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Abstract. Industrial design and optimization processes rely increasingly on powerful and well-
engineered CFD tools. Compressible solution methods, which perform very well at transonic
and supersonic flow speeds, display a dramatic degradation of convergence as well as of so-
lution quality as the incompressibility limit is approached (very low flow speeds). In many
technical applications, especially in turbomachinery, the flow conditions vary strongly within
the computational domain and with time. When the incompressibility limit is approached, a
large disparity arises between the smallest and largest eigenvalues of the systems character-
istic matrix. In order to overcome these problems low-Mach preconditioning methods have
been devised to rescale the eigenvalues of the characteristic matrix of the system of governing
equations and, hence, reduce the large inequality in the acoustic and convective flow speeds.
Frequently, low flow speeds are observed in low Reynolds environments. As noted by several
authors, often instability issues in these regions, such as cavities and boundary layers, arise
by preconditioning. Often, this problem is due to an overestimation of the maximum allowable
timestep size. In fact, in a low Reynolds regime, the influence of viscous effects on time marching
schemes predominates. An important role in the determination of viscous time steps plays the
von Neumann number (VNN), whereas the Courant Friedrichs Lewy criteria (CFL) influences
the inviscid time step behaviour.

The objective of this work is the presentation of the theoretical background and results of a
consistent Low-Mach preconditioning scheme based on a preconditioner proposed by Turkel,
which has been extended to a wide range of Reynolds numbers. Furthermore, the interaction
of low-Mach preconditioning, the von Neumann and Courant Friedrichs Lewy numbers on the
convergence history and quality of results will be discussed. Its implementation is illustrated
using DLR’s in-house CFD code TRACE. To prove the robustness and correctness of the al-
gorithm, we discuss a set of test cases like the lid-driven cavity at different Reynolds numbers
influenced by CFL and VNN.
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1 INTRODUCTION

Complex technical systems, such as turbomachinery configurations, involve large variations
of different flow topologies. Some regions contain very low flow speeds whilst others are de-
cidedly compressible. Exemplary, in the main flow passage of a turbomachinery configuration
relatively high flow speeds dominate. Locally small Mach numbers can be found in cavity and
seals regions. Numerical simulations of turbomachinery components are mostly performed by
density-based flow solvers. At low flow speeds, fully compressible solution methods converge
extremely slow, due to the large disparity between the convective and acoustic speeds. In addi-
tion, a dramatic degradation of the solution quality can by observed.

In order to overcome these problems, low-Mach preconditioning operators have been de-
veloped to reduce the difference between the largest and smallest eigenvalues of the system’s
characteristic matrix [1]. Pre-multiplication of the time derivative of the Euler or Navier-Stokes
system of equations by a suitable matrix rescales the various characteristic velocities. Pre-
conditioning does not only reduce the stiffness of the system but also significantly increase the
accuracy at low flow speeds. In the past, several preconditioning operators have been published,
e.g. [10, 1, 12, 13]. A comprehensive overview of the low Mach preconditioning operators, de-
veloped during the last decades, can be found in the work of Depcik [2]. As noted by several
authors low-Mach preconditioning can cause stability problems in viscous regimes [3, 6]. This
is due to overestimation of the maximum allowable timestep size. In fact, in a low Reynolds
regime the time steps are predominated by the viscous eigenvalues. This aspect of precondi-
tioned flows has been discussed previously by Choi and Merkle [13] as well as Colin et. al [6].
Based on stability investigations the significant influence of viscosity on low Mach precondi-
tioning has been proven. Based on a preconditioner proposed by Turkel [1], in this paper we
discuss the influence of an additional limitation term of the preconditioning parameter β2 on
the numerical stability in a viscous environment, cf. [3, 6].

Moreover, the validity and robustness of the method is demonstrated using a classical lid-
driven cavity configuration at different Reynolds, CFL and von Neumann numbers.

The improvements has been implemented in the CFD code TRACE, a fully implicit, parallel,
hybrid, multi-block, Reynolds-Averaged Navier-Stokes flow solver specialised in the simulation
of turbomachinery flows [5].

