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Abstract. The inclusion of damping in the equations of motion of FEM-based structural mod-
els yields a complex (quadratic) eigenvalue problem. In this paper is presented a variant of a
general method [4], [5] for real-space modal transformation of damped multi-degree-of-
freedom-systems (MDOFS) with non-modal (non-proportional) symmetric damping matrix.
The method is based on the conjugated complex right eigenvectors of the system, normalized
relative to the general mass matrix. After state-space formulation of the equations of motion a
real modal transformation matrix is built by a combination of two complex transformations,
which is the main advantage of the presented method. Analytically expressions for the modal
transformation basis are developed be the aid of computer algebra software (MATLAB).

Applying the suggested method to the special case of proportionally damped system, an ana-
lytical expression for the constant phase lag of the free vibration modes has been derived. The
conversion of the developed general real transformation matrix into the modal matrix of the
undamped problem is analytically proved by taking into account the synchronous free oscilla-
tions in this special case.

The derived formulas for the modal transformation basis contain the real and the imaginary
parts of the eigenvectors and the associated eigenvalues.

A numerical example — vibration of a rotor blade of a wind turbine - demonstrates the per-
formance of the presented modal decomposition method for the general case of non-
proportional damped system. The damping matrix of this example contains structural and
aerodynamic damping. The initial computation of the complex eigensolution of the FEM
beam model in the presented example and all subsequent computations are done by the aid of
the Symbolic Math Toolbox of MATLAB. The suggested procedure can be applied in structur-
al systems containing different damping and energy-loss mechanism in various parts of the
structure and also in structure-environment interaction problems, where a non-modal damp-
ing matrix is occurring.
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1 INTRODUCTION

The modal decomposition of the equations of motion of multi-degree-of-freedom-systems
(MDOFS) is usually applied to systems without damping. The associated eigenvalue problem
has real eigenvectors and real free frequencies. The inclusion of damping in the equations of
MDOFS leads to a quadratic eigenvalue problem with complex conjugate pairs of eigenvalues
and eigenmodes. The modal decomposition of the equations has to be performed in complex
space. Aiming to avoid the computation in complex arithmetic, a new modal decomposition
method, presented in details in [2] — [5], is briefly outlined in Sec. 2. This procedure is based
on a real modal transformation matrix, derived from the complex eigenvalue solution of a
MDOFS with symmetric non-proportional (non-modal) damping matrix.

In the suggested procedure the complex eigenvectors and eigenvalues of the structural
model should be computed first. In the presented example in Sec. 4 — vibration of a rotor
blade of a wind generator - computer algebra software was applied to solve the eigenvalue
problem. In real life applications of the presented method to high dimensional problems it
must be available a reliable eigenmode solver for large complex eigenvalue computations.
There are many literature references for large scaled problems with various solution strategies,
see [10] — [12]. The author has used an implicitly restarted Arnoldi/Lanczos method [11], [12]
to solve the complex eigenvalue problem in an application of the method to a fluid-structure-
foundation interaction problem, see in [1],[2].

Another topic of this paper is to show an analytical proof of the statement for the constant
phase lag/lead of free vibrations in the proportional damping case — see the introduction in
Sec. 1.2. The analytical proof in an indirect manner is based on the procedure, summarized in

Sec. 2. A formula for computing of the constant ratio :ZE—;S" has been derived in Sec. 3.1.
k

In Sec. 4 the proposed modal analysis method, presented in Section 2, has been applied to
a rotor blade beam structure with 54 DOF. The numerical example demonstrates the perfor-
mance of the method for the general case of non-proportional damping. In this case the damp-
ing matrix of the system contains a stiffness proportional (Rayleigh) damping and
aerodynamic (non-proportional) damping parts. In the second variant of the solution — with
proportional damping matrix, the formula for the constant phase of the resonance modes is
verified numerically.

1.1 Free vibrations of a viscously damped system
The equations of motion of a damped MDOFS are
MV + DV + KV = p(t) (1.1)

where M, D and K are, respectively the (n x n) mass, damping and stiffness matrices, and V,
V are the (n x 1) displacement and velocity vectors and p(t) is the (n x 1) excitation vector.

