, turbulent fluid flows governed by the Reynolds-averaged
Navier-Stokes (RANS) equations, which can be expressed in arbitrary Lagrangian-Eulerian
(ALE) [8] differential form as

∂U

∂t
+∇ · Fc −∇ · Fv −Q = 0 in Ω× [0, t] (1)

where the conservative variables are given by U = {ρ, ρv, ρE}T, and the convective fluxes,
viscous fluxes, and generic source term are

Fc =

 ρ(v − u̇Ω)

ρv ⊗ (v − u̇Ω) + ¯̄Ip
ρE(v − u̇Ω) + pv

 , Fv =

 ·
¯̄τ

¯̄τ · v + µ∗totcp∇T

 , (2)

and Q = {qρ,qρv, qρE}T, where ρ is the fluid density, v = {v1, v2, v3}T ∈ R3 is the flow speed
in a Cartesian system of reference, u̇Ω is the velocity vector at a point for a domain in motion
(mesh velocity after discretization), E is the total energy per unit mass, p is the static pressure,
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cp is the specific heat at constant pressure, T is the temperature, and the viscous stress tensor
can be written in vector notation as

¯̄τ = µtot

(
∇v +∇vT − 2

3
¯̄I(∇ · v)

)
. (3)

In 3D, Eqn. 1 is a set of five coupled, nonlinear partial differential equations (PDEs) that
are statements of mass (1), momentum (3), and energy (1) conservation in a fluid. Additional
boundary and temporal conditions will be required and are problem dependent. Most com-
monly, no-slip conditions (v = u̇Ω) are applied to solid surfaces, and far-field approximations
that mimic the fluid behavior at infinity [9] are applied to outer boundaries.

Assuming a perfect gas with a ratio of specific heats γ and gas constantR, one can determine
the pressure from p = (γ − 1)ρ

[
E − 1

2
(v · v)

]
, the temperature is given by T = p/(ρR), and

cp = γR/(γ − 1). In accord with the standard approach to turbulence modeling based upon
the Boussinesq hypothesis [10], which states that the effect of turbulence can be represented as
an increased viscosity, the total viscosity is divided into laminar and turbulent components, or
µdyn and µtur, respectively. In order to close the system of equations, the dynamic viscosity
µdyn is assumed to satisfy Sutherland’s law [11] (a function of temperature alone), the turbulent
viscosity µtur is computed via a turbulence model, and

µtot = µdyn + µtur, µ∗tot =
µdyn
Prd

+
µtur
Prt

, (4)

where Prd and Prt are the dynamic and turbulent Prandtl numbers, respectively.
The turbulent viscosity µtur is obtained from a suitable turbulence model. The Shear Stress

Transport (SST) model of Menter [12] and the Spalart-Allmaras (S-A) [13] model are two of
the most common and widely used turbulence models. For treating purely laminar or inviscid
problems, note that the laminar Navier-Stokes equations and the Euler equations can be recov-
ered from Eqn. 1 by removing the contribution of the turbulence model to the viscosity and by
eliminating all viscous terms, respectively, when appropriate. With the Euler equations, flow
tangency boundary conditions are applied to solid surfaces in the place of a no-slip condition.

2.1.2 Numerical implementation

The governing fluid equations are spatially discretized on unstructured meshes via the Finite
Volume Method (FVM) using a median-dual, vertex-based scheme with a standard edge-based
structure. Instances of the state vector U are stored at the nodes of the primal mesh, and the dual
mesh is constructed by connecting the primal cell centroids, face centroids, and edge midpoints
surrounding a particular node.

Convective fluxes are discretized using either a centered scheme, such as the Jameson-
Schmidt-Turkel (JST) [14] method, or an upwind scheme, such as the Roe [15] method. For
upwind methods, second-order accuracy is easily achieved via reconstruction of variables on the
cell interfaces by using a MUSCL approach with gradient limiters. The convection of the turbu-
lence variables is discretized using an upwind scheme (typically first-order). Viscous fluxes are
computed with the node-gradient-based approach due to Weiss et al. [16]. The Green-Gauss or
weighted least-squares methods are available for approximating the spatial gradients of the flow
variables. Source terms are approximated via piece-wise reconstruction in the finite-volume
cells.

For unsteady flows, a dual time-stepping strategy [17, 18] has been implemented for obtain-
ing a specified accuracy in time. In this method, the unsteady problem is transformed into a
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series of steady problems at each physical time step that can then be solved using all of the
well-known convergence acceleration techniques for steady problems. Each physical time step
is relaxed in pseudo time using implicit integration.

During time-accurate calculations on dynamic meshes, the coordinates and velocities of the
grid nodes must be updated at each physical time step using suitable methods for displacing
the nodes of the volume mesh and computing the resulting grid node velocities. Two typical
strategies involve rigid mesh transformations or dynamically deforming meshes. In the former,
the grid node coordinates and velocities are often computed analytically based on a prescribed
motion of the mesh as a rigid body. The dynamically deforming case, which is typically nec-
essary for FSI problems, requires an additional technique to deform the fluid volume mesh to
conform to specified changes in the positions of solid boundaries. After updating the position
of all nodes in the fluid mesh, the local grid velocity at a node can be computed by storing the
node coordinates at prior time instances and using a finite differencing approximation that is
consistent with the chosen dual time-stepping scheme.

Finally, when computing unsteady flows on dynamic meshes with the ALE form of the
equations, a Geometric Conservation Law (GCL) should be satisfied. First introduced by
Thomas and Lombard [19], it has been shown mathematically and through numerical exper-
iment [20–22] that satisfying the GCL can improve the accuracy and stability of the chosen
scheme. A straightforward technique for the numerical implementation of the GCL [23,24] has
been included as part of the dual-time stepping approach.

