
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

A CODE-COUPLING APPROACH TO THE IMPLEMENTATION OF
DISCRETE ADJOINT SOLVERS BASED ON AUTOMATIC

DIFFERENTIATION

Jan Backhaus1, Anna Engels-Putzka1 and Christian Frey1

1German Aerospace Center (DLR)
Institute of Propulsion Technology

Linder Höhe, D-51147 Cologne, Germany
e-mail: jan.backhaus, anna.engels-putzka, christian.frey@dlr.de

Keywords: discrete adjoint; automatic differentiation; RANS; turbomachinery

Abstract. We propose a method for selectively applying automatic differentiation (AD) by op-
erator overloading to develop the discrete adjoint of a turbomachinery flow solver. A fully
differentiated version of the solver is generated by operator overloading using the tapeless tan-
gent mode of ADOL-C. The differentiated solver is coupled to an undifferentiated version of the
same code using message passing. The automatic differentiation is used to calculate deriva-
tives of the flux calculation routines. The flux derivatives depending on inner cell states are
sparse, and this sparsity is exploited using analytical differentiation of the spatial discretiza-
tion scheme. Subsequently the sparse matrix is communicated to the undifferentiated code for
solution. Turbomachinery boundary conditions may have dense Jacobians and are therefore
only evaluated during the solution process. The solution of the adjoint system of equations is
achieved through a preconditioned GMRES, implemented inside the undifferentiated code. A
modern three dimensional contra-rotating fan stage with engineering parameterization serves
as application example in order to demonstrate the technique and to perform numerical valida-
tions. The validation of gradient results is performed by comparing against results from finite
differences, and the tangent forward mode.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

1 INTRODUCTION

The adjoint method is a key technology to enable gradient based optimization methods with
expensive fluid dynamics simulations. It also has interesting applications in mesh adaptation,
robust design and the evaluation of shape variations either due to manufacturing tolerances
or wear during operations. Since the adjoint method gained popularity much later than the
application of flow simulations, it is often necessary to develop consistent adjoint solvers for
long existing CFD solvers. One way to obtain an adjoint solver is to adjoin the underlying PDEs
and discretize these; this is called the continuous approach. The discrete approach in contrast is
to take the discretized PDEs which are implemented as the primal flow solver and adjoin these.
We follow the discrete adjoint approach in this publication. There are two basic techniques
for developing a discrete adjoint solver: the white box and the black box approach. For the
white box approach, the developer reads a calculation routine, writes down the computation in
analytical form, derives its adjoint and subsequently implements the derived calculation. The
black box approach is to use a tool for automatic differentiation (AD) in reverse mode, which
yields the exact adjoint calculation routine. Both methods have benefits and shortcomings.
The white box approach has the potential for the most efficient result, but it requires a high
level of insight into the code and is susceptible for inconsistencies between the primal and
the adjoint code. While the black box approach solves these white box issues it can lead to
inefficient results, especially when applied to iterative solution schemes for PDEs. In practice, a
combination of both techniques is often used with success. Especially the selective application
of AD inside a white box framework is described by a number of publications [1, 2, 3, 4].
Automatic differentiation can be achieved in two ways: source to source transformation and
operator overloading. While the source to source technique is quite popular for solvers written
in Fortran, the operator overloading approach is found more advantageous for solvers written
in C. The following is a description of how selective application of AD by operator overloading
may be achieved in the frame of a parallel solver, starting from the adjoint solver described in
[5]. TRACE is a simulation suite for internal flows, with focus on turbomachinery applications;
it is developed at DLR, in productive use at MTU AeroEngines and a research tool at several
universities.

2 FLOW SOLVER

The most frequently used tool for industrial turbomachinery design optimizations are the
compressible steady Reynolds-averaged Navier-Stokes (RANS) equations in a rotating frame
of reference, discretized by the finite volume approach. These equations have the general form

∂q

∂t
+ divF (q)− S(q) = 0 (1)

with the conservative state in each cell denoted by q = (ρ, ρu, ρv, ρw, ρE), the fluxes in three
directions F = (F 1, F 2, F 3) with F i : R5 → R5 and the source terms S(q). For the dis-
cretization of convective fluxes we use Roe’s TVD upwind scheme in combination with the
MUSCL approach after van Leer, viscous fluxes are calculated by a central difference scheme.
The steady solution is obtained by implicit pseudo-time marching.