In structural mechanics problems we consider the M and K matrices to be real, symmetric
and positive definite, excluding the presence of rigid body modes. The D matrix is assumed
to be symmetric, non-negative, she presents a non-proportional damping.
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With the assumed free vibration in the form
V=Xe", V=iXe!, (1.2)
the associated quadratic eigenvalue problem is

(FM+ 4D+K)X; =0 V(j=1--,n) (1.3)

In Eq. (1.3) the " eigenvalue A; and the corresponding eigenmode X; appear in complex
conjugate pairs (index j omitted):

=1, — il (1.4a)
— X, — iX, (1.4b)

The dynamic equilibrium of a viscously damped single oscillator is governed by

mi(t) + cv(t) + kv(t) = q(t) resp. (1.5a)
B(t) + 2nwv(t) + w?v(t) = p(t) (1.5b)
where % is acceleration,

1% - velocity,

W= \/% - free vibration frequency,

n= chw - Lehr’s damping ratio and  p(t) = %.

The exponential solution x et | introduced into the homogenous form of the differential
equation (1.5b), yields the eigenvalue problem

AP +2nwl+ 0w?=0 (1.6)
The eigenvalue solution (assuming that n <« 1, subcritical damping) of Eq. (1.6) is a com-
plex conjugate pair:
Ay =—notiofl-n° =4, +iA, (1.7)
= T

r Ai=op

1.2 The constant phase lag problem

Interpreting the eigenvalue pair (1.4a) as the single-oscillator-eigenvalues (1.7), we can
express the j™ free vibration of the MDOFS as linear combination of the two complex conju-
gate eigenpairs (1.4a,b):

V= X et = X e(TmotioVi-n?)e
= e 1(X, + iX;)(cos wpt + isinwpt) + (X, — iX;)(cos wpt — i sinwpt)]

2(X, cos wpt — X; sinwpt) +

=g Mt [ ) : :
i(X;cos wpt + X, sinwpt) —i (X;coswpt + X, sinwpt)
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= g Nt 2X; coswpt — 2X; sinwpt (1.8)
Fcosg Fsing

The last relation leads to the real form of a damped free oscillation for every k™ DOF:

Vi = e 1'Fy cos(wpt + ¢y)] (1.9)
where Qr = arctan% : phase lag/lead for the k™ DOF (1.10)
r’k

Since the viscous damping is assumed to be non-proportional, the free vibration solution
(1.9) represents non-synchronous damped oscillation (i.e. the phase ¢, is different for each
DOF). In the case of proportionally damped system we have to deal with synchronous free
oscillation — i.e. the phase ¢, is constant (the same for all DOF), for undamped systems ¢y, is
zero — see [6], [7], p.118.

The features, showed in Eq.(1.9), (1.10) are well known and used in modal analysis, see
for example [6]. In the present paper the statement of synchronous free oscillations in the pro-
portional damping case should be proved analytically in Sec. 3.1.

2 MODAL DECOMPOSITION METHOD INCLUDING THE COMPLEX RIGHT
EIGENVECTORS

2.1 The single mass oscillator

The equation of motion of a damped single degree of freedom system (SDOFS) (1.5b) can
be written in the form

s e e -
m -
marka=p > G+ iJa=mp (2.1b)

a
where the velocity is
W=V (2.2)

The exponential solution g=xe*, ¢=Axe", introduced into the homogenous form of
the differential equation (2.1), gives the quadratic eigenvalue problem

1 0| |2n0 o’ ||| 4
A + =0 > (Am+k)x=0 2.3
o oo G ||a)e - m e
\ / ——
m k X

The two complex conjugate eigenvalues (77 <<1, subcritical damped system) are:
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Ay, =—no*|(no) —w® =—no+ioyl-n* =, i (2.4)
T
where  w=+/( f+(1 ) . n=—%, wp = o1-1° (2.5)

The two corresponding complex conjugate eigenvectors ¢, , , at first normalized relative
to the mass matrix

X 1 A Fik
k = K = ' I ’ k:1)2 (26)
Y Pamx, -0’ +(=4, £i4, ) { 1 } ( )

are combined into a modal matrix:

¢:[¢l ¢2] (2.7)
Due to normalization Eq. (2.6) the orthogonality relationships can be derived:
1 0 10 10 10
Tm — T — PEN -T —1: 28
P Mp=¢ {0 _wz}(p {0 J @ {0 1}0 0 _wz} (2.8)
2new o -4 0 =4 0] ., |2ne0 ?
Tk _ T _ T 1_ 29
¢ ko co[wz 0}0 {0 _ﬂz}—w[o 4|7 LOZ 0 (2.9)

The inverse of the complex modal matrix ¢(w,7) can be expressed analytically using
computer algebra software:

(_Zl_izz) P_iQ

o (2.10)
2NI=n"1(Cz +iz,) P+iQ
where
Z, = J1-7? + (-1 Z, = \1-7* - (1-7) (2.11a)
P= a)( 1-n°Z, —7721) Q= a)(,/l—yf Z, +7722) (2.11b)

2.2 The damped multi-degree-of-freedom-system

The equations of motion (1.1) of damped MDOFS (n DOF) will be written in the state-
space form:

M W| [D KI|[W] [p(t)
+ = ; V=W (2.12a)
-K||V] |K \Y;
—_— ——
Mg o) Kg Q P

M;Q+KsQ=P, (2.12b)
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where Mg and Kg are, respectively the (2n x 2n) symmetric generalized mass and the gener-
alized stiffness matrices. The symmetric damping matrix D is non-negative and represents a
non-proportional damping.

The exponential solution (1.2), substituted into the homogenous form of Eq.(2.12), leads to
the 2n-dimensional eigenvalue problem
AX
(AMg +Kg) =0 (2.13)
X
The solution of Eq. (2.13) is given by n complex conjugate eigenpairs (1.4), now written in

the form:

. ) ) ) x() . _ _ - () G
AV =20 +ia? —{l }; A =20 i —>F)_(()§ } (j=12..n) (2.14)

Each j™ eigenvector-pair X7, x" is normalized (index (j) omitted) relative to the general
mass matrix M :

X _ . [1X [ AX]
D= — =P _+i®,, A+iB= Mg (2.15a)
A+iB | X | X
J— —— ——T e
. =@ -i®,, A-iB= AX Mg AX (2.15b)
A-iB | X | | X ]

Subject to the normalization (2.15) follow the orthogonality relationships —expressed in
terms of the j™ eigenvector-pair (index (j) omitted):

— _ T ~ _—
® 10| [M ® i0]| [1
A0 24 10 20| (216)
o o) -K|lo o 1
Mg
— - T ~ _
D K -2
w0 78[[0 Klae 78] [-4 o)
o @ | K ® @ -2
KG

The (2n x 2n) complex square modal matrix, denoted by @ , is made up of the n eigen-

vector-pairs, see Eqn.(2.15):

-0 =@ —(n) —(n)
oY 17 oe v o A0 T @

D, = (2.18)
o® " U 10 "

The orthogonality properties — see Eq. (2.16), (2.17), are used to perform a modal decom-
position of the equations of motion (2.12):

@L{M }DGA + @L{D K}QGA = mg{p(t)} (2.19)
-K K

E diag{—ﬂ“)}

where
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W
{v} @, -A=®,-[a®b® ... a®pO] (2.20)

is a coordinate transformation, and a'’ b(') are new complex variables.
Introducing real modal coordinates x| y'¥) for each j" eigenpair, i.e.:
a(J) X(J)
]
_ ((D(J)) 1 (2.21)

b y
the differential equations (2.19) can be transformed in pairs into the real form of SDOFS-
equation (index (j) omitted), regarding Egs.(2.8), (2.9) and using (2.5):

T{l 0} . x .\ -2 o} . ._x_ 4| A®Tp()
o1 Tyl T % 1o -2]? Tyl T 7 |20 p)

1 0 x| _27760 w® x| B g(t)

[o —wz} iK1 } ly] {h(t)} 222

For each eigenvalue pair A = A0 +iiD the matrix [¢(w,7)]" of the corresponding
SDOFS can be computed by Egs. (2.4),(2.5),(2.10), (2.11).
2.3 The real modal transformation basis

