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Abstract. This paper presents an energy-momentum method for nonlinear dynamics of 2D
Bernoulli corotational beams. It is shown that the time stepping algorithm conserves energy,
linear momentum and angular momentum. To be consistent in the corotational approach, cubic
interpolations of Bernoulli element are employed to derive both inertia and elastic terms. The
shallow arch strain definition is used to get an element which produce accurate results for less
number of elements. To avoid membrane locking, we use a constant and average value of the
axial strains. In addition, the energy-momentum method is used to preserve the conserving
properties, which is able to maintain the stability and accuracy in a non-dissipative system for
a long period. The midpoint velocities of kinematic fields and strains are used to tackle any
non-linear form of strain displacement relations. Finally, two examples including large overall
displacement are presented to illustrate the stability and efficiency of the proposed algorithms.
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1 INTRODUCTION

The corotational method is an attractive approach to derive non-linear finite beam elements
[1, 2, 3, 4, 5, 6, 7, 8] . The idea is to decompose the large motion of the element into rigid
body and pure deformational parts through the use of a local system which continuously rotates
and translates with the element. The deformational response is captured at the level of the local
reference frame, whereas the geometric non-linearity induced by the large rigid-body motion,
is incorporated in the transformation matrices relating local and global quantities. The main
interest is that the pure deformation part can be assumed as small and can be represented by a
linear or a low order non-linear theory.

Regarding corotational dynamic formulations, constant Timoshenko mass matrices [1, 2, 5]
are often used to express the dynamic terms. However, such an approach assumes that the in-
plane local displacements are zero, which is not accurate. For this reason, Le et al. [3] used
the Interpolation Interdependent Element formulation [9], and hence cubic functions, to derive
both the elastic and inertia terms. They show that this formulation is more efficient than using
constant mass matrices.

Implicit time stepping methods are often used together with non-linear finite elements to
study dynamic problems. The Newmark family of algorithms [10] is one of the most commonly
employed. However, these methods present instabilities in non-linear analyses [4, 5]. To avoid
these instabilities, Geradin and Cardona [11] introduced numerical dissipations (Alpha method
[12]) in order to damp the high frequencies. However, by doing that, the energy in the system
is not conserved [13, 14].

A different integration scheme, called Energy-Momentum Method, was developed from the
standard midpoint rule. Simo and Tarnow [14] were the first authors to use this method that
is unconditional stable in non-linear dynamics of three-dimensional elastic bodies. However,
their formulation was only valid for quadratic-nonlinearities in the displacement field. In the
corotational context, Crisfield and Shi [4] used a mid-point configuration combined to average
strains in order to conserve the energy. Galvanetto and Crisfield [5] developed an energy-
conserving time-integration procedure for implicit non-linear dynamic analysis of planar beam
structures. They used the constant Timoshenko mass matrix for the inertia term.

In this paper, an energy-momentum method for corotational 2D Bernoulli beam elements
is proposed. The main advantage of this scheme is that it preserves the total energy and the
linear and angular momenta. Besides, this scheme maintains stability and accuracy in long term
analyses. Regarding the element, Hermitian shape functions are used to derive both the inertia
and elastic terms. A shallow arch strain definition is used for the local formulation. The element
formulation is obtained by applying midpoint velocities to both the kinematic quantities and the
strains.

2 BEAM KINEMATICS AND STRAIN

2.1 Beam kinematics

The kinematic of the beam and all the notations used in this section are shown in Figure 1.
The vector of global displacements is defined by

q =
[
u1 w1 θ1 u2 w2 θ2

]T
(1)

The vector of local displacements is defined by

q̄ =
[
ū θ̄1 θ̄2

]T
(2)
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Figure 1: Beam kinematics.

The components of q̄ are computed according to

ū = l − l0 (3)
θ̄1 = θ1 − α (4)
θ̄2 = θ2 − α (5)

where l0 and l denote the initial and current lengths of the element. The current angle of the
local system with respect to the global system is denoted as β and is given by

c = sinβ =
1

l
(x2 + u2 − x1 − u1) (6)

s = cosβ =
1

l
(z2 + w2 − z1 − w1) (7)

The global position of the centroid G of the cross-section is given by

OG = (x1 + u1) i + (z1 + w1) j +
ln
l0
xa + w b (8)

with

a = cosβ i + sinβ j (9)
b = −sinβ i + cosβ j (10)

and w is the local transversal displacement of G. By using Eqs.(6) and (7), the components of
the global displacements are obtained as

uG = N1(x1 + u1) +N2(x2 + u2)− w sinβ (11)
wG = N1(z1 + w1) +N2(z2 + w2) + w cosβ (12)
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with

N1 = 1− x
l0

(13)
N2 = x

l0
(14)

The global rotation of the cross-section is given by

θG = ϑ+ α (15)

where ϑ is the local rotation of the cross-section.