2.2 Structural mechanics

2.2.1 Rigid body models

The following model can be considered for the constrained displacement of non-deformable
bodies. The kinematics can be described by a finite set of degrees of freedom corresponding
to a translation of body-attached point O and a rotation around this point. This is illustrated in
Fig. 1 where both an absolute frame of reference and a relative frame of reference attached to
the solid body (denoted by the ’ symbol) are considered. Initially, these two referential frames
are superposed. After a displacement, the absolute position s of any point P within the solid can
thus be written as [25]:

sP = sO + r′ = sO + Rr (5)

where sO is the translation of the reference point, r′ is the relative position of P in the body-
attached frame of reference, r is the position of P before the displacement and R is a rotation
matrix.

The rotation matrix is based on the choice of the parametrization for the rotation and de-
scribes the rotation of the relative frame of reference O’ in the absolute referential frame. In
the case of a three-dimensional rotation, it can be separated into ordered rotations of angles θ,
φ and ψ around the x, y and z-axis respectively, which gives the following rotation matrix:

R(θ,φ,ψ) =

 cosφ cosψ sin θ sinφ cosψ − cos θ sinψ cos θ sinφ cosψ + sin θ sinψ
cosφ sinψ sin θ sinφ sinψ + cos θ cosψ cos θ sinφ sinψ − sin θ cosψ
− sinφ sin θ cosφ cos θ cosφ


In the case where the rigid body displacement is dynamically constrained by some constant

stiffness or damping, Lagrange’s equation [26,27] can be used to build the equations of motion



Sanchez, Kline, Thomas, Variyar, Righi, Economon, Alonso, Palacios, Dimitriadis, Terrapon

O

O
’

P

P

r

r’s
O

s
P

e
x

e
z

e
y

e
x

’

e
y

’

e
z

’

Figure 1: Vectorial description of a rigid body displacement, before (blue) and after (red) the
displacement.

for an arbitrary number n (from one to six) of degrees of freedom uj:

d

dt

(
∂T

∂u̇j

)
−
(
∂T

∂uj

)
+

(
∂V

∂uj

)
+

(
∂D

∂u̇j

)
= Fj(t) j = 1, · · · , n (6)

where T is the kinetic energy related to the mass and the inertia, V the potential energy related
to the stiffness, D is the dissipation function related to the damping and Fj is the generalized
time-dependent force associated to the j th degree of freedom. This can be expressed in matrix
form as:

Mü + Cu̇ + Ku = F(t) (7)

where u is the vector containing the uj .

2.2.2 Solid mechanics

In the context of geometrically non-linear, solid mechanics problems, the governing equation
may be written [28] as

ρs
∂2u

∂t2
= ∇(F · S) + ρsf in Ω× [0, t] (8)

where ρs is the structural density, u are the displacements of the solid, F the material deforma-
tion gradient, f the volume forces on the structural domain, and S the second Piola-Kirchhoff
stress tensor, which are related to the Cauchy Stress tensor σ by means of a Piola transforma-
tion [29]. The mechanical response of the continuum is addressed by means of a Lagrangian
(spatial) description, where the displacements, velocities and accelerations of the structure at
the nodes are tracked by following material particles [29, 30].

The current implementation of a solid structural solver within SU2 accounts both for lin-
ear elastic problems, and also for geometrically non-linear problems with a hyperelastic, Neo-
Hookean material model. In a linear setting, and assuming no structural damping, Eq. 8 may
be discretized in space using the Finite Element Method (FEM), resulting in

Mü + KLu = F(t) (9)
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where F(t) is the vector of externally applied forces, M the mass matrix and KL the linear
stiffness matrix, which multiply, respectively, the acceleration and displacement terms of the
solution [31]. In a non-linear setting, on the other hand, we linearise the principle of virtual
work and reformulate the problem in an incremental, implicit Newton-Raphson way [29,31], as

Müt+1 + KNL∆u(k = −Rt+1

u
(k
t+1 = u

(k−1
t+1 + ∆u(k (10)

Rt+1 = T
(k−1
t+1 − Ft+1

where the tangent matrix KNL accounts for the constitutive and stress terms of the equations
and R is the residual vector which is computed as the difference between internal equivalent
nodal forces T and the external forces F. In order to obtain time-accurate solutions on solid
structural analysis, both the Newmark [32] and the Generalized-α [33] integration methods have
been implemented in SU2.

2.3 Coupling

2.3.1 Coupling conditions

It is necessary to impose appropriate boundary conditions on the interface in order to fully
define the coupled problem. First of all, continuity of displacements may be imposed over the
Fluid-Structure interface Γ as

uΓf
= uΓs = uΓ. (11)

Second, assuming a viscous flow with no-slip boundary conditions, the tractions on the fluid
interface are defined as tf = −pnf + ¯̄τ fnf , where p is the pressure of the fluid on the interface,
¯̄τ the viscous stress tensor and nf the dimensional, fluid normal outwards from the surface. On
the other hand, the tractions on the structural interface are defined as ts,n = ¯̄σsns, where ns is
the dimensional, structural normal pointing away from the surface.

We can now define a Dirichlet-to-Neumann [34, 35] non-linear operator that maps the dis-
placements on the fluid interface into the fluid tractions, tΓf

= F (uΓf
) on Γf . Analogously for

the structural side, tΓs = S (uΓs) on Γs. Imposing equilibrium of tractions, and combining it
with the continuity condition in Eqn. (11), we obtain a Steklov-Poincaré equation [34, 35]

F (uΓ) + S (uΓ) = 0. (12)

This equation can be rewritten in the form of a fixed-point equation [35] using an inverse
Neumann-to-Dirichlet operator on the structural side, uΓs = S −1(λΓs), resulting in the inter-
face condition

S −1(−F (uΓ)) = uΓ. (13)

2.3.2 Time coupling

A partitioned approach has been adopted in this work, which permits the employment of
an adequate solver for each subproblem [35] while maintaining the modularity of SU2. Two
possible strategies are available for the integration in time of the coupled problem: an explicit,
loosely-coupled method, and an implicit, strongly-coupled method. The choice of the scheme
will depend on the particularities of the problem to be solved.