Turbomachinery simulations are characterized by a set of specialized boundary conditions
which influence how an adjoint solver can be constructed. Boundary conditions are applied
by prescribing values on extra layers, called ghost cells, which extend the mesh beyond the
boundary of the physical domain. We therefore divide the flow state into states in internal and

Jan Backhaus, Anna Engels-Putzka and Christian Frey

external cells
q = (qint, qext) (2)

where the external cells values are prescribed by a functional relationship

qext = F(qint, qext). (3)

The class of non-local boundary conditions poses special challenges here. In the case of non-
reflecting boundary conditions after Giles [6] the ghost-cell update is defined as the fixed point
iteration

∆qn+1
ext = F(qnint, q

n
ext). (4)

Whereas F involves a Fourier transformation in circumferential direction in order to suppress
incoming waves at interfaces of the computational domain.

Blade rows with different rotational velocities are, in the steady case, coupled by Denton’s
mixing plane approach [7], which requires circumferentially mixed out states to become iden-
tical on each side of the mixing plane. Circumferential averaging of states is performed by
band-wise integration over fluxes and then applying the inverse flux function to obtain the inte-
gral state. This reads in cylindrical coordinates

q̄F = F−1
c

(
1

∆ϑ

∫ ∆ϑ

0

Fc(q)dϑ

)
, (5)

where ∆qn+1
ext vanishes in the case of a converged flow solution.

The boundary conditions mentioned before depend on flow states in a circumferential direc-
tion. A span-wise dependency of states may additionally occur at exit surfaces, when the static
pressure at the exit is prescribed by the radial equilibrium condition of pressure and centrifugal
forces

dp = ρV 2
ϑ

dr

r
, (6)

whereas p denotes the static pressure, Vϑ the circumferential component of the flow velocity
and r the radius.

3 ADJOINT SOLVER

For the fields of application mentioned in the introduction it is desirable to calculate partial
derivatives of cost functions I(q), calculated from the flow solution q which depends on many
design parameters α. An efficient way to evaluate ∂I

∂αi
, with αi denoting the i-th design param-

eter, for a large number of parameters is the adjoint method. Since the adjoint approach is well
documented in the literature, e.g. in [8], only the basic relations are repeated here. We want to
evaluate

∂I(q(α))

∂αi
, (7)

from the flow state q which is defined implicitly by fulfilling the discretized Navier-Stokes
equations

R(α, q(α)) = 0. (8)

One way this can be calculated is solving the adjoint system for the cost function I(
∂R

∂q

)t
ψ =

(
∂I

∂q

)t
(9)

Jan Backhaus, Anna Engels-Putzka and Christian Frey

and afterwards evaluate the scalar product

∂I

∂αi
= −ψt ∂R

∂αj
(10)

for each design parameter. The computational costs of solving Equation (9) are about as high
as those for solving the nonlinear system of Equations (1) while evaluating the matrix vector
product in Equation (10) is comparatively cheap. The adjoint method is therefore efficient when
the number of parameters is larger than the number of cost functions.

3.1 Flux linearization

A central point in the implementation of the adjoint solver is the exact calculation of ∂R
∂q

.
The linearization of the discretized steady Eqn. (1) may be written as

∂Ri

∂qk
=
∑
j

∂Fj
∂qk

+ δik
∂Si
∂q

= 0 (11)

where i runs over all cells, j over the cell’s faces and k over all states. Since the flux at a cell
face depends only on a few flow states in neighboring internal cells qint, the Jacobian matrix
∂F
∂qint

can be efficiently calculated by exploiting the sparsity pattern of the spatial discretization
scheme.