2 NUMERICAL METHOD

The non-dimensional time-dependent Navier-Stokes equations formulated in Cartesian co-
ordinates read [4]

∂Q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=

1

Rea

(
∂fν
∂x

+
∂gν
∂y

+
∂hν
∂z

)
, (1)

where Q is the solution vector of the conservative variables (ρ, ρu, ρv, ρw, ρE) and f , g, h
the inviscid fluxes given by, cf. [6]:

f =


ρu

ρu2 + p
ρuv
ρuw
ρuH

 , g =


ρv
ρvu

ρv2 + p
ρvw
ρvH

 , h =


ρw
ρwu
ρwv

ρw2 + p
ρwH

 , (2)
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where ρ, u, v, w and p are the density, velocities and pressure, respectively. The quantities
H and E are the specific total enthalpy and energy. The viscous fluxes are given by

fν =


0
τxx
τxy
τxz

(τU)x)

 , gν =


0
τyx
τyy
τyz

(τU)y)

 , hν =


0
τzx
τzy
τzz

(τU)z)

 . (3)

The components of the viscous stress tensor are referred to as τij where i, j = x, y, z . The
vector U contains the Cartesian velocity components. Source terms and heat flux contributions
are not in the focus of the current work and have therefore been ignored. The fluid is considered
as calorically perfect. Hence, the ratio of the specific heats is constant and set to 1.4. The
acoustic Reynolds number is defined by

Rea =
ρ∗a∗L∗

µ∗
, (4)

where ρ∗, a∗, L∗, µ∗ are the (dimensional) reference density, speed of sound, length and vis-
cosity. The system of equations (1) is spatially discretized using Roe’s upwind approximation
scheme [17]. The (preconditioned) inviscid fluxes at the cell faces are computed as

Fi+1/2 =
1

2
(FL + FR)− ∂Q

∂U
P−1U |PUDU |

∂U

∂Q
(QL −QR) , (5)

where QL and QR are the states at the left and right side of the cell face. The term P−1U |PUDU |,
where DU = κ · ∂F

∂U
, is known as the stabilisation term and leads after a matrix decomposition of

the flux Jacobians, to P−1U MU |Λ|M−1
U . The primitive variable system (ρ, u, v, w, p) is denoted

as U . Based on a metric proposed by Hirsch [4] the preconditioned left and right eigenvector
matrices are

M−1
U =



κ̂x 0 κ̂z −κ̂y −κ̂x 1
a2

κ̂y −κ̂z 0 κ̂x −κ̂y 1
a2

κ̂z κ̂y −κ̂x 0 −κ̂z 1
a2

0 κ̂x κ̂y κ̂z − λ̂1−λ̂4
β2a2ρ

0 −κ̂x −κ̂y −κ̂z λ̂1−λ̂5
β2a2ρ


(6)

MU =



κ̂x κ̂y κ̂z
ρβ2

λ̂4−λ̂5
ρβ2

λ̂4−λ̂5

0 −κ̂z κ̂y κ̂x
λ̂1−λ̂5
λ̂4−λ̂5

κ̂x
λ̂1−λ̂4
λ̂4−λ̂5

κ̂z 0 −κ̂x κ̂y
λ̂1−λ̂5
λ̂4−λ̂5

κ̂y
λ̂1−λ̂4
λ̂4−λ̂5

−κ̂y κ̂x 0 κ̂z
λ̂1−λ̂5
λ̂4−λ̂5

κ̂z
λ̂1−λ̂4
λ̂4−λ̂5

0 0 0 ρβ2a2

λ̂4−λ̂5
ρβ2a2

λ̂4−λ̂5
,


(7)

where κx, κy and κz are the metric components. The preconditioning operator PU and its
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inverse P−1U , proposed by Turkel [10] and formulated in primitive variables, reads

P−1U =


1 0 0 0 −β2−1

a2β2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 β−2

 PU =


1 0 0 0 β2−1

a2

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 β2

 (8)

The diagonal matrix Λ contains the (preconditioned) normalised eigenvalues which are given
by

λ̂1,2,3 = uκ̂x + vκ̂y + wκ̂z (9)

λ̂4,5 =
1

2

(
1 + β2

)
λ̂1 ±

1

2

√
(1− β2)2 λ̂21 + 4β2a2 (10)

The components of the metric vector have been normalised by

κ̂i =
κi
‖κ‖

(11)

which results in

λ̂i =
λi
‖κ‖

(12)

The system of equations (1) is temporally discretised by a first order Euler backward discreti-
sation scheme. Within this work steady state cases have been considered only and a pseudo-time
step τ has been introduced to control the residual behaviour, cf. [8] The preconditioning oper-
ator modifies the pseudo-time τ and the residual R. Therefore, the update vector 4Q at time
step m reads