The explicit procedure runs sequentially one single solution of the the fluid and structure
solvers and advances the solver in time without enforcing the coupling conditions at the end of
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each time step. Due to its simple and modular implementation, this is widely used in computa-
tional aeroelasticity, where the coupled dynamics are often mostly determined by the vibrations
characteristics of the structure [3, 36–38]. However, this scheme may be unstable or inaccurate
in certain cases, due to its high dependency on the density ratio ρs/ρf and the compressibility
of the flow [35, 39, 40].

An implicit scheme improves the quality of the solution for cases in which explicit algorithms
are inadequate. Implicit schemes require both solvers to meet the coupling conditions defined
in section 2.3.1 at the end of each time step. In particular, our implementation uses the Block
Gauss-Seidel (BGS) method, which iteratively solves the fluid and structural problems within
the time step until a tolerance criterion is met in the continuity condition (11).

However, low convergence and even divergence has been reported when density ratios are
low, the flow is incompressible or the structural deformations are large [40–42]. One common
strategy to improve the convergence of the scheme is the use of high-order displacement predic-
tors combined with the employment of relaxation techniques [35,40,43,44]. The definition of a
fixed relaxation parameter ω generally results on a large number of iterations [43]; however, the
use of the Aitken’s ∆2 dynamic relaxation parameter [45], which has also been included in SU2,
is a simple and efficient option [40, 43, 44] to improve the convergence of implicit schemes.

2.3.3 Spatial coupling

The computational study of a Fluid-Structure Interaction problem using a partitioned ap-
proach requires the transfer of the coupling conditions defined in 2.3.1 between the fluid and
structural discretizations in an appropriate way. Due to differences in the physical behavior and
the possibility of local effects on one, or both, of the domains, matching discretizations will
often either over- or under-refine one of the domains. This motivates the implementation of
interpolation between non-matching discretizations. It should be noted that the interpolation
of fields on the non-matching interface may compromise the accuracy of the whole simula-
tion [46], and several authors have addressed the problem of coupling two non-matching dis-
cretizations [1, 46–51]. The general criteria for choosing the appropriate interpolator relates to
its efficiency, robustness, accuracy, and conservation of momentum and energy [1, 46, 49, 52].

It is a common approach in the literature to apply the principle of virtual work [1,46,49,53]
to define a conservative transfer scheme. Brown [52] and Farhat [1] have introduced projection
methods that apply the conservation of virtual work to the problem of transferring load and
deformations in FSI problems on non-matching meshes. By requiring the interpolation method
to conserve virtual work across the displacements and forces on the two meshes, the resulting
distributions are physically consistent and result in the same integrated forces. Following their
work an expression for the virtual work performed by the forces applied to the structure F,
moved through a virtual nodal displacement δuΓ,s is:

δWE = FT · δuΓ,s (14)

The virtual work must equal the similar expression using the forces of the fluid solution and
the virtual displacements of the fluid mesh:

δWE =

∫
Γ,f

(−p~nf + ¯̄τ f~nf )
T · δuΓ,fdSf (15)

where ~nf is the unit normal on the fluid side of the problem and Sf the curvilinear coordinate
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along the fluid interface. Equating Equations (14) and (15):

FT · δuΓ,s =

∫
Γ,f

(−p~nf + ¯̄τ f~nf )
T · δuΓ,fdSf (16)

In the discrete interface, the displacements on the fluid side may be mapped using the dis-
placements on the structural side through the use of a matrix H which will need to be defined
for each problem and method used, thus resulting in uf = Hus. For the common case of
a finer fluid mesh we have a set of distributed forces λf including both surface pressure and
traction. According to the previously described principle of virtual work, the tractions at the
structural interface may be mapped from the fluid domain as λs = HTλf . Therefore, it is
possible to define a full space-coupling scheme that would meet the criteria of conservation of
work by adequately defining a transformation matrix H. Global conservation of forces can also
be achieved by imposing that the rowsum of H is equal to one [49].

3 IMPLEMENTATION

The SU2 software suite was conceived as a common infrastructure for solving multi-physics
PDE-based problems on unstructured meshes. The full suite is composed of compiled C++
executables and high-level Python scripts that perform a wide range of tasks related to PDE
analysis, PDE-constrained optimization, or coupled multi-physics problems. Below, we will
describe some of the key implementation details for the various FSI approaches for both C++
and Python. A more complete description of the suite can be found in Economon et al. [54].

3.1 Fluid solver

Much of the C++ class design in SU2 is shared by all of the core modules. In particular,
this includes the geometry (i.e., grids), integration, configuration (input file), and output class
structures. Only specific numerical methods for the convective, viscous, and source terms are
re-implemented for different physical models where necessary. There is no fundamental limita-
tion on the number of state variables or governing equations that can be solved simultaneously
in a coupled or segregated way (other than the physical memory available on a given computer
architecture), and the more complicated algorithms and numerical methods (including paral-
lelization, multigrid, and linear solvers) have been implemented in such a way that they can be
applied without special consideration during the implementation of a new physical model.

The schematic in Fig. 2 shows the structure of the fluid solver in SU2. A similar structure
would arise for other single-physics solvers, as will be seen below for the structural solver. The
main SU2 loop drives the iterations of the particular physics, and in this example, the iteration
class for the flow problem is executed. Within that iteration, some classes that are shared among
all solvers are leveraged, such as the geometry and integration classes, while others have been
specialized to the flow problem, such as the solver, numerics, and variable classes. The solver,
numerics, and variable classes contain the routines that are specific to a chosen physical model.

3.2 Structural solver

The structural solver has been designed based on the original fluid solver, and follows its
main structure, as shown in Fig. 3. However, some modifications have been carried out in
order to account for the specific characteristics of solid mechanics problems. In particular,
two layers of abstraction have been included that deal, independently, with geometrical and
material nonlinear effects. The Finite Element analysis is performed at the solver level and
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OutputInput

Space & Time Integration

Geometry: Dual Grid FV Mesh Euler / NS / RANS Solver

Variable: Node

CFD Numerical Methods

SU2

Flow Iteration 

Single Physics Driver

Figure 2: Structure of the fluid solver.

relies on a C++ class common for any kind of element. This structure has been designed with
the philosophy of maintaining the flexibility of the code while easing and encouraging further
contributions. Further details may be found in Sanchez et al. [7].