While the nonlinear solver can be used with a variety of turbulence models, it is assumed
here, that the eddy viscosity is not influenced by small geometric changes and may therefore be
ignored for the adjoint system of equations. This is called the constant-eddy-viscosity (CEV)
assumption. The validity of the CEV assumption for design optimizations is discussed by vari-
ous authors, e.g. [9, 10].

3.2 Adjoint boundary conditions

While the flux Jacobian for inner cell states may be calculated with the above scheme, the
fluxes on cell faces close to the boundary of the computational domain depend on external cell
states and through Eqn. (3) on the boundary conditions. When differentiating Eqn. (11) with
respect to internal and external flow states, one obtains the residual Jacobian matrix

∂R

∂(qint, qext)
= (Aint Aext). (12)

Since qext depends on qint through Eqn. (4) in the case of non-reflecting boundary conditions,
one would have to differentiate this giving a fixed point iteration for the linear boundary condi-
tion

∆(δn+1
ext) =

∂F
∂(qint, qext)

(
δqnint
δqnext

)
(13)

However, the adjoint system of equations is, in contrast to the primal system, not solved by
pseudo-time marching. Consequently, we cannot evolve Eqn. (13) parallel to the solution pro-
cess. Instead we use

∂F
∂(qint, qext)

(
δqnint
Tδqnext

)
= 0, (14)

with the adjoint boundary operator T . Since no routine in the primal solver exist which can
be differentiated to obtain T , the operator is manually derived and implemented. The linear

Jan Backhaus, Anna Engels-Putzka and Christian Frey

operators T for the turbomachinery boundary conditions, employed here, are derived in [5, 11]
and not repeated for brevity. Using the above equations, the linearized residual reads

L =
(
Aint Aext

)(Id
T

)
. (15)

The adjoint is obtained by transposition

L ∗ = (Id T t)

(
Atint
Atext

)
. (16)

3.3 Solution scheme

The adjoint system of equations (9) is solved by a preconditioned GMRES solver with
restarts [12]. The available preconditioners are successive over-relaxation, (SSOR) and incom-
plete LU-decomposition with limited level-of-fill (ILU).

3.4 Selective use of AD

The introduction of AD into TRACE is described in [13]. The results of this work are used
here as a starting point to describe how an AD based adjoint solver can be implemented in a
grey box fashion.

More specifically we apply white box techniques to the spatial discretization stencil, objec-
tive functions and boundary conditions, while the flux calculation routines are differentiated in
a black box fashion through AD in forward mode. From forward derivatives of the flux calcu-
lation routines we then build the adjoint system matrix. This grey box approach was chosen
in order to obtain an efficient adjoint solver but at the same time avoid the cumbersome dif-
ferentiation of the sophisticated flux computation routines. The reasons for treating boundary
conditions differently from the rest of the flux computations are:

1. The primal boundary conditions are not implemented in simple function calls which could
be treated by AD. They are constituted by a composition of functions controlled by the
different solver modes and choices of models.

2. The fixed-point property of non-reflecting boundary conditions as discussed in section 3.2.

3. Non-local boundary operators, such as the non-reflecting boundary conditions, radial
equilibrium boundary conditions as well as row coupling interfaces depend on a large
number of cell states. The differentiation of these would add large dense contributions to
the residual Jacobian matrix. In order to keep the memory consumption manageable they
must therefore be evaluated on-the-fly during the adjoint solution process.

We employ the tangent forward mode of automatic differentiation which calculates direc-
tional derivatives by attaching to each variable in the calculation an additional derivative vari-
able and propagating this derivative value alongside the computation:

y = f(x), ẏ =
df

dx
ẋ, (17)

where df
dx

is analytically defined by the chain rule of differentiation for each elementary oper-
ation, i.e., all floating operations intrinsically provided by the C language. For a more com-
prehensive description of AD, the reader is referred to [14]. Since TRACE is written in the C

