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Abstract. In this paper we discuss the phenomenon of acoustic resonance in the context of non-
reflecting boundary conditions and its impact on the analysis of turbomachinery blade flutter.
Acoustic resonance is observed on the one hand when flutter curves, i.e., the aerodynamic
damping as a function of the interblade phase angle, displays singularities at certain angles.
On the other hand, the implementation of appropriate inlet and outlet boundary conditions
naturally leads to the normal mode analysis of the Euler equations on eiher cylindrical (2D)
or annular ducts (3D). To formulate boundary conditions one typically carries out the normal
mode analysis and thus decomposes the space of normal modes as a direct sum of incoming and
outgoing modes. This decomposition, however, breaks down when the generalised eigenvalue
problem no longer produces a complete set of eigenvectors and one obtains non-trivial Jordan
blocks. Both phenomena are shown to be due to acoustic modes with vanishing normal group
velocity.

The main goal of this paper is to outline how the numerical boundary conditions can be reg-
ularised near acoustic resonance. The impact of this regularisation on the prediction of flutter
stability is then demonstrated. Moreover, we interpret the regularisation as an interpolation be-
tween the exact non-reflecting and the approximative characteristic, one-dimensional boundary
conditions.
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INTRODUCTON

The design of modern turbomachinery increasingly relies on unsteady flow simulations, es-
pecially to avoid engine failure due to blade flutter. Typically, the flutter analysis is based on
the prediction of the unsteady flow response for a forced motion of the blades at various oper-
ating conditions [1]. Usually, this forced motion is defined by the structural displacement, qs,
corresponding to a structural eigenmode ψ,

qs(t, x) = Re [qs
mod(t)ψ(x)] ,

where the modal displacement is the harmonic oscillation

qs
mod(t) = eiωt,

with the angular frequency ω being the eigenfrequency
√
k/m. From the unsteady pressure on

the blade surface one can determine the aerodynamic damping,

δ = −ReWcyc

ω2m
, Wcyc =

∫ 2π/ω

0

∫
Γ

(q̇s
mod(t)ψ(x))H (p(t, x)~n(t, x))dS(x)dt, (1)

and thus estimate if the coupled system is stable at rest. Whereas the real part ofWcyc represents
the net work per period done on the structure by the unsteady flow, the imaginary part of Wcyc

gives rise to the aerodynamic stiffness coefficient

κ =
ImWcyc

ω2m
,

from which a frequency shift of the coupled fluid structure system can be determined. One

Figure 1: Idealised flow domain for the anaylsis of blade flutter

usually considers an idealised flow domain as in Fig. 1, i.e., the interactions with neighbouring
blade rows are neglected.

Under the assumption that the blade row consists of N structurally uncoupled blades, each
eigenmode ψ that one obtains from the structural analysis of one blade, gives rise to the full
annulus modes

(ψ, eiσψ, e2iσψ, . . . , e(N−1)iσψ),

2



C. Frey and H.-P. Kersken

where the n-th component represents the mode shape of the n-th blade, and σ ∈ [−π, π) is such
that Nσ = 2π. σ is called the interblade phase angle. The integer

Nd =
2π

σ

is called the nodal diameter. A full annulus mode has an interblade phase angle of σ if the
modal displacement of the blade n lags that of blade n + 1 by a time shift of σ/ω. In this case
the unsteady flow response q(t, x) will exhibit the same space time symmetry, i.e.,

q(t, x, r, ϑ+ 2π/N) = q(t+ σ/ω, x, r, ϑ),

Together with (1) one deduces that blade vibrations of different interblade phase angles are
uncoupled. Therefore, one usually computes the aerodynamic damping for each interblade
phase angle. The result is plotted in the so-called damping curve, although, strictly speaking, it
consists of a discrete set of N values.
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Figure 2: Aerodynamic damping and stiffness over interblade phase angle for a compressor
blade.

Figure 2 shows the aerodynamic damping and stiffness curves for the academic compressor
test case Standard Configuration 10, cf. [2]. The unsteady flow response is computed using the
time-linearised approach [3, 4]. One observes that the damping appears to be “smooth” except
for a few interblade phase angles.