OutputInput

Space & Time Integrator

Geometry: FEM Mesh Solid Mechanics Solver

Variable: Node

FEM: Structural Analysis

SU2

Structural Iteration 

Single Physics Driver

Element Geometrical model

Material modelGaussian Point

Figure 3: Structure of the Solid Mechanics solver.

3.3 Multizone solver

The solution process in SU2 has been redesigned to improve its ability to run several solvers
with a single instance of the software. With this objective, a so-called driver structure has been
introduced, in which the developer can make use of the different parts of the code as if they
were black-boxes. When different solvers are used and need to interact with each other, it is
necessary to introduce mechanisms to communicate information at their interface. This is a
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complex task, specially when the solution process is run in multiple processors.
This situation is illustrated in Fig. 4 for an example in which a solid wall is immersed in

a flow in a channel and run in two processors. A multi-core, multi-physics problem run on
a distributed memory computer requires the MPI communication of information to be done
not only within each independent solver, but also across the different solvers. Moreover, an
optimal partition of the discretization of each zone of the physical domain, which reduces to
a minimum the number of edges cut by the partitions, may result in non-compliant regions
across zones. This fact forces the transfer mechanisms to be able to efficiently distribute the
information from processor i in the fluid domain to processor j in the structural domain. This
issue has been resolved by abstracting the physics of the information to be transferred from the
MPI transfer routines, thus allowing for different and specialized teams to develop and improve
each particular part of the problem independently. More specifically, and for Fluid-Structure
Interaction applications, the resulting code structure is shown in Fig. 5.

FSI Interface

(Processor 1) (Processor 2)(MPI Communication)

(MPI Communication)

(Processor 2)
(Processor 1)

(MPI Communication

Fluid halo region

Structural halo region

Fluid domain Fluid domain

Structural domain Structural domain

across different
physical problems)

Figure 4: Sample FSI problem run in multiple cores.

OutputInput

SU2

Flow Iteration 

Fluid-Structure Interaction Driver

Structural Iteration 

MPI-Compliant Transfer Methods

Fluid Tractions 

Structural Displacements 

I II 

I II 

Figure 5: Transfer structure for Fluid-Structure Interaction problems.
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3.3.1 Time-accurate solver

The self-contained FSI solver implemented within SU2 includes a Block Gauss-Seidel (BGS),
partitioned, strongly-coupled, implicit solution method in order to advance the fluid and struc-
tural solvers in time, as described in section 2.3.1. This solver takes advantage of the modular
implementation of SU2, in particular of the driver and iteration methods which allow to use
each solver as a black-box, together with the transfer methods described in section 3.3. The
code subiterates within each time step according to the diagram shown in Fig. 6, until the con-
vergence criteria that has been established over the interface displacements is met.

Interface

Equilibrium

t f,Γ ts,Γ+ = 0

Fluid Solver Structural Solver

S ( ts,Γ )=us,Γ

Continuity

uf,Γ us,Γ= =uΓ

(t f,Γ )= u f,ΓF ,um
.

Mesh Morpher

( )= u f,ΓMum
.

-1

Figure 6: Block Gauss-Seidel subiterations for strong coupling.

3.3.2 Interpolation methods

It is rarely the case that the separate fluid and structure problems will require the same mesh
distributions. For this reason the capability to interpolate between non-matching meshes has
been implemented in SU2. The location of interpolation within the problem is shown in Fig. 7.

Interpolation is implemented as a class (CInterpolator) which locates the ’donor’ nodes and
calculates weighting coefficients. These values are evaluated once in a preprocessing step of the
multi-zone problem, and stored such that the transfer structure will continue as described in sec-
tion 3.3 with the only difference that the transferred information originates from a weighted sum
of nodes rather than being restricted to a single node. The particular weighting and selection
of nodes is determined by which interpolation method is chosen. Each interpolation method is
implemented as a child class of CInterpolator, inheriting the data structures and methods needed
by most interpolation routines.

The implemented interpolation methods include a Nearest-Neighbor approach which identi-
fies the closest point and uses a weighting value of 1.0, and an Isoparametric approach which
computes isoparametric coefficients for the nodes of the closest surface element. A ’Conserva-
tive’ approach is also implemented, which re-uses the computation of isoparametric coefficients,
but rather than re-computing the coefficients in either direction it computes the coefficients from
the coarser mesh to the finer mesh and mirrors these values for the transfer in the opposite direc-
tion, such that the transfer matrix is the same in both directions. This is consistent with methods
described in literature [52] and section 2.3.3.
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III 
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Figure 7: Interpolation structure for Fluid-Structure Interaction problems.

3.4 Python wrapper

SU2 can also be used for FSI computations when it is externally coupled with a third-party
structural solver. This particular type of coupling is achieved through a Python wrapper de-
signed to synchronize the solvers within one single Python environment. The implementation
of the wrapper is detailed first, and the coupling mechanisms are illustrated after that.

3.4.1 Implementation of the wrapper

The flexibility of the Python language is used to couple SU2 with other third-party structural
solvers in order to perform externally-coupled FSI simulations. Some specific functions imple-
mented in SU2, such as those performing CFD iterations or mesh deformation, are rearranged
in a new C++/API object representing the SU2 solver as the fluid part of the FSI algorithm.
The SU2 code with the API object are then compiled as a dynamic library using any C++ com-
piler. An additional compilation using SWIG is required to translate the API into a wrapping
Python module that is linked with the library and importable in any Python script where the
FSI algorithm is built. In this way, the SU2 solver, through the Python-wrapped API, can be
managed in an intuitive language but the critical and computationally intensive calculations are
performed with the same C++ routines as in the basic source code. This wrapping methodology
is illustrated in the left (black) part of Fig. 8.

3.4.2 Coupling with a third party solver

The coupling with external structural solvers is achieved within the Python script itself, pro-
viding the considered solver also has a Python-translated API that can be imported as a Python
module representing the solid part of the computation. This is illustrated in the right (gray) part
of Fig. 8. For modularity purposes, the methods of the API object of any structural solver to be
coupled with the Python wrapper should be built on a template that covers the main steps of an
FSI algorithm.