Jan Backhaus, Anna Engels-Putzka and Christian Frey

language, more specifically the C99-standard, we apply automatic differentiation by operator
overloading, due to the easier implementation and to avoid the dependency on another com-
piler and the restrictions to supported language constructs. The operator overloading approach
works by providing a class which re-defines all elementary operations to calculate y and ẏ as in
Eqn. (17). Here we use ADOL-C [15] in tapeless tangent mode. The general workflow for ap-
plying AD by operator overloading is to change the definition of the floating point datatype used
for calculations from the standard floating point datatype to the AD class (called adouble in
ADOL-C). During the execution one sets the differentiation seed ẋ via a special member func-
tion (called setADValue in ADOL-C) of the independent variable x and runs the function
to be differentiated. The directional derivative is then computed alongside the computation
and its derivatives ẏ can afterwards be obtained by calling another member function (called
getADValue in ADOL-C) for the desired output variable. While this is the simplest way of
applying AD, there are a few obstacles observed during the introduction of AD in TRACE:

• Operator overloading is not defined for C, only for C++. Even though C++ is sometimes
called a superset of C, this is not exactly true. Not all programs conforming to the C99-
standard are also valid C++ programs. See [16] for a more detailed view on this issue.
In this context the most important issues are variable length arrays (VLA), which are not
supported in C++, and unions containing active floating point variables1. After eliminat-
ing incompatibilities it must be communicated to all developers which constructs must be
avoided and how these should be replaced. Automated testing of each new code revision
is necessary to ensure that no incompatibilities are introduced.

• External libraries receiving and returning floating point numbers must be differentiated,
by either automatic differentiation or, if possible, by high-level manual differentiation2.

• All floating point variables passed to an external library for output, including C’s standard
libraries, for which no overloaded equivalent is provided by the AD tool, must be con-
verted to standard datatypes. This requires wrapper-code around the actual library call.
For often recurring calls this may be facilitated by using macros. Functions with variable
number of arguments, e.g. printf type functions, require more elaborate solutions, e.g.
variadic templates.

• Some computations are not differentiable, e.g. calculating the length of a vector which
may become zero at some point during the calculation. For such results the AD value ẏ
takes the special values NaN or inf which propagate through the whole derivative com-
putation. While most of the time it is simple to circumvent such calculations by im-
provements to the primal code (cf. [14] for a list of applicable techniques), finding and
identifying such computations requires thorough testing.

3.5 Interfacing differentiated with non-differentiated code

When differentiating an existing code base using AD, one has to determine which variables
are active, i.e., if variables are used inside the dependency path between the selected inputs
and outputs. In the operator overloading approach a variable is marked as active by changing its
datatype from the standard arithmetic type to the respective AD class. It is necessary to correctly

1The C++11 standard improves on some of these issue, but it is still necessary to define constructors for such
unions

2The fast fourier transformation is a candidate for this

Jan Backhaus, Anna Engels-Putzka and Christian Frey

identify all variables that have to be active. Any missed out declaration either leads to compile
time errors, or to wrong gradient results. Superfluously marking a passive variable as active
is less problematic; this only increases the computational effort and memory requirements.
Since correctness has to be reached before performance optimizations can be considered, one
often starts by changing all floating point type declarations to the AD type and handle only the
interface between this active types and the external libraries.

Selectively changing variables reduces the performance overhead to only those routines one
wants to differentiate. However this requires more work from the developer to handle the in-
terfaces between active and inactive variables. At these interfaces, all conversions from active
to inactive variables have to be explicitly implemented by introducing conversion calls. Com-
posite types complicate things further, since they may be used in contexts where their member
variables are active in others where they are passive. Even combinations where only parts of
the composite type have to be active may occur. A solution would be to create copies of the
data type for each pattern of activation, copy and adapt the calling routines. Since the activa-
tion pattern may depend on usage scenarios, this would lead to a lot of copied routines with
slightly varying activation patterns which is undesirable for code-maintainability reasons. This
approach may be automatized by a script. However that script has to mimic parts of a source-
to-source AD tool and therefore may become complicated, depending on the range of supported
language constructs.