It is easy to see that the flutter curve corresponds to the discrete Fourier transform of the
influence coefficients, i.e., the modal forces on one blade which are due to the vibration of
another one [5]. In many cases, the influence coefficents decay rapidly as the distance between
two blades of the blade row increases and one obtains smooth flutter curves. For instance, if
the influence coefficients of all but direct neighbours can be neglected the flutter curve can be
approximated rather accurately by a function δ̃(σ) = c0 + c1 cos(σ− σ1), cf. [6]. However, this
may not always be the case, as the spikes and the sudden drops in the curves in Fig. 2 show.
When these singularities are observed near a minimum damping close to zero, the CFD based
prediction of flutter stability becomes questionable, as the infinite slope of the flutter curve
indicates a considerable uncertainty in the damping.
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The occurence of these singularities is due to the phenomenon of acoustic resonance [6]. One
speaks of acoustic resonance if a flow unsteadiness, in this case caused by a vibrating blade, is
resonant with an acoustic wave whose energy does not propagate out of the configuration. As
is well-known, the energy transport of a wave is closely related to its group velocity. For such
a standing wave to be excited it is also necessary that the unsteadiness has the same circum-
ferential wave number (or nodal diameter) as the acoustic mode. Consequently, one observes
acoustic resonance only at certain interblade phase angles. In turbomachinery, acoustic reso-
nance can occur at specific operating conditions. Often the source of the instability unknown.
Alongside blade vibration possible sources of excitation include pressure disturbances due to
the periodic blade passings, rotating instabilities and vortex shedding. For acoustic resonances
observed during turbomachinery experiments, the reader is refered to [7, 8] and the literature
cited therein.

The goal of this work is to study the issue of acoustic resonance in the context of non-
reflecting boundary conditions. When acoustic resonance occurs, there no longer exists a com-
plete set of duct eigenmodes so that the standard formulations of inlet and outlet boundary
conditions (see e.g. [9, 10]) are no longer possible.

The paper is organised as follows. First we revisit the theory of non-reflecting boundary
conditions for the linearised Euler equations. Then we show how to regularise the boundary
conditions by shifting the frequency slightly to the complex lower half plane. This technique has
been used by Moinier and Giles [11] to simplify the determination of the propagation direction
of normal modes computed numerically. We demonstrate the impact of the regularisation on the
prediction of flutter stability by means of a compressor blade. It is shown that the regularisation
has the effect of a mollifier for the flutter curves. Most of the mathematical arguments carry over
to symmetrisable hyperbolic problems. Therefore, we will use general arguments whenever
possible.

We interpret the regularisation as an interpolation between the exact non-reflecting and the
characteristic boundary conditions. Since two-dimensional non-reflecting boundary conditions
are typically used for three-dimensional turbomachinery configurations, we discuss the question
to what extent the results obtained with two-dimensional boundary conditions are representative
in real applications.

1 NON-REFLECTING BOUNDARY CONDITIONS

We consider the Euler equations in Rn in conservative variables q = (ρ, ρU, ρet)

∂q

∂t
+ divF (q) = 0 (1.1)

with the inviscid flux

F (q) =

 ρU
ρU ⊗ U + p Id

ρUht

.
It is well-known that the Euler equations form a symmetrisable hyperbolic system of conserva-
tion laws [12]. In particular, the Hessian of the entropy density, viewed as a function

(ρ, ρU, ρet)→ −ρs,

is a symmetriser, i.e.,

T (q) =

(
∂2(−ρs)
∂qi∂qj

∣∣∣
q

)
i,j
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is symmetric positive definite and T (q)∂F
k

∂q
|q is symmetric for all q and k. Assume that the

computational domain is the half space (−∞, 0)×Rn−1 and that the solution is periodic in the
n−1 tangential variables. Consider the linearised equations at some mean flow conditions, e.g.,
the area average of the conservative variables. Transformation of the linearised equations into
the frequency and wave number domain thus yields a linear system for q̂ω,ξ,(

ω +
∑
k

ξk
∂F k

∂q

)
q̂ω,ξ = 0. (1.2)