The communications between the fluid and solid modules can be directly performed through
memory by explicitly exchanging memory addresses as input/output to/from the specific API
functions. For example, when an update of the solid displacement is needed, the solid part
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Figure 8: Python wrapping of SU2, from source code to FSI script (black). A symmetric
architecture can then be applied to the structural solver (gray).

sends the memory address of the array where the new position of the fluid-solid interface is
stored. These values can thus be interpolated from the solid to the fluid mesh and processed
before deforming the fluid mesh. The same mechanism is used for communicating fluid loads
acting on the solid. This leads to an intuitive and flexible way for synchronizing the solvers,
since they are not considered as independent codes anymore but as Python objects within the
FSI script. Another advantage of the wrapper is that all of the methodologies for FSI that were
described in section 3.3 are also available in this approach. This implementation is also fully
compatible with code parallelization using MPI thanks to appropriate MPI Python modules so
that the MPI communication pattern within the solvers is kept. Third party structural solvers of
various complexity can be coupled through the wrapper. In this paper, two different cases are
presented. The first is one where the wrapper is used to couple SU2 to a spring-analogy solver
and in the second, SU2 is coupled with an external finite element solver capable of handling 2d
and 3d structural meshes for linear and non-linear structural analysis.

In the case of rigid body aeroelastic applications, the wrapper is used to couple an external
in-house spring analogy solver. This solver is used to predict the dynamically constrained
rigid body motion that was previously described in section 2.2.1 by integrating the equations of
motion, Eq. 7, in time for a six-DOF rigid body system with the Generalized-α method. The
solver itself takes the structural parameters, such as the mass, moment of inertia, stiffness or
damping as inputs.

The surface tractions on each node of the interface are communicated to the spring analogy
solver through the wrapper. The global aerodynamic loads, such as the lift and drag forces or
the aerodynamic moments, are then computed in order to solve Eq. 7 and get the new positions
of each node of the solid interface with Eq. 5. The interface displacement is then communicated
from the spring analogy solver to SU2 as inputs for the dynamic mesh deformation.

For this particular case, only the fluid part is parallelized since the structural part can be
almost instantaneously solved without any significant computational cost. The absence of mesh
discretisation in the solid part enables the coupled simulation to get rid of the interpolation of
fields at the interface. The amount of data needed to be exchanged is also small so that the
communication between the fluid and the solid is performed on the master process, then the
data are broadcasted/gathered to/from the other processes if needed.

For the second case, SU2 is coupled with the Toolkit for Analysis of Composite Structures
(TACS) [55], a finite element based structural analysis solver. TACS has a python interface that
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allows it to be coupled easily with SU2. The load transfer between the fluid and structure solvers
is performed using an in-house python module developed for finite element based structural
weight estimation for aircraft configurations [56]. The python based FSI framework comprising
SU2, TACS and the load transfer module permits the solution of different FSI problems (steady
and unsteady) in two and three dimensions. Different fluid structure coupling architectures like
the Conventional Staggered or Block Gauss Seidel can be formulated without recompiling SU2
or TACS simply by rearranging the function calls to the fluid and structural modules in the
Python driver scripts. A test case for the unsteady solution of an elastic beam behind a square
cylinder (shown in in Section 4.2.3) is used to demonstrate the capabilities of the framework.

4 RESULTS

4.1 Fluid-Structure Interaction solver for rigid body applications

A typical aeroelastic reference model is the two-dimensional pitching-plunging airfoil [57]
(2 DOF) with a chord c in a free-stream flow of velocity U∞ (or Mach number M∞). This
model is illustrated in Fig. 9. The displacement h of the elastic axis is positive downwards and
the pitch angle α is positive clockwise. The positions along the chord of the center of gravity
xCG and the elastic axis xf are considered from the nose of the airfoil. The product between
the distance (xCG − xf) and the airfoil mass m is the static unbalance S. The spring analogy
controls the motion of the airfoil with a stiffness Kh (or Kα) and a damping Ch (or Cα) for the
plunging (or pitching) mode.

xf
xCG cc/2

h t( )

α t( )

Kh

Kα

C
α

Ch

CG

U

x

y

Figure 9: Schematic of a two degrees of freedom pitching-plunging airfoil aeroelastic model.

The equations of motion, Eq. 7, for this aeroelastic system can be written as:

mḧ+ Sα̈ + Chḣ+Khh = −L
Sḧ+ If α̈ + Cαα̇ +Kαα = M

(17)

where If is the inertia of the airfoil around the elastic axis, L the lift and M the aerodynamic
moment around the elastic axis. The lift is positive upwards and the aerodynamic moment
around the elastic axis is considered positive clockwise, as the pitch angle. This model can also
be described by a set of non-dimensional parameters, i.e., the normalized static unbalance χ
and inertia rα, the uncoupled natural frequency ratio ω and the mass ratio µ:

χ =
S

mb
, rα =

If

mb2
, ω =

ωh
ωα

, µ =
m

πρ∞b2
(18)
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In these expressions b is the half-chord, ωh =
√
Kh/m (ωα =

√
Kα/If) is the uncoupled

plunging (pitching) natural frequency and ρ∞ is the free-stream density of the fluid.

4.1.1 Two-dimensional pitching-plunging NACA 0012 airfoil

The Python wrapper is used here to couple SU2 with the basic spring analogy integrator
described in section 3.4.2 to solve the basic two-dimensional aeroelastic problem involving a
pitching-plunging NACA 0012 airfoil in a free-stream flow. The unsteady RANS solver of SU2
is used with the k − ω SST turbulence model and the FSI simulation is based on a strongly-
coupled scheme with a tolerance on the solid displacement of 10−6 (leading to about 4 FSI
iterations).

