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Abstract. Nowadays, new materials like Functionally Graded Material (FGM) are necessary
for sophisticated structures like MEMS systems, advanced electronic devices, etc. Computer
modelling of such complex systems, like structures with spatial variation of material properties
(e.g. FGM) are, using commercial FEM code with classic elements, needs remarkable effort
during preparation phase and sufficient computer equipment for solution phase because of ne-
cessity the numbers of elements and material models. Therefore new methods for modeling and
simulation of FGM beams with spatial variation of material properties are developed.

In the proposed contribution, semi-analytical method (based on calculation of transfer func-
tions and transfer constants) for solution of differential equation with non-constant polynomial
coefficients, is presented. This method is used in derivation process (for setting up the transfer
matrix) of our new beam finite elements for modeling and simulation of Functionally Graded
Material (FGM) beam structures (e.g. new 3D FGM beam finite element for modal and struc-
tural analysis, new FGM beam finite elements for coupled electro-thermo-mechanical analysis).
Numerical experiments are made to show the accuracy and effectiveness of this method.
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1 INTRODUCTION

Physical processes in materials, such as heat transfer, conduction of electric current, me-
chanical stress, etc., are often described by partial differential equations or by system of partial
differential equations. An exact analytical solution is usually possible only for simplified inves-
tigated domains (e.g. one dimensional link parts - bars) and simple boundary conditions of the
investigated system, where the geometry allows to reduce the partial differential equations into
ordinary differential equations. The geometry of the bar, as well as the boundary conditions
fulfil the requirements that are needed to apply analytical methods for solving the differential
equations.

One example, let us write general partial differential equation for heat transfer in considered
domain:

∂T (x, y, z, τ)

∂τ
=

λ

cρ
52 T (x, y, z, τ) +

Q

cρ
(1)

Quantity T (x, y, z, τ) [K] is the unknown temperature of the system, τ [s] is the time, λ
[Wm−1K−1] is the thermal conductivity of considered material, c [Jkg−1K−1] is its specific
heat, ρ [kgm−3] is the density of the material and Q [Wm−3] is the volume heat sources in the
system. For steady state and for 1D geometry (bar construction) we can simplify this partial
differential equation into the form of ordinary differential equation:

d2T (x)

dx2
= −Q

cλ
(2)

with two boundary conditions, e.g.:

T (0) = T0

T (L) = TL
(3)

It is possible to write similar ordinary differential equations also for other physical fields (e.g.
electric field, structural analysis, etc.). When we consider variable material properties of the bar
(e.g. Functionally Graded Material - FGM) the ordinary differential equations contain variable
(nonconstant) coefficients.

In this contribution, semi-analytical method based on calculation of transfer functions (trans-
fer constants), for solution of differential equation with polynomial coefficients [1] is presented.
This method is used in derivation process (for setting up the transfer matrix) of our new beam
finite elements for modeling and simulation of FGM beam structures with 3D spatial variation
of material properties (e.g. new 3D FGM beam finite element for modal, structural and buck-
ling analysis [2][3], new FGM beam finite elements for coupled electro-thermo-mechanical
analysis[4]).

2 SEMI-ANALYTICAL METHOD FOR SOLUTION OF LINEAR DIFFERENTIAL
EQUATION WITH NON-CONSTANT COEFFICIENTS

There will be set out a procedure for solving differential equations with variable coefficients
and right-hand side, which is taken from Rubins article [1]. These differential equations must
fulfil the following requirements:

• differential equation of one independent variable

• polynomial character of variable coefficients and right side of the differential equation
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• known interval of the independent variable, where the solution of the differential equation
needs to be determined (x ∈ 〈0, L〉)

The order of differential equation and also the order of its right side are arbitrary.

2.1 Solving of the differential equation with non-constant coefficients

Let us consider 1D differential equation with non-constant coefficients and the right side in
the form:

m∑
u=0

ηu(x) y
(u)(x) =

g∑
j=0

qj aj(x) (4)

where m is a order of the differential equation, y(x) is an unknown function of independent
variable x, y(u)(x) is uth derivative of the unknown function y(x)

(
y(u)(x) = duy(x)/dxu

)
,

ηu(x) is a polynomial variable coefficient for uth derivation of the differential equation, g is the
order of a polynomial on the right side of the differential equation, qj is a constant coefficient for
jth power of the right side polynomial. Function aj(x) is an auxiliary function for polynomial
formulation

aj(x) =
xj

j!
j > 0

aj(x) = 1 j = 0

aj(x) = 0 j < 0

(5)