The matrix on the left-hand side is symmetric with respect to the inner product defined by T and,
up to a factor i, equals the principal symbol [13]. Its determinant is a homogeneous polynomial
of degree n + 2 in (ω, ξ) ∈ Rn+1, whose zeros form the so-called characteristic variety C ,
cf. [14]. Suppose that at a certain point (ω, ξ) ∈ C the characteristic variety is smooth and that
the lines ξ = const are, near (ω, ξ), transversal to C . Then, the angular frequency ω such that
Eqn. (1.2) has a non-trivial solution, can be written locally as a function of ξ, and the group
velocity is then defined by

vg(ω, ξ) = −∂ω
∂ξ

. (1.3)

The Euler equations for an ideal gas can be rewritten in primitive variables, qprim = (ρ, U, p),

∂qprim

∂t
+
∑
j

Aj
∂qprim

∂xj
= 0

where

Aj = U j Id +

0 ρeTj 0
0 0 ρ−1ej
0 γpeTj 0

 ,

and e1, . . . , en is the standard basis of Rn. The characteristic variety of the linearised Euler
equations is thus given by those (ω, ξ) satisfying

(ω + ξ · U)n((ω + ξ · U)2 − a2‖ξ‖2) = 0. (1.4)

In primitive variables, the convective modes

r1 =

ρ0
0

 , r2 =

 0
ae1

0

 , . . . rn =

 0
aen−1

0

 , (1.5)

together with the acoustic eigenvectors

rn+1 =

 ρ

a ξ
‖ξ‖
γp

 , rn+2 =

 ρ

−a ξ
‖ξ‖

γp

 , (1.6)

thus form a basis of eigenvectors for a given ξ ∈ Rn. The convective modes correspond to the
hyperplane ω + ξ · U = 0, and their group velocity is the flow velocity. The acoustic angular
frequencies and wave numbers lie on the oblique cone (ω+ ξ ·U)2− a2‖ξ‖2 = 0. Observe that
the acoustic angular frequencies are

ωn+1 = −ξ · U − a‖ξ‖, ωn+2 = −ξ · U + a‖ξ‖.
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We note that the acoustic eigenvalues are simple except for ξ = 0.
For the non-reflecting boundary conditions, we consider Eqn. (1.2) as a generalised eigen-

value problem for ξ1. We will denote the tangential parts of vectors by primed variables, so, for
instance,

x = (x1, x′), ξ = (ξ1, ξ
′), A = (A1, A′).

For simplicity we will assume that the flow is normally subsonic,M1 < 1, and that the boundary
x1 = 0 is an outlet of the domain {x1 < 0}, i.e., M1 > 0. The case of an inlet can be treated
analogously. In primitive variables, the generalised eigenvalue problem for ξ1 thus reads(

ξ1A
1 − (−ω − ξ′ · A′)

)
r = 0, (1.7)

with r being a generalised right-eigenvector. Assume that a complete basis of eigenvectors

r1(ω, ξ′), . . . , rn+2(ω, ξ′),

exists for (ω, ξ′), and that the corresponding eigenvalues ξ1 are, at least locally, smooth functions
of ω. Then the boundary conditions can be formulated in terms of the temporal and spatial
Fourier coefficients of the flow along the boundary x1 = 0 as follows. Decompose the Fourier
coefficients q̂ω,ξ′ into normal modes, i.e.,

q̂ω,ξ′ =
n+2∑
j

q̂jω,ξ′,modrj(ω, ξ
′).

The non-reflecting boundary conditions are satisfied if q̂jω,ξ′,mod = 0 for all j such that rj cor-
responds to an incoming mode. In case the generalised eigenvalue ξ1 is a non-zero real and ω
is locally a smooth function of ξ1, the sign of the normal group velocity − ∂ω

∂ξ1
can be taken as a

criterion to classify the modes into incoming and outgoing ones [14].
Note that the generalised eigenvalue problem is indefinite, since the flux Jacobian ∂F 1

∂q
is

indefinite, if the flow is normally subsonic. Therefore, one cannot expect that a basis of eigen-
vectors exists for all (ω, ξ′). In fact, the cone

(ω + ξ · U)2 − a2‖ξ‖2 = 0 (1.8)

may or may not intersect the line defined by some fixed ω and ξ′. In case the corresponding
quadratic equation for ξ1 has negative discriminant, it will have two complex conjugate solu-
tions. These so-called cut-off modes are viewed as incoming if they decrease exponentially at
−∞, i.e., if Im ξ1 < 0. Accordingly, a cut-off mode is called outgoing if Im ξ1 > 0.