The case is set with the non-dimensional parameters χ = 0.25, rα = 0.5, ω = 0.3185
and µ = 100. The elastic axis is placed at the quarter-chord point. Several free-stream Mach
numbers are considered in order to capture both sub- and post-critical conditions. The chord-
based Reynolds number is fixed at a value Rec = 4 · 106 for a chord c = 1 m. The natural
pitching frequency is set to ωα = 45 rad/s. A pitch angle for the airfoil of α = 0.872 rad (5o)
is used as initial condition. These parameters are chosen in order to predict a subsonic flutter
Mach number that allows the comparison with incompressible theoretical models (see below).
The calculations are performed with 139 time steps per period of the pitch mode for accuracy
purposes.

The sub-critical response of the system for M∞ = 0.1 is compared with theoretical pre-
dictions using the thin airfoil theory [58] for aerodynamic load predictions and Wagner func-
tion [59] for dynamic fluid-solid coupling. Fig. 10 shows the normalized plunge displacement
and pitch angle as a function of a non-dimensional time τ = ωαt. At this sub-critical Mach
number the system is strongly damped. The coupled computation is in good agreement with the
theoretical expectations, particularly for the pitch mode.
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Figure 10: Aeroelastic response as a function of time at sub-critical conditions (M∞ = 0.1).

The Python wrapper is thus able to capture the response at flow conditions being quite far
from critical conditions (flutter). Fig. 11 shows the computed responses of the plunging and
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pitching modes at three different free-stream Mach numbers corresponding to sub-critical, crit-
ical and post-critical conditions. The flutter Mach number, M∞ = 0.357, obtained from the
computation differs only slightly from the theoretical prediction based on Wagner model, i.e.,
M th
∞ = 0.371. As expected, the response at M∞ = 0.3 is strongly damped. An increase of

the Mach number reduces the damping ratio until critical conditions are reached, at which the
amplitude of the response remains constant in time. Finally, at post-critical conditions (e.g.,
M∞ = 0.364), the response becomes unstable.
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Figure 11: Aeroelastic response as a function of time at sub- and post-critical conditions.

Fig. 12 shows the computed dimensionless frequencies of the two airfoil modes as a funcion
of the free-stream Mach number. The evolution of the frequencies is in good agreement with
the theoretical model. In particular, the two frequencies converge with increasingM∞ until they
coincide at the flutter Mach number and beyond it.

At the post-critical conditions the amplitude of the response is strongly amplified during
the first 6 cycles, but then reaches a limit-cycle oscillation (LCO). This is due to the nonlinear
effects of boundary layer separation and stall that appear for large displacements and angles
of attack. Fig. 13 shows the temporal response of the system over a longer time period. The
red bullets correspond to instants when significant flow separation occurs alternatively on the
extrados or intrados of the airfoil. A sudden drop of the amplitude is systematically observed
after each separation. Subsequently, the amplitude increases again due to flutter instabilities
before reaching another separation point. This mechanism allows the aeroelastic response to
remain bounded in time and explains the development of a LCO mode.

A visualization of this flow dynamics is shown in Fig. 14 for times corresponding to the
second set of red bullets in Fig. 13. The separation occurs when the two airfoil modes reach
their local maximum values. On the suction side, the local Mach number becomes very large
(close to 1.6) [Fig. 13 (a) and (b)]. Then a massive flow separation event is observed while the
airfoil moves back towards its neutral position (α = h = 0) [Fig. 13 (c) and (d)]. Finally, the
flow progressively reattaches until the instantaneous displacement (both modes) of the airfoil is
close to zero [Fig. 13 (e) and (f)]. A similar dynamics takes place for negative pitching angles.
This highlights the capabilities of the wrapper coupling method to predict complex and non-
linear dynamics that can be observed in aeroelastic systems beyond the linear coupled mode
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Figure 12: Dimensionless frequencies of the aeroelastic response as a function of the free-
stream Mach number.
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Figure 13: LCO response of the system at M∞ = 0.364 under non-linear aerodynamic phe-
nomena. The times when massive boundary layer separation occurs are marked by the red
bullets.

flutter, keeping in mind the loss of accuracy for separated flows due to the RANS model.

4.1.2 Isogai wing section

The Python wrapper coupling SU2 and the spring-analogy integrator is also applied to the
classical Isogai wing section aeroelastic case (case A) [60,61]. This test case represents the dy-
namics of the outboard portion of a swept back wing in the transonic regime. The corresponding
parameters are χ = 1.8, rα = 1.865, ω̄ = 1, µ = 60. The elastic axis is placed in front of the
airfoil at a distance xf = −b from the leading edge and the natural pitching frequency is here
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Figure 14: Visualization of the flow separation mechanism leading to a LCO response of the
system beyond the flutter point.

set to ωα = 100 rad/s.
The Euler equations are considered in the transonic regime (M∞ = 0.7− 0.9) with an initial

pitch angle for the airfoil of α0 = 0.0174 rad (1o) and the FSI simulation is again performed
with a strong-coupling scheme with the same tolerance than the previous test case. For this
case, the number of time steps per period of the pitch mode is reduced to 39.

Several FSI simulations at different transonic Mach numbers are performed with variable
speed index

V ∗ =
U∞

bωα
√
µ

(19)

in order to predict the flutter point. This state is reached when the damping extracted from
the dynamic response of the system is close to zero. The results are illustrated in Fig. 15 that
shows a comparison of the computed flutter speed indices with those found in other references
[62–65]. The best approximation curve (spline) is a representation of the limit between stable
and unstable regions. It can be seen that the ”transonic dip” and the typical ”S-shape” flutter
boundary for M∞ between 0.7 and 0.9 are both well predicted.

4.1.3 Test cases from the 2nd AIAA Aeroelastic Prediction Workshop

The second AIAA Aeroelastic Prediction Workshop [66] was officially launched in January
2015 and took place in January 2016 (both events at Scitech) with the aim of assessing the
accuracy of the predictions provided by the available numerical approaches. The planned test
cases include the investigation of forced and unforced wing oscillations as well as the study
of wing flutter with a pitch-and-plunge kinematics. All measurements were carried out by
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Figure 15: Flutter speed index as a function of the free-stream Mach number. Comparison
between current computations and numerical results from the literature.