Polynomial coefficients ηu(x) of the differential equation (4) for u = {0;m} can be written as:

ηu(x) =

pu∑
r=0

ρur(x)

ρur(x) = ηur ar(x)

(6)

where ηur is a constant coefficient for rth power of polynomial for uth derivation, pu is an
order of polynomial for uth derivation and ar(x) is an auxiliary function according to (5) for
polynomial formulation.
According to this notation, derivation and integration of polynomial can be written in general
form:

a
′

j(x) = aj−1(x)
x∫

0

aj(x) = aj+1(x)
(7)

Then the solution of the differential equation (4) has according to [1] the form:

y(x) =
m−1∑
j=0

y
(j)
0 cj(x) +

g∑
j=0

qj bj+m(x) (8)

where y(j)0 is jth derivative of the function y(x) at the position x = 0
(
y
(j)
0 = y(j)(x)|x=0

)
,

cj(x) is a transfer function for uniform solution of the differential equation and bj+m(x) is a
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transfer function for particular solution of the differential equation (4).
Then the derivative of the solution (8) has a form:

y(u)(x) =
m−1∑
j=0

y
(j)
0 c

(u)
j (x) +

g∑
j=0

qj b
(u)
j+m(x) (9)

For u = 0 is Eq. (9) equal to Eq. (8). The solution (8) of the differential equation (4) and its
derivatives (9) can be written in the matrix form:

y(x)
y′(x)
y′′(x)

...
ym(x)

 =


c0 c1 c2 . . . cm−1
c′0 c′1 c′2 . . . c′m−1
c′′0 c′′1 c′′2 . . . c′′m−1
...

...
... . . .

cm0 cm1 cm2 . . . cmm−1

 ·

y0
y′0
y′′0
...
ym0



+


bm bm+1 bm+2 . . . bj+m

b′m b′m+1 b′m+2 . . . b′j+m

b′′m b′′m+1 b′′m+2 . . . b′′j+m
...

...
... . . .

bmm bmm+1 bmm+2 . . . bmj+m

 ·

q0
q1
q2
...
qg



(10)

The solution (8) and its derivatives (9) of the differential equation (4) are based on determi-
nation of the transfer functions generally labelled c(x) and b(x). The calculation of functions
b
(u)
j+m(x) is based on the use of power series and recursive process, considering u = {0;m}

and j = {0; g}. It is necessary to guarantee the convergence of the series for a given inter-
val x ∈ 〈0;L〉 for successful calculation of these functions. It is always fulfil for differential
equation with constant coefficients ηu but for differential equation with variable (polynomial)
coefficients ηu(x) it is often necessary to divide the interval of x into the shorter sections (in
our case the independent variable is geometric variable, for example x = L is the length of the
bar), and thus determine the solution also for inner region of the bar (where x ∈ (0;L)). This
division of the interval is implemented in an algorithm. Calculated functions b(u)j+m(x) are used
for next calculation of the functions c(u)j (x), where u = {0;m} and j = {0;m− 1}.

2.2 Recursive calculation of the transfer functions using the power series

We can write (6) again:
ρur(x) = ηur ar(x) (11)

with assumption for u = {0;m} and r = {0; pu}.
Let us introduce the following equation:

ρ̃ur(x) = ρm−u,r(x)
xu

ηm0

(12)

where u = {0;m} and r = {0; pm−u}.
The calculation itself is based on determining of the power series members e(u)s :

b
(u)
j =

∞∑
s=0

e(u)s (x) (13)
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where j = {m; maxj} and u = {0;m}. The value maxj = max(je, jg) where je = m+g ensures
correct calculation for the high order of the polynomial on the right-hand side of the differential
equation (order of the right-hand side polynomial is higher than order of any polynomial on the
left-hand side of the differential equation) and the value jg = max(pt − t + 2m − 1) where
t = {0;m− 1} ensures correct calculation for the high order of the polynomials for derivatives
on the left-hand side of the differential equation.
First members of the series (s = 0) are:

e
(u)
0 (x) =

aj−u(x)

ηm0

(14)

Next members for s = 0 are calculated using matrix εs,ur(x) where u = {0;m} and r =
{0; pm−u}. For the members of matrix ε0,ur(x) it holds:

ε0,00(x) = e
(m)
0 (x)

ε0,ur(x) = 0
(15)