The corresponding (real or complex) eigenvectors are used to define the spectral projections
onto the incoming along the outgoing eigenmodes, Pinc. The physical boundary condition can
thus be written

Pincq̂ω,ξ′ = 0.

where

Pinc = Pinc(q, ω, ξ
′) = R(q, ω, ξ′)−1

(
0 0
0 Id

)
R(q, ω, ξ′)

where the dimensions of the subblocks of the block matrix are given by the number of right and
left runnning modes, respectively. The first columns of the right-eigenvector matrix R(q, ω, ξ′)
are the left-running eigenvectors of the generalised eigenvalue problem (1.7), the last columns
are given by the left-running eigenvectors.
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Special care has to be taken in order to define the acoustic eigenvectors. Here, we write the
acoustic normal wave numbers as functions of q, ω, and ξ′,

ξ1,a,± =


± i‖ξ′‖√

1−M2
1

, if ω̃ + ξ′ ·M ′ = 0,

(M1 ∓
√

∆)
(
ω̃+ξ′·M ′
1−M2

1

)
, if ω̃ + ξ′ ·M ′ 6= 0, ∆ ≥ 0,

(M1 ± i sign(ω̃ + ξ′ ·M ′)
√
−∆)

(
ω̃+ξ′·M ′
1−M2

1

)
, if ω̃ + ξ′ ·M ′ 6= 0, ∆ < 0,

(1.9)
where ω̃ = ω/a, ~M = (M1,M

′) = U/a and ∆ is the discriminant of the corresponding
quadratic equation for ξ1, i.e.,

∆ = 1− 1−M2
1

(ω̃ + ξ′M ′)2
‖ξ′‖2.

The definition of ξ1,a,± ensures that sign Im ξ1,a,± = ±1, if ∆ < 0. Moreover, it is straightfor-
ward to check that

∂ξ1,a,±

∂ω
= ∓ 1

(1−M2
1 )
√

∆

for cut-on modes, i.e., ∆ > 0. Therefore, the x1-group velocity

v1
g(ω, ξ1,a,±, ξ

′) = − ∂ω
∂ξ1

∣∣∣
(ξ1,a,±,ξ′)

= −
(
∂ξ1,a,±

∂ω

∣∣∣
(ω,ξ′)

)−1

is positive for ξ1,a,+ and negative for ξ1,a,−. The acoustic eigenvectors can be defined by

ra,±(q, ω, ξ′) =

 ρ

− aξ±
ω+ξ±· ~M
γp

 (1.10)

where ξ± = (ξ1,a,±, ξ
′).

The Characteristic Variety

Let us express the characteristic variety in terms of the (directional) Mach numbers and the
normalised frequency,

~M = (M1, . . . ,Mn), Mi = Ui/a, M = ‖ ~M‖, ω̃ = ω/a.

As we have seen above the characteristic variety for the n-dimensional linearised Euler equa-
tions consists of:

• The plane ω̃ = −
∑

iMiξi, corresponding to the convective modes.

• The cone (
ω̃ + ~M · ξ

)2

= ‖ξ‖2. (1.11)

corresponding to acoustic modes.
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(a) M = 0.7, α = 55◦. (b) M = 1.5, Mx = 0.5.

Figure 3: Characteristic varieties for subsonic and supersonic cases.

To analyse the cone (1.11), consider an orthonormal basis (ẽ1, . . . , ẽn) such that

~M = Mẽ1.

Then, with respect to this basis, Eqn. (1.11) takes the form

(1−M2)ξ̃2
1 − 2Mω̃ξ̃1 +

∑
i 6=1

ξ̃2
i − ω̃2 = 0,

and therefore,

(1−M2)2

(
ξ̃1 −

ω̃M

1−M2

)2

+ (1−M2)‖ξ̃′‖2 = ω̃2.