2.2 Strain

The Bernoulli assumption is adopted for the local formulation. Hence, a linear interpolation
is taken for the axial displacement u and a cubic one for the vertical displacement w.

The local strain is given by

ε11 = ε− κ z (16)

in which the axial strain ε and the curvature κ are defined by

ε =
1

l0

∫
l0

∂u
∂x

+
1

2

(
∂w

∂x

)2
 dx (17)

κ =
∂2w

∂x2
(18)

In Eq.(17), a shallow arch strain definition is taken. The purpose of introducing a low order of
geometrical non-linearity in the local formulation is to obtain a more efficient formulation com-
pared to a linear strain definition. The same level of accuracy is obtained with fewer elements.
Besides, an average axial strain is taken in order to avoid membrane locking.

3 HAMILTON’S PRINCIPLE AND ENERGY-MOMENTUM METHOD

3.1 Hamilton’s principle

Hamilton’s principle states that the time integral of the Lagrangian at two specified states
between two specified times t1 and t2 of a conservative mechanical system is stationary

δ
∫ t2

t1
L dt = 0 (19)

The integrand L is called Lagrange function

L = K − Uint − Uext (20)

K is the kinetic energy. Uint and Uext are respectively the internal and the external potential
energies. The body is non-conducting linear elastic solid and thermodynamic effects are not
included in the system. The kinetic energy is the sum of the translational and rotational kinetic
energies:

K =
1

2

∫
l0
ρA u̇2G dx+

1

2

∫
l0
ρA ẇ2

G dx+
1

2

∫
l0
ρI θ̇2G dx (21)
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The elastic potential energy is defined as

Uint =
1

2

∫
l0
EAε2dx+

1

2

∫
l0
EI κ2dx (22)

The external potential energy is defined as

Uext = −
∫
l0
pu · uG dx−

∫
l0
pw · wG dx−

∫
l0
pθ · θG dx−

6∑
i=1

Pi · qi (23)

E is Young’s modulus of the material, A is the area of the cross-section, I is the inertia moment
of the cross-section, pu and pw are the distributed horizontal and the vertical loads, pθ is the
distributed external moment, Pi is the vector of concentrated forces and moments at the nodes.

By introducing Eqs.(21) to (23), the variation of Eq.(19) can be written as∫ t2

t1

(∫
l0
ρA u̇G · δu̇G dx+

∫
l0
ρA ẇG · δẇG dx+

∫
l0
ρI θ̇G · δθ̇G dx−

∫
l0
EAε · δε dx

)
−

∫ t2

t1

(∫
l0
EI κ · δκ dx−

∫
l0
pu · δuG dx−

∫
l0
pw · δwG dx−

∫
l0
pθ · δθG dx

)

+
∫ t2

t1

6∑
i=1

Pi · δqi = 0 (24)

By using part integration for the first three terms of (24), the previous equation can be reformu-
lated ∫ t2

t1

(∫
l0
ρA üG · δuG dx+

∫
l0
ρA ẅG · δwG dx+

∫
l0
ρI θ̈G · δθG dx

)
+

∫ t2

t1

(∫
l0
EAε · δε dx+

∫
l0
EI κ · δκ dx−

∫
l0
pu · δuG dx−

∫
l0
pw · δwG dx

)

+
∫ t2

t1

(
−
∫
l0
pθ · δθG dx−

6∑
i=1

Pi · δqi
)

= 0 (25)

3.2 Energy-momentum integration scheme

The classical midpoint time integration scheme is defined by the following equations:

qn+ 1
2

=
qn+1 + qn

2
= qn +

1

2
∆q (26)

q̇n+ 1
2

=
q̇n+1 + q̇n

2
=

qn+1 − qn
∆t

=
∆q

∆t
(27)

q̈n+ 1
2

=
q̈n+1 + q̈n

2
=

q̇n+1 − q̇n
∆t

=
2

∆t2
∆q − 2

∆t
q̇n (28)

By extension of the classical midpoint rule, the average midpoint strains are developed in the
context of energy-momentum method. This idea has been introduced in [16, 17]. The midpoint
velocities are applied to both the kinematic fields and the strains because the nonlinear terms
arise from both fields. This gives:

∫ tn+1

tn
f(t)dt = f(tn+ 1

2
)∆t = fn+ 1

2
∆t (29)

fn+ 1
2

= fn +
∆t

2
ḟn+ 1

2
(30)
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where the function f can represent both the kinematic (uG, wG, θG) and deformational quantities
(ε, κ).