In order to circumvent the development of such a script another approach for the selective
application was chosen here: Two executables are generated from the same code base using
a compile time switch. In the unmodified executable, all variables are defined as standard-
arithmetic types. In the differentiated executable, all variables are defined as the AD class.
Both contain the same set of functions and may be tested independently from each other to
ensure binary identical results from their primal calculations. In order to use exact derivatives
inside the faster unmodified executable, the unmodified launches the differentiated executable
and both perform the basic flow solver initialization, c.f. Fig. 1. The flux Jacobian matrix is
generated inside the differentiated solver by iterating over each component of the flow state qi

in each internal cell, setting q̇i to 1. After calling the flux-functions for the respective cell, the
derivatives are obtained by reading all Ḟ j as standard floating point values and storing these
inside the flux Jacobian matrix in block compressed row storage (BCRS) format, where each
submatrix is a 5x5 matrix. This matrix is subsequently communicated to the non-differentiated
executable, where it constitutes the system matrix for the adjoint system of equations. Since
the differentiated executable is terminated at this point, the additional memory for storing the
differentiated flow field is freed. The adjoint system of equations is solved by inside the non-
differentiated code as described in section 3.3.

4 VALIDATION

4.1 Procedure

For the validation of the sensitivities we now have three different validation procedures avail-
able. The first two are performed by running the complete code for a deformed mesh, and these
are therefore primal procedures. One can run the undifferentiated executable calculating finite
differences from the results, or one can run the differentiated executable and use the defor-
mation at each mesh node as a seeding direction. These procedures are called FD-primal and
AD-primal respectively. The other means of validation is to use finite differences instead of AD
in the grey box adjoint code. This is called FD-adjoint in the following text. The solver to be

Jan Backhaus, Anna Engels-Putzka and Christian Frey

MPI send
@R

@qinner

calculate @I
@q

initializeinitialize

MPI spawn

restarted GMRES

² apply adjoint bc's

² apply preconditioner

calculate
@R

@qinner

TRACE
standard
arithmetic

TRACE
tangent mode

terminate

Figure 1: Sequence diagram for the code coupling strategy.

validated is the AD based adjoint, called AD-adjoint, consequently.
For the FD-primal evaluation first order accurate forward differences are obtained from the

first terms of the Taylor series expansion

dI

dαi
=
I(x + ph)− I(x)

h
+O(h). (18)

The grid coordinates x are perturbed by a deformation vector p which is obtained by modifying
one design parameter αi and generating the corresponding computational grid

p = x(α + eiεi)− x(α) (19)

The choice of h is a difficult task, due to the linear dependence of the truncation error on the one
hand, and cancellation errors on the other hand. Therefore different values of h are examined
to find a range where the result is insensitive to the choice of h. Finite differences have the
advantage of being very simple and they serve therefore as reference to rule out human error or
flaws in the AD tool. However, as the associated approximation error may become very large
finite differences cannot provide full confidence in the correctness of the results. The second
simple approach is the AD-primal procedure, which serves as an alternative way to calculate
derivatives in a forward manner. It has no associated step-width problem. This AD-primal
calculates any cost function I available inside the flow solver and İ with respect to one design
parameter provided as deformed mesh in one sweep

I(x), İ =
∂I

∂x
p. (20)

For p one can use the mesh deformations as in Eqn. (19) and apply these as seed direction
for the AD variables on the grid points. In principle, this is the same as the finite difference
evaluation described before with a step width approaching zero and no subtractive cancella-
tion present. This is equivalent to the complex step derivative technique [17], which could be
used alternatively. Since both primal procedures have a computational cost proportional to the
number of design parameters, they are only used for validation purposes.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

Figure 2: The contra-rotating integrated shrouded propfan CRISP 2.

The third solver is the FD-adjoint, where the flux Jacobian matrix is computed from finite
differences. By means of this solver we are able to tell whether the Jacobian matrix calculated
by the AD tool is valid and to assess the influence of errors in this matrix on the adjoint sensi-
tivities. The finite difference step-width here is chosen to be proportional to the flow state and
the factor of proportionality ε is varied to find a range of insensitivity of the finite differences.