This shows that for M < 1 the acoustic part of the characteristic variety is an oblique cone as
depicted in Fig. 3a. Both the inclination and the apex angle increase with the Mach number.
When the flow is supersonic, M > 1, it consists of segments of a double cone, see Fig. 3b. In
the subsonic case, for a given ω, there is a bounded set of values for ξ′ such that the line defined
by (ω, ξ′) intersects the characteristic variety. In two-dimensions, for instance, the acoustic
modes are cut-on if

ξ2 ∈
[

ω̃
1−M2

(
M2 −

√
1−M2

1

)
, ω̃

1−M2

(
M2 +

√
1−M2

1

)]
. (1.12)

In the supersonic case there will be a non-empty intersection outside a bounded set. In two
dimensions the cut-on condition reads

ξ2 ∈
(
−∞, ω̃

1−M2

(
M2 −

√
1−M2

1

)]
∪
[

ω̃
1−M2

(
M2 +

√
1−M2

1

)
,+∞

)
.
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Turbomachinery Boundary Conditions

In the case of a (rotational) turbomachinery configuration, one usually applies the above
theory for n = 2 to cylinders around the engine axis. More precisely, the coordinate change

y = rϑ, z = r

transforms the Euler flow in an annular duct with constant “hub” and “casing” radii to the three-
dimensional flow in

{(x, y, z) ∈ R3 | r1 < z < r2}

as long as the r-components of the flow velocity can be neglected. Moreover, in the case of
N blades and a certain interblade phase angle σ, the resulting flow at radius r will have the
symmetry

q(t, x, y + 2πr/N, z) = q(t+ σ/ω, x, y, z).

The y-components of the wave numbers for which (1.8) must be considered, thus satisfy

eiξ2(y+2πr/N) = eiσeiξ2y.

Writing m for the circumferential wave number, we thus have

q̂ω(x, r, ϑ) =
∑

m=Nd modN

q̂ω,m(x, r)eimϑ.

The cut-on condition for a subsonic flow at radius r is

m ∈
[

rω̃
1−M2

(
Mϑ −

√
1−M2

x

)
, rω̃

1−M2

(
Mϑ +

√
1−M2

x

)]
.

In the cell-centred, finite volume, time-linearised CFD solver discussed here, the boundary
conditions are applied at bands of faces whose centre has constant radius. The modal amplitudes
qjω,ξ′,mod are computed using the inner cell values along the bands and extrapolated to the bands
using the axial wave number ξ for outgoing modes. The modal amplitudes for incoming modes
are set to zero. The inverse Fourier transform yields flow states for each face which are then
used to define flow states in the ghost cells by extrapolation.

2 ACOUSTIC RESONANCE AND REGULARISATION

The modal decomposition in the previous section is restricted to the case of non-zero group
velocity v1

g for all cut-on modes, i.e., we have assumed that the discrimimant ∆ is non-zero. If

(1−M2
1 )‖ξ′‖2 = (ω̃ + ξ′ ·M ′)2,

then the quadratic equation (1.8) has a real root of algebraic multiplicity 2. However, unless
ξ = 0, the angular frequency ω is a simple root at the same point. Therefore the eigenspace,
i.e., the solution space of (1.2) is one-dimensional.

We regularise the boundary conditions by adding a zeroth order dissipation term to the left-
hand side of the model equations. Rather than the linearisation of Eqn. (1.1) we consider

∂(δq)

∂t
+ div

[
∂F

∂q

∣∣∣
q
δq

]
+ εδq = 0, (2.1)
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where ε > 0 is a small regularisation parameter. The corresponding equation in dual variables
thus reads (

ω − iε+
∑
k

ξkA
k

)
q̂ω,ξ = 0. (2.2)

If ω is replaced with ω − iε, the formulas of Section 1 essentially remain valid. The crucial
difference, however, is that there are no longer cut-on modes. More presicely, given real ω and
ξ′, Eqn. (2.2) will have only trivial solutions for real ξ1 since, otherwise, ω − iε would be a
non-real eigenvalue of a symmetric operator. Since all eigenvalues ξ1 have non-zero imaginary
part, all eigenspaces correspond to either incoming or outgoing modes.