4Q = −Rm

(
P−1Q
4τ

+
∂R

∂Q

∣∣∣∣m
)−1

(13)

The pseudo-time step 4τi considered for a cell i is determined by applying the CFL condi-
tion

4τi = CFL
4hi

λ4,i + δ CFL
V NN

λν,i
(14)

where 4hi is a characteristic length of the cell volume, λ4,i is given by (10) and λv,i is
defined by [7, 14]

λν,i = max

(
4

3ρ
,
γ

ρ

)(
µL
PrL

+
µT
PrT

)
1

4hi
, (15)

where PrL and PrT are the laminar and turbulent Prandtl numbers. The laminar and turbu-
lent dynamic viscosity coefficients are denoted by µL and µT , respectively. For purely inviscid
consideration δ = 0.
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The preconditioning parameter β2 is related to the local Mach number M and is initially
defined as [6]

β2 = min
(
max

(
M2, β2

min

)
, 1
)
. (16)

In order to avoid singularities in the preconditioning matrices β2
min should be set to some

appropriate value. Moreover, the choice of β2
min strongly influences the stability of the pre-

conditioned system. As stated by several authors [1, 15], β2
min should not be extremely small

compared to the general flow velocity. Turkel [1] suggests to set β2
min to K1M

2
ref , where K1 is

a problem-dependent constant and Mref a reference Mach number, i.e. often the inflow Mach
number. In the current investigations β2

min = 10−5. In the vicinity of stagnation points the local
Mach number approaches zero. Darmofal and Siu [11] suggests to limit β2 additionally by the
local pressure gradient K2max

faces
(|4p|/ρa2), where 4p = pr − pl and pr and pl are the pressures

of the particular states and K2 is a problem-dependent constant. Hence, β2 reads

β2 = min

(
max

(
M2, β2

min, K2max
faces

(
|4p|
ρa2

))
, 1

)
. (17)

Venkateswaran [3] suggests to limit β2 at low Re numbers using the diffusion velocity de-
fined by

vvis =
ν

4x
, (18)

where ν is the kinematic viscosity related to the dynamic viscosity µ via ν = µ/ρ. Hence,

vvis =
µ

ρ4x
(19)

In order to determine a low Reynolds limit for β2 the viscous Mach number is introduced by

Mvis =
vvis
a
. (20)

Within the current work, the results above have been combined to obtain

β2 = min

(
max

(
M2, β2

min, K2 max
faces

(
|4p|
ρa2

)
,M2

vis

)
, 1

)
. (21)

The discretised algebraic system of equations has been solved using a symmetric Gauss-
Seidel algorithm (SGS) and a predictor-corrector Gauss-Seidel scheme (PC-SGS). All calcula-
tions have been performed in double precision.

3 RESULTS

The lid-driven cavity configuration has been chosen to prove the correctness and accuracy of
the algorithm. Often, this problem serves as a benchmark for the incompressible Navier-Stokes
equations [18, 16]. Despite its simple setup, it allows a wide range of numerical properties and
stability issues to be studied. Depending on the Reynolds number, the flows are characterised by
multiple counter rotating recirculation regions in the corners of the cavity. The computational
domain consists of a square where the upper wall moves at a constant horizontal velocity. All
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walls are considered adiabatic. The Reynolds number considered within this configuration is
defined by

Re1 =
ρ∗ u∗Wall L

∗

µ∗
. (22)

Numerical studies have been performed modifying the Reynolds number Re1 by varying the
reference length L∗. The latter scales the size of the configuration keeping u∗Wall constant and
therefore the velocity distribution within the domain over the whole range of Re1.

For Re1 = 1000 grid independency studies have been carried out for different mesh sizes
generated by successive refinement. Figures (5) and (6) show the v-velocity profiles along a
horizontal line and the u-velocity profiles along a vertical line passing through the centre of the
cavity. The results are in very good agreement with those obtained by Ghia et. al. [18]. Based
on the mesh resolution results the computational grid is set to 81 x 81 cells without refinement
at the walls.

The streamlines computed at Reynolds number Re1 = 1 and Re1 = 100 are shown in figures
(1) and (3). Low-mach preconditioning does not show to have a significant influence on the
results but provide a higher convergence rate at low CFL numbers, see figures (2) and (4).
Calculations have been performed with CFL = 1 and CFL = 25. Both, the preconditioned and
non-preconditioned solutions are in very good agreement with those published in the available
literature, e.g [13].