4.2 CRISP 2

The second design of the contra-rotating shrouded propfan called CRISP 2 (Fig. 2) is a mul-
tidisciplinary optimization based design conducted at DLR [18] using the optimization frame-
work AutoOpti [19]. The design targets are to develop a new engine concept for extremely high
bypass-ratios (>20), in order to achieve a high fan efficiency and to reduce noise emissions for
the important operating points. To this end, aerodynamic, acoustic and mechanic objectives or
constraints were considered in the optimization [20]. The optimization has been carried out
using a combination of evolutionary algorithms and Gaussian process meta models constructed
from 3D simulations. The design used here has a mass flow rate of 158 kg/s, a total pressure
ratio of 1.3 and an isentropic efficiency of 94 %. With a pre-shock Mach number of about 1.2
the flow is transonic. A validation of the CFD solver on modern contra-rotating fans against
experimental results is described in [21]. See [22] for a description of how gradients from an
adjoint solver may be included in this optimization. Different mesh resolutions can be generated
from this process, here a coarse structured mesh consisting of 500 000 cells is used.

The CAD Model of the fan stage is parameterized by engineering CAD Parameters which
are translated into B-Spline tensor product surfaces using the geometry tool Blade-Generator.
Based on these surface definitions a structured grid is created using the mesh generator G3DHexa.
Deformed meshes for the sensitivity calculation process are created by an elliptic mesh defor-
mation tool [23].

From the 123 parameters of the original optimization we have selected 24 representative
parameters. This was necessary to reduce the computational effort spent on the primal validation
procedures. The selected parameters are the stagger angle, leading edge angle and trailing edge
angle on four profiles of each of the two rotors.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

Pseudo time step

R
e

s
id

u
a

l
L

2
N

o
rm

0 2000 4000 6000
10

9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

4E05

3.5E05

3E05

2.5E05

2E05

1.5E05

1E05

5E06

|R|

|dR/dx|

0

Figure 3: Residual, differentiated residual and convergence of sensitivity of the total pressure ratio for the AD-
primal process

4.3 Validation using primal calculations

The convergence of the primal residual and the residual of the forward differentiation, AD-
primal, are shown in Fig. 3, additionally for the total pressure ratio Π the evolution of the
sensitivity ∂Π

∂α0
is plotted exemplarily. All primal validation calculations are stopped when the

residual falls below a threshold of 10−9. While the residual still drops afterwards, the accuracy
in all output quantities is sufficient, as can be seen for the value of the sensitivity in Fig. 3.

4.4 Validation using FD-adjoint

The adjoint solver based on finite differences is used to demonstrate the effect of approxima-
tions on the residual Jacobian matrix here. From Fig. 4 it can be seen that the convergence of
the adjoint residual improves, when a larger finite difference step is used. Errors from the finite
differences act as a regularization of the adjoint system matrix. The convergence behavior of
the AD-adjoint solver is identical to the convergence with ε = 10−11. However, the smallest
error in the sensitivities for the first parameter, comparing AD-adjoint to FD-adjoint, can be
observed for ε = 10−4 in Fig. 5.

4.5 Comparison of Gradients

Figure 6 shows the comparison of the calculated gradients for the total pressure ratio from the
four different approaches. One can see that these are in very good agreement. Minor deviations
can be observed for some parameters, between the sensitivities from the primal and the adjoint
approaches. Since the AD approaches show the same results as the FD approaches, an error in
the AD tool or its application can be ruled out. The absolute errors of the gradients are calculated
as the absolute value of the difference between AD-adjoint and AD-primal and plotted in Fig. 7.

The magnitude of errors is found to be sufficiently small for the optimization procedures
described in [22].