If ξ is non-zero and ξ1,a,±(q, ω, ξ′) corresponds to a cut-on acoustic mode of the original
system, then ω is locally a smooth holomorphic function of ξ. Moreover, if locally ∂ω

∂ξ1
is non-

zero, then the generalised eigenvalue ξ1 is, locally, a holomorphic function of ω. Using the
Cauchy-Riemann equations, we infer

sign Im ξ1,a,±(q, ω − iε, ξ′) = − sign
∂Im ξ1,a,±

∂Imω

∣∣∣
(q,ω,ξ′)

= − sign
∂Re ξ1,a,±

∂Reω

∣∣∣
(q,ω,ξ′)

= − sign
∂ω

∂ξ1,a,±

∣∣∣
(ξ1,a,±(q,ω,ξ′),ξ′)

= sign v1
g.

(2.3)

Therefore, defining the acoustic normal wavenumbers by the analytic continuation of the formu-
las given in Eqn. (1.9), we preserve the propagation direction in the sense that, e.g, right-running
cut-on modes become right-running cut-off modes. Denoting by

√
z the principal branch of the

complex square root, it is now easy to verify that the analytic continuation of (1.9) is

ξ1,a,± = (M1 ∓
√

∆)

(
ω̃ − iε̃+ ξ′ ·M ′

1−M2
1

)
,

where

ε̃ =
ε

a
, ∆ = 1− (1−M2

1 )‖ξ′‖2

(ω̃ − iε̃+ ξ′ ·M ′)2
.

The definition of the right-eigenvectors carries over to the modified model problem. In particu-
lar, the acoustic eigenvectors are replaced with ra,±(q, ω−iε, ξ′), cf. Eqn. (1.10). We emphasize,
that for ε > 0, the above terms are holomorphic for all ω, ξ′, including the acoustic resonance
points.

3 ANALYSIS OF TURBOMACHINERY FLUTTER

To illustrate the modification of the boundary condition we will use the so-called tenth stan-
dard configuration (SC10) [2]. This configuration is a two-dimensional compressor test case
consisting of a cambered NACA 0006 cascade at subsonic and transonic flow conditions. The
eigenmode for which flutter stability is analysed corresponds to a rigid body rotation about the
blade center. Flow conditions and reduced eigenfrequencies are summarised in Table 1. Ob-
serve that the reduced frequencies k are computed using the full chord c and the flow speed at
the inlet Uinlet, i.e.,

ωred =
ωc

‖Uinlet‖
.

10
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Testcase SC10 subsonic SC10 transonic
Inflow Mach number 0.7 0.8
Inflow angle 55◦ 58◦

Outflow Mach number 0.446 0.443
Outflow angle 40.1◦ 41.1◦

Reduced frequency 1 0.5
Upstream acoustic resonances −26.9◦ −14.5◦

117.1◦ 100.8◦

Downstream acoustic resonances −31.8◦ −17.8◦

59.8◦ 33.7◦

Table 1: Flow conditions, frequencies and acoustic resonances.

The steady isentropic Mach number distributions on the blade are shown in Fig. 4. Both the
subsonic and the transonic background mean flow conditions, used for the linearised flutter
simulations below, agree well with reference results obtained with a different flow solver, [16].
The flutter predictions using different values for the regularisation parameter ε are shown in

Figs. 5 and 6. The value of ε is non-dimensionalised using the sound speed at the inlet and the
chord length and thus equals, up to the inlet Mach number, the negative imaginary part of the
modified reduced frequency. The results for ε = 10−3 have been validated against reference
results in previous publications by the authors [4, 17] and show good agreement with results
obtained with a different solver [15, 16].

However, as ε is increased, the damping curve becomes “smoother”. This can be seen, for
both the subsonic as the transonic configuration, near the interblade phase angles with minimal
damping, which are close to the downstream acoustic resonance points 59.8◦ and 33.7◦. The
zooms also show that the choice of ε above 10−1 can have a significant impact on the prediction
of the flutter stability and is therefore discouraged.
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Figure 4: Comparison of steady solution with references given in [15]
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Figure 5: Damping results for the subsonic case.
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Figure 6: Damping results for the transonic case.

4 INTERPRETATION OF THE REGULARISATION

Let us study the behaviour of the regularised spectral projection Pinc as ε tends to infinity.
Denoting by χΛ the characteristic function of a complex set Λ, we can write the regularised
projection onto the incoming modes as

Pinc = χ{Im ξ1<0}
(
−(A1)−1 (ω − iε+ ξ′A′)

)
Observe that

‖ − (A1)−1 (ω − iε+ ξ′A′) ‖ ≤ ε‖A−1‖+ const .