For the rest of series members where s > 0 we can write a recursive rule:

εs,ur(x) = εs−1,u,r−1(x); u = {0;m}, r = {1; pm−u}

εs,u0(x) =
εs−1,u−1,0(x)

j −m+ s
; u = {1;m}

εs,00(x) = −
( m∑

u=1

εs,u0(x)ρ̃u0(x) +
m∑

u=0

pm−u∑
r=1

εs,ur(x)ρ̃ur(x)
) (16)

Backward recursion has then a form:

e(m)
s (x) = εs,00(x)

e(m)
s (x) =

x

j + s− u
e(u+1)
s (x)

(17)

where u = {m− 1; 0}.
Equation (13) then can be used for calculation the functions b(u)j (x). But we can see that

s ∈ 〈0;∞〉 so it is necessary to choose maximum permissible limit for s. The fact of lack
of convergence or divergence of the series is accepted when this limit is reached. In that case
it is necessary to determine the functions b(u)j (x) using shorter interval, so primary interval
x ∈ 〈0;L〉 needs to be divided.

The functions of uniform solution of the differential equation are calculated as follows:

c
(u)
j (x) = aj−u(x)−

j∑
t=0

pt∑
r=0

(
j − t+ r

r

)
ηtrb

(u)
j−t+r+m(x) (18)

where u = {0;m− 1} and j = {0;m− 1}.

2.3 Characteristics of the algorithm for solving of the differential equations

The result of the calculation of the differential equation with variable coefficients and the
right-hand side is the solution according to the equation (8). It should be noted that this is
a solution for selected point x of the considered interval of the independent variable, so the
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program is designed for calculation of values cj(x) in given point x for j = {0;m − 1} where
m is the order of the differential equation. The values bj+m(x) for selected point x are also
calculated for j = {0; g} where g is order of the right-hand side polynomial of the differential
equation. It means that functions c(x) and b(x) cannot be calculated analytically but only at
discrete points x, where x is from interval 〈0;L〉.

The algorithm calculates matrices of discrete values c(u)j (x) and b(u)j+m(x) in defined point x
where u = {0;m− 1} represents derivative for calculations according to (9). It always holds:

c
(u)
j (x)|x=0 = 1; if i = u

c
(u)
j (x)|x=0 = 0; if i 6= u

c
(u)
j+m(x)|x=0 = 0; forall j = {0; g}

(19)

For the calculation of c(u)j (x) and b(u)j+m(x) we do not need to know the the polynomial functions
of the right side (does not enter into calculation) of the differential equation but only the degree
of the right side polynomial. Its coefficients qj are used only in the solution (8) and its deriva-
tives (9). So we can use calcualted c(u)j (x) and b(u)j+m(x) for different coefficients qj of the right
side polynomial if its degree does not change.

Using power series gives us exact solution and because advanced numerical operations as
numerical integration are not required in the calculation of the transfer functions c(u)j (x) and
b
(u)
j+m(x) this procedure is fast and can be easy implemented into the FEM code. Only the

differential equations with one independent variable can be solved and the variable coefficients
and the term on the right side of the differential equation has to be polynomial.

The whole procedure of calculation transfer functions c(u)j (x) and b(u)j+m(x) is described in
[1] in detail - the block diagram of this procedure is shown in Figure 1. This approach for cal-
culation differential equation with non-constant parameters was implemented into the software
Mathematica [5].

3 NUMERICAL EXAMPLE

Let us consider differential equation of 2nd order on the interval y ∈ 〈0, L〉, L = 0.1 with
non-constant polynomial coefficients:

η2(x)y
′′(x) + η1(x)y

′(x) + η0(x)y(x) = q (20)

where

η0 =− 637 500 000 000x4 + 146 625 000 000x3 − 10 965 000 000x2

+ 267 750 000x+ 60 000

η1 =
129 417 900

121
x2 − 12 941 790

121
x

η2 =
43 139 300

121
x3 − 6 470 895

121
x2 +

2217 793

7 260
q =− 6 375 000 000 000x4 + 1459 950 000 000x3 − 109 650 000 000x2+

+ 2742 500 000x+ 610 000

(21)

with boundary conditions:

y[0] = y0 = 10 y′[L] = yL = −122.623 (22)
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e u e u s f f e u u[ ,0] := [ -1,0]/ ; := - [ ,0] ,0×r[ ]