NASA in Langley’s TDT wind tunnel. The wing model is the Benchmark Supercritical Wing
(BSCW) [67–69]. All test cases are transonic and supercritical for the BSCW wing. Mach
number ranges between 0.70 and 0.84, Reynolds number (based on chord) is around 5 million.
The fluids used for the experiments are heavy gases (R12 and R134a depending on the test
case). The angle of attack is chosen in order to position the shock wave differently in each test
case. The boundary layer is tripped at 7% of the chord. The three dimensionality of the flow in
the tip region – the BSCW wing has an aspect ratio of 4 – contributes to the complexity of the
case.

Pre-requisites for a physically consistent simulation include the full resolution of the bound-
ary layer, and an acceptable prediction of the steady-state shock-boundary layer interaction,
hence a correct positioning of the shock on the upper and lower side of the wing.

The fluid solver in SU2 has been used to simulate test case 1, which includes forced pitch os-
cillations around the axis at 30% of the chord at frequency 10 Hz with an amplitude of±1◦. The
median angle of attack of 3◦ is sufficient to generate a small supersonic region around the upper
side of the nose of the wing and a shock at approximately 10% of the chord. The distribution
of the pressure, obtained from SU2, is shown in Fig. 16. A time-accurate simulation with rigid
grid motion was conducted with the second order dual-time stepping, following a steady-state
solution, also obtained with SU2. Both simulations were run with the central scheme (JST). The
Spalart-Allmaras one-equation turbulence model [13] was used. For the steady-state simulation
and for the subiterations in the time-accurate run, a CFL of 4.0 was used with the Euler implicit
time stepping (iterations limited to 5).

Time-accurate pressure measurements - static data and first harmonic - are available in a
number of points at the section at 60% of the span. The results obtained with SU2 are compared
with experimental data, whenever available, and with those obtained with Edge [70], a well-
known CFD package developed by the Swedish Defence Research Centre (FOI) for aeroelastic
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problems.

Figure 16: Steady state solution, pressure coefficient distribution over upper and lower wing
sides
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Figure 17: Pressure coefficient distribution averaged over ten periods

The agreement with the experimental data in terms of average pressure coefficient, presented
in Fig. 16, may be considered as good despite a difference of a few percentage points of chord
in shock position. The agreement between SU2 and Edge is excellent. The comparison of the
first harmonic (10 Hz), which is presented in Fig. 18 (magnitude of oscillations) and Fig. 19
(phase delay with respect to pitch signal) shows again a very good agreement between SU2
and Edge and larger deviations, but still acceptable to engineering standards, between CFD
and experiments. The most noticeable differences concern the recovery area, downstream of
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Figure 18: First harmonic of response, magnitude, pressure coefficient, upper (lhs) and lower
(rhs) wing side
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Figure 19: First harmonic of response, phase delay in degrees, pressure coefficient, upper (lhs)
and lower (rhs) wing side

the shock, where the predicted phase angle is overestimated, and the shock area, where the
experimental data show much lower value in correspondence of sensor 5. The most likely cause
- according to the researchers and organizers of the Workshop - is some local deformation
effect which is not being taken into consideration in CFD simulation. Two effects are expected
to play a major role in the evolution of static pressure on the upper wing side as a function of
the oscillating pitch angle; on the one hand, the motion of the stagnation point causes a first
pressure peak to grow in phase with pitch angle, on the other hand, the shock wave moves up
and downstream also in phase with the pitch angle. The two effects generate a “double peak”,
which is clearly visible in Fig. 18, in both CFD and experimental data.

The flow being strongly non-linear, the response of the aerodynamics contains several non-
negligible harmonics; the Fourier expansion of the pressure coefficients has a non negligible
amplitude at the reference frequency f = 10Hz and also at 2× f , 3× f and 4× f . This is pre-
sented in Fig. 20. Again, the agreement between SU2 and Edge is very good. No experimental
data is available for frequencies higher than 10 Hz.
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Figure 20: Second, third and fourth harmonics of response, magnitude, pressure coefficient

4.2 Fluid-Structure Interaction solver with deformable solids

4.2.1 Benchmark problem for native FSI solver in SU2

In order to test our native implementation of the FSI solver for deformable solids within SU2,
we focus on a well-known benchmark test case first proposed by Wall and Ramm [71] (see, for
example, [35, 44, 72–75]). They investigated the dynamics of a flexible cantilever attached to
the downwind side of a square cylinder in a low-speed flow, as described in Fig. 21.
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Figure 21: Benchmark for FSI solver with deformable solids.

The physics that lie behind this problem may be briefly described as follows. The square
cylinder, rigid and static, generates vortical structures in the low-Reynolds number flow. These
vortices generate an alternating pressure in the wake, that induces motions of the flexible can-
tilever attached to the downwind side of the square, as shown in Fig. 22.

Figure 22: Pressure contours and structural displacements for the benchmark test cases for a
full cycle of oscillation. From left to right, T=0, T=π/2, T= π, T=3π/2.
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The two parameters that have been used in the literature to assess the validity of different
FSI implementations are the frequency and amplitude of the vertical displacement at the tip of
the cantilever. With regards to the frequency, published values range from 2.78 to 3.25 Hz, this
is, in the surroundings of the first natural frequency of the cantilever, equal to 3.03 Hz. The
maximum tip displacement has been found to be within the range 1-1.4 cm, thus a 25-35% of
the cantilever length, which results in geometrically-nonlinear effects on the structure.

We have tested this problem using SU2 and several different time and space discretisations.
In these tests, we have obtained values of frequency ranging from 3.05 to 3.15 Hz and maximum
tip displacements in the range of 1.05 - 1.15 cm, showing a very good agreement with the liter-
ature. In a previous work, see [7], we have also shown the ability of the solver to capture some
modulations in the amplitude due to the complex physics involved, and the different behaviour
of the coupled problem when modifying some relevant parameters, such as the structural density
and first natural frequency.