Therefore, for an appropriate R > 0 and sufficiently large ε, the contour γε, depicted in Fig. 7,
encircles all eigenvalues ξ1 with negative imaginary part anticlockwise. Using holomorphic
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Re ξ1

Im ξ1

Rε

γε

Figure 7: Closed contour encircling the acoustic normal wave numbers of the regularised system
anticlockwise.

.

functional calculus, we have

Pinc =
1

2πi

∫
γε

(
ξ1 + (A1)−1(ω − iε+ ξ′A′)

)−1
dξ1

=
1

2πi

∫
γ1

(
z + (A1)−1(−i + ε−1(ω + ξ′A′))

)−1
dz,

(4.1)

where we have made the substitution ξ1 = εz. Since

−(A1)−1(−i + ε−1(ω + ξ′A′))

has no real eigenvalues and converges uniformly to i(A1)−1 along γ1 for ε→∞, it follows that
Pinc converges to the spectral projection

χ{Im z<0}(i(A
1)−1) = χ{Re z<0}(A

1).

Therefore, in the limit ε→ +∞, the regularised boundary conditions converge to characteristic
boundary conditions. This is confirmed by numerical experiments, see Fig. 8. As the parameter
ε is increased, the results for the aerodynamic damping approach the curve which is obtained by
using one-dimensional, characteristics based boundary conditions. Note that for this numerical
experiment, the modified normal wave number has been replaced by 0 in the extrapolation of
the outgoing mode amplitudes to the ghost cells.

5 DISCUSSION

So far, we have studied only a two-dimensional test case and two-dimensional boundary
conditions which raises the question of the relevance for real three-dimensional turbomachin-
ery configurations. Therefore, consider a computational domain representative of an annular
duct in a real engine. Although two-dimensional (or even characteristic one-dimensional) non-
reflecting boundary conditions are still predominantly used for turbomachinery simulations,
three-dimensional non-reflecting boundary conditions have been developed by several authors
[18, 19]. For a general mean flow distribution, the eigenmodes can no longer been computed
explicitly. Rather, one performs a numerical spectral decomposition using e.g. appropriate LA-
PACK routines [20, 11]. In three dimensions, the equivalent of Eqn. (1.2), can be written in the
form

(i(ω + ξAx +mC) +B
∂

∂r
+D)q̂ω,ξ,m(r) = 0, (5.1)
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Figure 8: Normalised aerodynamic damping over interblade phase angle for subsonic case and
large values for ε.

with suitable boundary conditions at the hub and tip radii, rmin, rmax, [20]. In case the mean
flow is purely axial, the pressure harmonics satisfy(

− ∂2

∂r2
− 1

r

∂

∂r
+ ξ2

x +
m2

r2
− (ω̃ + ξxMx)

2

)
p̂ω,ξ,m(r) = 0, (5.2)

together with Neumann boundary conditions at rmin and rmax. Eqn. (5.2) may thus be written
in the form (

L(m) + ξ2
x − (ω̃ + ξxMx)

2
)
p̂ω,ξ,m(r) = 0

where L(m) is an elliptic self-adjoint eigenvalue problem (with respect to the Riemannian met-
ric g(r) = r2) depending on m. From its discrete eigenvalues (λn(m))n≥0, we can thus deter-
mine the relation between the axial wavenumber and ω̃ for all radial and circumferential mode
orders, (n,m):

λn(m) + ξ2
x + (ω̃ + ξx ·Mx)

2 = 0. (5.3)

Viewingm as a continuous parameter, we can thus plot the generalisation of the two-dimensional
characteristic varieties for each radial mode order n. Figure 9 shows the surface defined by (5.3)
for the radial mode orders n = 0, 1, 2. Here, Mx = 0.5 and rmin = 1, rmax = 2. The resulting
surfaces resemble the upper sheets of an oblique two-surface hyperboloid except for n = 0 in
which case the surface is a slightly deformed oblique cone. In many cases the three-dimensional
characteristic variety for n = 0 is very close to the two-dimensional one. For the above param-
eters the two-dimensional characteristic variety at r = 1