Jan Backhaus, Anna Engels-Putzka and Christian Frey

GMRES Iteration

A
d

jo
in

t
R

e
s

id
u

a
l
L

2
N

o
rm

0 200 400 600 800 1000
10

8

10
6

10
4

10
2

10
0

=1E1

=1E6

=1E11

AD

Figure 4: Residuals of the FD-adjoint process with varying step width ε.

 for FDadjoint

a
b

s
.
e

rr
o

r

10
13

10
11

10
9

10
7

10
5

10
3

10
1

10
12

10
11

10
10

10
9

10
8

10
7

10
6

10
5

10
4

abs. error in
0

Figure 5: Errors in sensitivities for FD-Adjoint compared to AD-adjoint over step width ε.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

Parameter []

 [
]

0 5 10 15 20

4.0E04

2.0E04

0.0E+00

2.0E04

ADPrimal

FDPrimal

FDAdjoint

ADAdjoint

Figure 6: Validation of partial derivatives for the total pressure ratio of CRISP 2 w.r.t 24 CAD parameters.

Parameter []

a
b

s
.
e

rr
o

r

0 5 10 15 20
10

9

10
8

10
7

10
6

error in

Figure 7: Error of the AD-adjoint sensitivities compared to AD-primal.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

5 CONCLUSIONS AND OUTLOOK

Developing the adjoint for an existing CFD solver can become a laborious task which re-
quires good knowledge of the solver and of the equations implemented therein. This amount of
knowledge may be replaced, in parts, by the ability to work with AD tools. Correctly applied
AD provides exact derivatives which stay consistent to the calculations, even when the solver
is modified, given that certain coding guidelines are obeyed. Besides a lot of effort spent on the
development of the AD tools, a complete black box approach is still not optimal for the itera-
tive solution processes. The approach presented here shows how AD can be selectively applied
for an industrial, parallelized turbomachinery solver written in the C language by using oper-
ator overloading. The approach taken here starts from a white box derivation and selectively
includes black box techniques. A benefit of the approach is the ability to use the same AD-
primal solver which is used to calculate the flux Jacobian for gradient validation purposes and
therefore gain confidence in the consistency of the computed flow solution and the derivatives.
An alternative approach is to derive an adjoint solver in a complete black box fashion through
reverse mode AD and afterwards introduce white box improvements to lower the runtime and
memory consumption. While this strategy has been pursued in [13], a thorough comparison of
both approaches will be left for future work.

ACKNOWLEDGEMENT

This research was supported by the German Federal Ministry for Economic Affairs and
Energy (BMWi) under grant number 20T1104B. We thank the Chair for Scientific Computing
(SciComp) of TU Kaiserslautern, especially Max Sagebaum and Dr. Emre Özkaya for the
fruitful cooperation in applying automatic differentiation.

REFERENCES

[1] F. Courty, A. Dervieux, B. Koobus, and L. Hascoet, “Reverse automatic differentiation
for optimum design: from adjoint state assembly to gradient computation,” Optimization
Methods and Software, vol. 18, no. 5, pp. 615–627, 2003.

[2] M. Giles, D. Ghate, and M. Duta, “Using automatic differentiation for adjoint cfd code
development,” Indo-French Workshop, 2005.

[3] C. A. Mader, J. R. R. A. Martins, J. J. Alonso, and E. van der Weide, “ADJoint: An
approach for the rapid development of discrete adjoint solvers,” AIAA Journal, vol. 46,
pp. 863–873, APR 2008. AIAA/ISSMO 11th Multidisciplinary Analysis and Optimization
Conference, Portsmouth, VA, SEP 06-08, 2006.

[4] A. C. Marta, S. Shankaran, D. G. Holmes, and A. Stein, “Development of adjoint solvers
for engineering gradient-based turbomachinery design applications,” in Proceedings of the
ASME Turbo Expo 2009, vol. Volume 7: Turbomachinery, Parts A and B, June 2009.

[5] C. Frey, D. Nürnberger, and H.-P. Kersken, “The discrete adjoint of a turbomachinery
RANS solver,” in Proceedings of ASME-GT2009, 2009.

[6] M. B. Giles, “Nonreflecting boundary conditions for Euler calculations,” AIAA Journal,
vol. 28, no. 12, pp. 2050–2058, 1990.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

[7] J. Denton and U. Singh, “Time marching methods for turbomachinery flow calculations,”
VKI Lecture Series 1979-7, von Karman Institute., 1979.