input

for := 0 tou m1 repeat

for = 0 to :u m p u[ ]
for = 0 tou m pr uand = 0 to [ ]: u,rh[ ]

m m1:= -1, m m + m  a2 := , [0] := 1

p u[ ]    -1¹

yes no

p u[ ] := 0

a -u-[ 1] := 0

p u p u u[ ] := [ ] -˜

j p p p m j j mg g g:= max( [0], [1], ... [ ]); := + 2 - 11

a u u x u[ ]:=a[ -1] /×

f := 1/h[ ]m,0

f f  x:= ×

s m u:= - , hg[s] := 0

for :=0 tou m repeat

for := 0 to [ ]r p s repeat

r[ ] :=s  r, h[ ]× h h r[ ]s  r a r s s s  r, [ ]; [ ] := [ ]+ ,g g

r[ ] := r[ ] ×u  r s  r f, ,˜

for := max to , step -1,j j m repeat

s j e b j  m k d j:= -m; [0,0]:= [ , ]; :=0; [ ]:=0; kon=true

b , [ - ]/ [ , 0][ ] := hj  u a j u m

k := k + 1

e u  r[ , ] := 0

for u := 0 to m1 repeat

yes no

s s< max

for to repeatu m:= 0

for to [ - ] repeatr p m u:= 0

for [ - ] to step repeatr p m u:= 1, -1,

e u r e u r f f e u r u r[ , ]:= [ , -1]; := - [ , ] ,r[ ]×

˜

˜

f := h × [ ]+

( )×

[ , ] + + ,

/( +1)+1

t r b m k r  u

k r f

˜

yes no

e f b j m b j m f t s m[0,0] := ; [ , ] := [ , ]+ ; := +

c j u[ , ] := a j-u[ ]

for := 0 toj repeatm1

max := ( ); max := max ( [0], [1], .. [ ])j j , j p p p p me g

t p jg := max(max , max )

|f| > | |×10b j m[ , ] -9

k := 0

for to step -1, repeatu m:= 1,

for := 0 tou m repeat

repeat while =k m2

for to step -1, repeatu m:= 0,1

for := 1 tou tg repeat

for u := 0 to repeatm

d j d j u b j  u[ ] [ ]+ [ ] ,:= h × [ ]g

for to and = 0 : [ , ]j m j u b j u= e to m1

f f   x t u b j u b j u f:= /( - ); [ , ] := [ , ] +×

k j - t f:= ; := 0

c j,u f[ ] := -c j,u[ ]

for := [ ] to 0, step -1, repeatr p t

kon

kon
:=

false

output

for to repeatt j:= 0

for to and = 0 to : [ , ]j m u m c j u= 0 1 1

for to : [j], [ - ]j m j d a j m= e

m, , , maxj x se

input

m1 := m - 1; [0] := 1, := 0a x

for = 0 to :u m p u[ ]

for = tot n x t1 : [ ]t

g j m:= - ,e max := max ( [0], [1], .. [ ])p p p p m

c u ut[0, , ] := 1

t t1 := - 1

for := 1 tot n repeat

for := 0 tou m repeat

h h ][ , ] := [ ,u r u  r0

for := 0 tou m1 repeat

x x t x:= [ ] -t

_

x := x / 2

x x x t t:= + ; :=1

for := toj m je repeat

for repeatu m:= 0 to 1

for := 0 tou m1 repeat

for 0 to and = 0 to : [ , ]j m u m c t, j  u= 1 1 toutput

repeat while [ ] =x t xt

for to andt n= 0

m, ,j ne

for = 0 tou m pr uand = 0 to [ ]: u,rh [ ]0

j p  gm := max(max , )

_

for := m toj je repeat

c j ut[0, , ] := 0

for := 0 toj m1 repeat

a j a[ ] := [j-1] × /x j

for := 1 toj jm repeat

b j ut[0, , ] := 0

_

_ _

for := +1 to [ ]s r p u repeat

for := 0 to [ ]r p u repeat

h h ][ , ] := [ ,u r u  s0h × [ ][ , ] + -u r a s r
_

c j u c t j  u[ , ] := [ , ,t 1 ]
__

for := 0 toj m1 repeat

b j u b t j  u[ , ] := [ , ,t 1 ]
__

___

subrutine

DGL (m, je,x,p[..], c[.,.], b[.,.], kon)®h[.,.]
__ __ __

no yes
kon = true

__ __

repeat while kon = true

for to repeatj m:= 0 1

c t  j  ut[ , , ] := 0

for to repeats m:= 0 1

c t  j  ut[ , , ] := c t  j  u c j s c s rt[ , , [ , ] ,] + × [ ]