2
(rmin + rmax) is nearly identical to the

three-dimensional one for n = 0, see Fig. 10.
If acoustic resonance occurs for certain values of (ω, ξx,m, n), then ξx is a double zero of

Eqn. (5.3), whereas ω is a simple one. Hence, similar arguments as in the two-dimensional
case show that the geometric multiplicity of the generalised eigenvalue problem for ξx is 1.
This shows that the modal decomposition has to be regularised in the three-dimensional case as
well. In their implementations of three-dimensional non-reflecting boundary conditions [19],
the authors perform a numerical eigenvalue analyis of (5.1) where ω is replaced with ω − iε
and ε is typically set to 10−3aref/lref . Here aref , lref denote reference sound speed and length,
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Figure 9: Three-dimensional characteristic variety for radial mode orders 0 (grey), 1 (blue), and
2 (orange).

Figure 10: Three-dimensional Characteristic variety for radial mode orders 0 (grey) compared
to the two-dimensional one at r = 1

2
(rmin + rmax) (green).

respectively. The regularisation allows to circumvent the numerical computation of the group
velocity, as pointed out in [11]. One can use the sign of Im ξx to determine the propagation
direction of the modes.

Acoustic resonance occurs when one of the characteristic varieties has vanishing slope in
the ξx-direction. For a given frequency, this can happen at several radial orders, although in
practice, for only a few low values of n there exist cut-on modes, i.e., the plane ω = const
intersects only a few of the hyperboloids in Fig. 9. Therefore, one can expect that the use
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of two-dimensional boundary conditions for a three-dimensional configuration might suppress
acoustic resonance for some non-zero radial mode orders but will show qualitatively similar
results as far as the acoustic resonance for n = 0 is concerned.

This is illustrated by the flutter analysis of a turbine blade carried out in [19]. The test case
represents a low pressure turbine blade of a modern aeroengine. As can be seen in Figure 11,
the use of three-dimensional instead of two-dimensional non-reflecting boundary conditions has
a significant impact on the unsteady pressure distribution on the blade. However, the aerody-
namic damping is very insensitive to the choice of boundary conditions, in particular near the
resonance point located between −30◦ and −20◦.
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Figure 11: Flutter analysis of a turbine blade with 1D, 2D, and 3D non-reflecting boundary
conditions. From [19].

CONCLUSIONS

In this paper, a regularisation of the non-reflecting boundary conditions for unsteady turbo-
machinery flows has been investigated. The regularisation is necessary in order to ensure that
the spectral projections onto outgoing along incoming modes remain bounded. The idea is to
apply the usual theory of non-reflecting boundary conditions to the Euler equations modified by
a small dissipation term which is controlled by some parameter ε. As the additional dissipation
increases the resulting flutter curves become smoother. A choice of ε = 10−3 with respect to the
reference frequency has been shown to be a reasonable choice for the turbomachinery test cases
presented in this paper. As ε grows, the boundary conditions approach the one-dimensional
characteristics based boundary conditions.

The issue of acoustic resonance occurs for both two-dimensional and three-dimensional non-
reflection boundary conditions. It is suspected that using two-dimensional boundary conditions
for a three-dimensional turbomachinery configuration might smooth out singularities in the
damping curve which are related to acoustic resonance modes of non-zero radial order.
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NOMENCLATURE
a speed of sound
Ai flux Jacobian in the xi-direction
A1, A′ normal and tangential flux Jacobians
et total (specific) energy
f frequency
ht total (specific) enthalpy
k modal stiffness
m modal mass, circumferential wave number
~M = U/a Mach vector
M1,M ′ normal Mach number and tangential Mach vector
N number of blades
Nd nodal diameter
~n unit normal vector (pointing out of the flow domain)
p pressure
q flow state
qs modal displacement
s specific entropy
(x, r, ϑ) cylindrical coordinates
x1, x′ = (x2, . . . , xn) normal and tangential coordinates
U flow velocity
Wcyc aerodynamic work per cycle
δ logarithmic decrement of aerodynamic damping
γ specific heat ratio
κ aerodynamic stiffness coefficient
ψ structural eigenmode (mode shape)
ρ density
σ interblade phase angle
χΛ characteristic function of a set Λ ⊂ C
ω angular frequency (= 2πf )
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