[8] M. B. Giles and N. A. Pierce, “An introduction to the adjoint approach to design,” Flow,
Turbulence and Combustion, vol. 65, pp. 393–415, 2000.

[9] C. S. Kim, C. Kim, and O. H. Rho, “Feasibility study of constant eddy-viscosity assump-
tion in gradient-based design optimization,” Journal of Aircraft, vol. 40, no. 6, pp. 1168–
1176, 2003.

[10] R. Dwight and J. Brezillon, “Effect of approximations of the discrete adjoint on gradient-
based optimization,” AIAA Journal, vol. 44, no. 12, pp. 3022–3071, 2006.

[11] C. Frey, A. Engels-Putzka, and E. Kügeler, “Adjoint boundary conditions for turboma-
chinery flows,” in ECCOMAS 2012 - European Congress on Computational Methods in
Applied Sciences and Engineering, e-Book Full Papers, 2012.

[12] Y. Saad, Iterative methods for sparse linear systems. 2nd ed. SIAM Society for Industrial
and Applied Mathematics, Philadelphia., 2003.

[13] M. Sagebaum, E. Özkaya, and N. R. Gauger, “Challenges in the automatic differentiation
of an industrial CFD solver,” in Evolutionary and Deterministic Methods for Design, Op-
timization and Control with Application to Industrial and Societal Problems (EUROGEN
2013), 2014.

[14] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algo-
rithmic differentiation. Siam, 2008.

[15] A. Walther and A. Griewank, “Getting started with ADOL-C,” Combinatorial Scientific
Computing, pp. 181–202, 2012.

[16] B. Stroustrup, “C and C++: Case studies in compatibility,” C/C++ Users Journal, vol. 20,
no. 9, pp. 22–31, 2002.

[17] J. R. R. A. Martins and J. T. Hwang, “Review and unification of methods for computing
derivatives of multidisciplinary computational models,” AIAA Journal, vol. 51, pp. 2582–
2599, November 2013.

[18] T. Lengyel-Kampmann, Vergleichende aerodynamische Untersuchungen von
gegenläufigen und konventionellen Fanstufen für Flugtriebwerke:. PhD thesis, Ruhr-
Universität Bochum, 2015.

[19] C. Voss, M. Aulich, B. Kaplan, and E. Nicke, “Automated multiobjective optimisation in
axial compressor blade design,” in ASME Paper, vol. 90420, 2006.

[20] D. Görke, A.-L. Le Denmat, T. Schmidt, F. Kocian, and E. Nicke, “Aerodynamic and
mechanical optimization of CF/PEEK blades of a counter rotating fan,” in Proceedings of
the ASME Turbo Expo 2012, 2012.

[21] T. Lengyel-Kampmann, A. Bischoff, R. Meyer, and E. Nicke, “Design of an economical
counter rotating fan: Comparison of the calculated and measured steady and unsteady re-
sults,” in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, pp. 323–
336, American Society of Mechanical Engineers, 2012.

Jan Backhaus, Anna Engels-Putzka and Christian Frey

[22] J. Backhaus, M. Aulich, C. Frey, T. Lengyel, and C. Voß, “Gradient enhanced surrogate
models based on adjoint cfd methods for the design of a counter rotating turbofan,” in
Proceedings of the ASME Turbo Expo 2012, 2012.

[23] C. Voigt, C. Frey, and H.-P. Kersken, “Development of a generic surface mapping algo-
rithm for fluid-structure-interaction simulations in turbomachinery,” in V European Con-
ference on Computational Fluid Dynamics ECCOMAS CFD 2010 (J. C. F. Pereira, A. Se-
queira, and J. M. C. Pereira, eds.), June 2010.

	INTRODUCTION
	FLOW SOLVER
	ADJOINT SOLVER
	Flux linearization
	Adjoint boundary conditions
	Solution scheme
	Selective use of AD
	Interfacing differentiated with non-differentiated code

	VALIDATION
	Procedure
	CRISP 2
	Validation using primal calculations
	Validation using FD-adjoint
	Comparison of Gradients

	CONCLUSIONS AND OUTLOOK