The application of the midpoint rule (29) to the Hamilton’s principle (25) gives

∆t
(∫

l0
ρA üG,n+ 1

2
· δuG,n+ 1

2
dx+

∫
l0
ρA ẅG,n+ 1

2
· δwG,n+ 1

2
dx+

∫
l0
ρI θ̈G,n+ 1

2
· δθG,n+ 1

2
dx

+
∫
l0
EAεn+ 1

2
· δεn+ 1

2
dx+

∫
l0
EI κn+ 1

2
· δκn+ 1

2
dx−

∫
l0
pu,n+ 1

2
· δuG,n+ 1

2
dx

−
∫
l0
pw,n+ 1

2
· δwG,n+ 1

2
dx−

∫
l0
pθ,n+ 1

2
· δθG,n+ 1

2
dx−

6∑
i=1

Pi,n+ 1
2
· δqi,n+ 1

2

)
= 0 (31)

As the variation δq is arbitrary, the dynamic equilibrium at time n + 1
2

is obtained from the
previous equation

∫
l0
ρA üG,n+ 1

2

∂uG,n+ 1
2

∂qn+ 1
2

dx+
∫
l0
ρA ẅG,n+ 1

2

∂wG,n+ 1
2

∂qn+ 1
2

dx+
∫
l0
ρI θ̈G,n+ 1

2

∂θG,n+ 1
2

∂qn+ 1
2

dx

+
∫
l0
EAεn+ 1

2

∂εn+ 1
2

∂qn+ 1
2

dx+
∫
l0
EI κn+ 1

2

∂κn+ 1
2

∂qn+ 1
2

dx−
∫
l0
pu,n+ 1

2

∂uG,n+ 1
2

∂qn+ 1
2

dx

−
∫
l0
pw,n+ 1

2

∂wG,n+ 1
2

∂qn+ 1
2

dx−
∫
l0
pθ,n+ 1

2

∂θG,n+ 1
2

∂qn+ 1
2

dx− Pi,n+ 1
2

= 0 (32)

4 NUMERICAL EXAMPLES

Two numerical applications are presented in this section. The first purpose of these examples
is to verify numerically that the proposed energy-momentum algorithm conserves the total en-
ergy of the system and remains stable even if a very large number of time steps are applied. The
second purpose is to show that in the absence of applied external loads, the proposed algorithm
conserves the linear and angular momenta.

4.1 Cantilever beam

Example flying spaghetti

Example free fly beam

L

L/2

2P P

Example cantilever beam

P(N)

20×106

0
0.075   0.15 t(s)

L

P

Parameter

L = 3m, A = 100cm2, I = 8330cm4

ρ = 48 831 kg/m3

E = 200 000 MPa,
Number of elements = 4
Δt = 1E-3s, Number of steps = 1E6

Figure 2: Geometry and load history.

The first example, see Figure 2, is a cantilever beam loaded by a triangular force at its end.
The parameters of the problem are:

L = 3 m, A = 1000 cm2, I = 8330 cm4

E = 200 GPa, ρ = 48831 kg/m3

∆t = 10−3 s,Number of elements = 4
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Figure 3: Comparison the displacements at the end of the tip.
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Figure 4: Comparison of mechanical energy from 0s to 30s.

The results obtained with the present energy-momentum formulation are compared to the
ones obtained with the corotational formulation proposed by Le et al. [3]. In this previous for-
mulation, the alpha method is used to solve the equations of motion. Two cases are considered
here, α = 0, which corresponds to the classical average acceleration method and α = −0.01
which gives a small numerical damping that limits the influence of higher modes on the re-
sponse.

The results presented in Figure 3 show that at the beginning the three approaches give exactly
the same results. The results in Figures 4 and 5 show clearly that with the average acceleration
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Figure 5: Comparison of mechanical energy from 0s to 1000s.

method, the mechanical energy (sum of kinetic energy and internal energy) blows up after about
24s and the solution diverges. With the alpha method, the solution does not diverge, but as
expected, there is a loss of the mechanical energy due to the numerical damping. However, with
the present energy-momentum approach, the mechanical energy is constant and the solution
remains stable even if a very large number of steps (one million) is applied.

4.2 Free fly beam

The second example is a free flying beam, see Figure 6. The parameters of the problems are

L = 3 m, A = 200 cm2, I = 66.67 cm4

E = 200 GPa, ρ = 48831 kg/m3

∆t = 10−4 s,Number of elements = 4

The interest of this problem is that after 0.4s, no forces and moments are applied to the
beam. Consequently, this problem is suitable to study the conservation of the linear and angular
momenta. Figures 7, 8 and 9 show the conservation of energy and momenta for one million
time steps. The relative error is about 10−8 for the energy. We present here the two momenta
on two different figures 8 and 9 with appropriate scale. The figures show that all the moments
are constant.

5 CONCLUSION

This paper has presented an energy-momentum dynamic integration scheme in the context
of corotational 2D beam elements. The main idea is to use the classical midpoint rules for both
the kinematic and strain quantities. The advantage of the propose algorithm is that it conserves
the total energy of the system and remains stable and accurate even if a very large number
of time steps are applied. Besides, in the absence of applied external loads, the linear and
angular momenta are constant. These characteristics have been proved numerically by using
two numerical applications.
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Figure 6: Geometry and load history of free fly beam.
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Figure 7: Mechanical energy.
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