In contrast to the non-preconditioned calculations obtained at Re1 = 1 and Re1 = 100 the
quality of the results for Re1 = 1000 presented in figure (7a) are not in accordance to those
computed by low Mach preconditioning, see figure (7c). The solution quality has been con-
siderably improved using a low Mach preconditioning technique. The influence of Mvis on the
numerical stability of a preconditioned calculation have been studied with SGS and PC-SGS.
The solution quality diminishes drastically using a low Mach preconditioned SGS without ad-
ditional modifications for low Reynolds environments as predicted by equation (21), figures
(8) and (7b). The secondary recirculation patterns at the corners of the cavity are inadequately
formed. The improvement in numerical stability through Mvis on a low-Mach preconditioned
predictor-corrector scheme is less important, but clearly recognisable, see figure (9). This em-
phasis the necessity to limit β2 by Mvis at low Reynolds numbers.

Low Mach preconditioning alleviates the strong disparity between the smallest and largest
eigenvalues. Consequently, in low Reynolds regions it is inappropriate to use a purely inviscid
scheme as the smaller the largest convective eigenvalue becomes the more important the largest
viscous eigenvalue in a viscous regime becomes. Therefore, the convergence rate is no longer
primarily determined by the low Mach preconditioner and CFL number but rather by the von
Neumann number and largest viscous eigenvalue. Figures (10) and (11) present the convergence
history of a lid-driven cavity calculation at Re1 = 1000 at constant CFL and increasing VNN
number up-to 10. Clearly, the viscous eigenvalue strongly alters the convergence rate but, based
on the current configuration, has only a minor impact on the solution quality.

4 CONCLUSIONS

The numerical stability of a low-Mach preconditioned scheme is strongly influenced by a
low-Reynolds modification of the preconditioning parameter β. In this work a consistent formu-
lation of a preconditioning scheme applicable to a wide range of Reynolds and Mach numbers
has been presented in the context of a fully-implicit three-dimensional compressible Navier-
Stokes flow solver demonstrated. The validity has been proved using a classical lid-driven
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cavity configuration. The influence of viscous timestep size has been studied and its impact on
convergence rate shown. Moreover, for the configuration chosen in this work the viscous eigen-
values alter the computational result only slightly. In future work it is planned to investigate the
viscous timestep behaviour depending on the ratio (CFL/V NN) and low-Mach preconditioning
on different computational configurations.
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Figure 1: Streamlines in non-preconditioned (left) and preconditioned (right) calculations of a lid-driven cavity
configuration for Re1 = 1, CFL = 25 and VNN = 0.
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Figure 2: L1 Residual for Re1 = 1 obtained with CFL = 1, 25 and VNN = 0.
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Figure 3: Streamlines in non-preconditioned (left) and preconditioned (right) calculations of a lid-driven cavity
configuration for Re1 = 100, CFL = 25 and VNN = 0.
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Figure 4: L1 Residual for Re1 = 100 obtained with CFL = 1, 25 and VNN = 0.
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Figure 5: V-velocity profiles of a low-Mach preconditioned calculation along a horizontal line passing through the
centre of the cavity at Re1 = 1000, CFL = 25 and VNN = 0.

Figure 6: U-velocity profiles of a low-Mach preconditioned calculation along a vertical line passing through the
centre of the cavity at Re1 = 1000, CFL = 25 and VNN = 0.
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(a) (b) (c)

Figure 7: Streamlines in a non-preconditioned (7a), a preconditioned calculation without (7b) and with low
Reynolds modification (7c) of β2 using a symmetric Gauss-Seidel solution scheme (SGS) for Re1 = 1000,
CFL = 25 and VNN = 0.
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Figure 8: Influence of Mvis on the numerical stability of a symmetric Gauss-Seidel solution scheme (SGS) for
Re1 = 1000, CFL = 25 and VNN = 0.
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Figure 9: Influence of Mvis on the numerical stability of a low Mach preconditioned predictor-corrector Gauss-
Seidel method (PC-SGS) for Re1 = 1000, CFL = 25 and VNN = 0.
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Figure 10: L1 residual at increasing VNN of a low Mach preconditioned predictor-corrector Gauss-Seidel method
(PC-SGS) at CFL = 1 and Re1 = 1000.
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Figure 11: L1 residual at increasing VNN of a low Mach preconditioned predictor-corrector Gauss-Seidel method
(PC-SGS) at CFL = 10 and Re1 = 1000.
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