for m to repeatj j:= e

b t  j  ut[ , , ] := 0

for to repeats m:= 0 1

b t  j  u b t  j  u b j s c s rt t[ , , [ , , [ , ] ,] := ] + × [ ]
___ _

____

for to repeats m j:=

bt t  j  u bt t  j  u a j-s b s u[ , , [ , , [ ] ,] := ] + × [ ]
_ __

_ _ __

_

for m to and = 0 to : [ , ]j j u m b t, j  u= e t1

˜˜ ˜

s s f:= + 1; := 0

Program “DGL” - transfer function calculation transfer function calculation - interval division

Figure 1: Block diagram of calculation transfer functions [1]
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This differential equation can represent differential equation for heat transfer (consideration of
the convective effect and internal heat generation) in the form:

−λ(x)d
2T (x)

dx2
− dλ

dx

xT (x)

dx
+ α(x)T (x)

o

A
= Q(x) + α(x)Tamb

o

A
(23)

where we consider that thermal conductivity λ(x) [Wm−1K−1], coefficient of convective heat
transfer α(x) [Wm−2K−1] and volume heat Q(x) [Wm−3] are polynomial functions. A is a
cross-section of the bar, o is a perimeter ot the bar ant Tamb is a constant ambient temperature.

The solution of differential equation (20) according to (8) is:

y(x) =
m−1=1∑
j=0

y
(j)
0 cj(x) +

g=4∑
j=0

εjbj+2(x) = c0(x)y0 + c1(x)y
′
0 +

g=4∑
j=0

εjbj+2(x) (24)

where m = 2 and g = 4. The transfer functions c(u)j (x = L) and b(u)j+m(x = L) for differential
equation (20) with non-constant coefficient (21) according the proposed method have a form:

c
(u)
j (x = L) =

[
c0 c1
c′0 c′1

]
=

[
202.258 3.33436
9722.66 160.297

]
(25)

b
(u)
j+m(x = L) =

[
b2 b3 b4 b5 b6
b′2 b′3 b′4 b′5 b′6

]
= (26)

=

[
−0.000159832−2.67325× 10−6−4.87898× 10−8−8.52047× 10−10−1.33152× 10−11

−0.007846 −0.000141612 −2.89679× 10−6 −5.68637× 10−8 −9.91117× 10−10

]
The solution of differential equation (20) according the proposed method for n = 50 inter-
nal points compared with solution obtained by numerical solution in software Mathematica
[5](explicit RungeKutta method) is shown in Figure 2 and its first derivative is shown in Figure
3.

0.00 0.02 0.04 0.06 0.08 0.10

10

11

12

13

14

15

16

x

y(x)

proposed method
Mathematica

Figure 2: The solution of differential equation

As it can be seen in Figures 2 and 2, a very good agreement of both solution results has been
obtained.
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y (x)’

0.00 0.02 0.04 0.06 0.08 0.10

-100

-50

0

50

100

150

proposed method
Mathematica

x

Figure 3: The 1st derivation of the solution of differential equation

4 CONCLUSIONS

In this contribution the approach for solving differential equation with non-constant (poly-
nomial) coefficient has been presented. The general solution of the homogeneous differen-
tial equation is formulated with the transfer functions c(u)j (x) and the particular solution with
b
(u)
j+m(x). The transfer functions b(u)j+m(x) are calculated with the help of series formulas and

then the functions c(u)j (x) may be determined with these b(u)j+m(x).
The numerical example solution of differential equation of 2nd order with non-constant

polynomial coefficients using proposed approach and comparison with results obtained in soft-
ware Mathematica have been . On base of the transfer relations the effective matrix of the
3D beam finite elements for modal, structural and buckling analysis [2][3] or coupled electro-
thermo-mechanical analysis [4] of the FGM single beams and beam structures can be estab-
lished. Material properties of the FGM can vary in all three direction x, y, z. Homogenization
of the spatially varying material properties in the real FGM beam (material properties vary in all
three direction) and the calculation of effective parameters of the homogenized beam (material
properties vary only in longitudinal direction) are done by the extended mixture rules and the
multilayer method.
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under the contract No. APVV-0246-12 and APVV-14-0613, by Grant Agency VEGA, grant No.
1/0228/14 and 1/0453/15.
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