In order to reduce the computational time, we have also tested in this work the ability of the
Aitken’s dynamic parameter and the first order displacement predictor to reduce the number of
BGS subiterations. In Fig. 23, we compare different configurations against a BGS strongly-
coupled strategy in which we use a fixed relaxation parameter ωfixed = 0.5. This approach
converges slowly to the solution, in about 8-10 iterations per time step.
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Figure 23: Time histories of the vertical tip displacements for different values of the relaxation
parameter for the BGS FSI solver. The base solution (in grey) is obtained with ωfixed = 0.5, and
no predictor.

By increasing the fixed relaxation parameter to ωfixed = 0.7, we reduce the computational
time in a 33%. However, as it may be seen in Figure 23, a higher relaxation parameter introduces
some deviations in the solution, that we believe are closely related to the value of ω being too
large in the first subiteration, ω0. This effect becomes more clear when we increase the fixed
relaxation parameter to ωfixed = 0.9, when both the frequency and the amplitude are affected
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and the amplitude modulation is almost damped out.
On the other hand, the use of the Aitken’s dynamic relaxation parameter (ωAitken,dyn) clearly

improves the convergence of the scheme. In particular, the number of BGS subiterations is
reduced to 4-5 per time step, resulting in the computational time being a 38% shorter. By
using a first order predictor on the first BGS subiteration, we can further reduce the number of
iterations to 3-4 and the computational time by a 56% with respect to the baseline case, while
obtaining effectively the same solution. It is important to note that, in these two cases, we have
limited the value of the relaxation parameter in the first BGS iteration to ω0 = 0.5, then allowing
it to adapt dynamically in the remaining subiterations.

4.2.2 Interpolation framework for non-matching discretizations

To test the implementation of the interpolation routines, the case of a solid wall immersed in
a flow in a channel case is used. The geometry is shown in Fig. 24, and the flow conditions were
set as Mach 0.15 viscous unsteady flow with adiabatic no-slip walls on the flexible vertical wall
within the channel, and slip wall conditions on the upper and lower surfaces. The Reynolds
number is 300 per meter. The ratio of densities between the structure and the fluid is 1 : 0.0106.

t

h

L

H
inlet

upper

lower

outlet

L = 0.20 m

H = 0.02 m 

t = 0.001 m

h = 0.016 m

x

y

wall

Figure 24: Test case used for interpolation routines.

Several meshes were generated with varying refinement. The results shown are from a ’fine’
mesh with 100 elements on the upwind surface of the vertical wall, and a ’coarser’ mesh with
90 elements on that same wall. Fig. 25 illustrates the results of simulating the coupled dy-
namics with either matching ’fine’ discretizations, matching ’coarser’ discretizations, or a non-
matching discretization with the ’coarser’ mesh used for the structural dynamics. This plot il-
lustrates the effect of using these methods on the accuracy of the solution. Figure 26 illustrates
the deformed geometry at time step 25. We can see from these plots that the nearest-neighbor
interpolation results in discontinuous values. Using isoparametric weighting coefficients results
in a smoother deformation, however when examining the accuracy of this deformation in Fig-
ure 25, we can see that a smoother interpolation has not resulted in more accurate results as
compared to the nearest neighbor approach. Both of these methods use a transformation ma-
trix H that has been calculated separately for the two transfer directions. The combination of
this smoother interpolation and the use of a single H results in the most accurate interpolated
results.

4.2.3 Python-wrapped FSI with interface to external solvers

In order to test/demonstrate the flexibility of the python interface of SU2, the FSI problem
of a flexible cantilever attached to the downwind side of a square cylinder (described in Section
4.2.1) is solved by coupling the flow and structural solvers using the python interface. The
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Figure 25: Time history of horizontal displacement of the upper right-hand corner of the de-
flecting beam. The geometry has been held static until time step 18.

(a) Matching discretiza-
tion.

(b) Unmatched dis-
cretization with Nearest-
Neighbor interpolation.
Discontinuities can be
seen in the deformed
shape.

(c) Unmatched discretiza-
tion with Isoparametric
weights used in interpo-
lation. The deformation
is smooth, but does not
agree with matched dis-
cretization results.

(d) Unmatched dis-
cretization with ’Con-
servative’ method as in
Section 2.3.3. The defor-
mation agrees with the
matched discretization,
and is smooth.

Figure 26: Deformed geometry after 25 time steps

geometry of the problem is the same as Section 4.2.1 but the conditions are slightly different
corresponding to those specified in Dettmer et al. [73]. These are stated again in Fig. 27. The
results shown in Figs. 28, 29 were computed using a conventional staggered (CS) coupling
approach. We see that the maximum tip displacement of the beam, not including the transient
region, is 1.03 and the average frequency is 2.93 Hz showing a good agreement with [73] and
the results in Section 4.2.1. Simulations with the Block Gauss Seidel (BGS) coupling approach
give similar results but these have not been shown here.
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Figure 27: Geometry, flow and structural properties used for the 2d simulation using the python
interface

Figure 28: Time history of vertical tip displacements obtained using the python based coupling

Figure 29: Convective flux contours and structural displacements for the benchmark test cases
(using the python based framework) for a full cycle of oscillation. From left to right, T=0,
T=π/2, T= π, T=3π/2.

5 CONCLUSION

We have introduced a new open-source Fluid-Structure Interaction solution framework tai-
lored to high-fidelity analysis in computational aeroelasticity. It includes a natively embedded
FSI solver and a code wrapper methodology that simplify the communication of the code with
other external commercial and in-house solvers. We have carried out some relevant tests of the
methodology and the different capabilities that have been implemented. We have compared the
results obtained using this software with some relevant benchmark test cases, obtaining results
that agree well with the open literature.

This infrastructure has been implemented by an international group of researchers with dif-
ferent backgrounds and expertise, and is publicly available in a github repository that can be
accessed through the SU2 project website, http://su2.stanford.edu/. The main goal of this col-
laborative work is to progressively incorporate new capabilities into the platform while main-
taining its modularity, thus encouraging for further developments of state-of-the-art techniques
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within the different disciplines that conform the study of the interaction between fluids and
structures.
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