Using both transformations (2.19) and (2.22), the equations of motion (2.12) will be un-
coupled into n real SDOFS block equations as follows:

[*1] ]
y
yr- M 7| [D K] Y -|--1~|= YT-[p] (2.23)

1 l ‘ 211 wq w1 [an g1
-wi -w? !fb hl

X
2Np wn wrzl [gz

—wn w? 0

The new (2n x 2n) transformation basis Y is defined by combination of two complex
transformations (2.19), (2.22):

]
(@) y
W ! .
-, Jo|=@g W X=Y X (2.24)
v m YL e
@) x| ¥
pt _yn_

X
It can be shown that the Y -matrix in Eq. (2.24) and all ,,Joad“-vectors [g(t) h(t)]T, see
Eq.(2.22), are purely real. After component multiplication of the analytically expressed terms
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of @, and of w-1 all imaginary parts cancel each other, see details in [4]. This is briefly
sketched below by developing the two columns of 'Y , belonging to the j™ eigenvector-pair:

)L
_ . (¢(J)) (2.25)
(i)

‘ YOV YV o @

®g

With regard to Eq. (2.5), (2.10), (2.11) the multiplication

(A +iz) (@, +iw,) (4 -iz)®, -i®)] 1 [(-Z,-iZ,) P-iQ (2.26)
{ T D -0, ]21—;72[(—21“22) P+iQ} |

(q,(j)yl

leads to purely real components of the two columns of the transformation basis Y :

1

K ﬁ{(wD Z, +77a)zl)q)r +(wD Z, _na)ZZ)(I)i}
-

1

YW = (a)z Zlq)r_w2 Z, (I)i)
y \/1_7 (2.27a-d)
v - 1 (ze+z,0)
w/1—772
vV o o= #{(wD Z,-n0wZ,)®, +(0,Z,+noZ,)®,}

In the same manner we develop the “load”-vector in Eq. (2.22)

g(t) (-Z lZ) (-7, + iZy)] [Ar + i) (@F + i)

[h(t)] 2 [ 17 L P1+ 0 2 ] G~ (@ — i(DiT)] p(t) (2.28)
90 = 72 (2 T=72 + 2in) @l + (22/T=7 = Zom)@} p(® (2.29a)
h(t) = \/1&)_—,, {ziof -z, @} p(D) (2.29b)

Each jth SDOFS block equation in (2.23) can be easily solved, eliminating the modal coor-
dinate XV to obtain the usual form of the SDOFS equation of motion (index (j) omitted):

X = y+i2h(t) (2.30a)
w

J+2noy+a’y = g(t)— h(t)——h(t) (2.30b)
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The dynamic response y“)(t) can be obtained by step-by-step integration, applied to Egs.
(2.30b,a). The final time response of the original n DOFs is calculated by superposition of the
modal coordinates x'/) , yin accordance to Eq. (2.24).

The major advantage of the suggested method is the developed new modal transformation
matrix Y, see (2.24), in real space for damped MDOFS with symmetric non-diagonalisable
(i.e. non-modal) damping matrix. The method has also the usual modal superposition ad-
vantage - an uncompleted transformation employing only a few modes (k<<n) in the Y -basis
leads with sufficient numerical accuracy - after the final back coordinate transformation - to
the dynamic response of all n DOF.

3 THE PROPORTIONAL DAMPED SYSTEM

3.1 Modal transformation of the equations of motion

A simple method to construct a damping matrix D,,, presenting a proportional damping, is
the Rayleigh damping assumption:

D, = (aM+ [ K) (3.1a)
where a, 8 : unknown weighting parameter, see Eq.(3.7),(3.8a,b)
The modal damping matrix is a particular case of a more general proportional damping as-
sumption, see [7] p.105, in the form:
D, = Xio oM (MTK)* ! (3.1b)
The matrix (3.1b) turns forn = 2 to D, = a;M + a,K, which is the Rayleigh approach
(3.1a).
The eigenvalue problem
(¥M+K)X; =0, (3.2)
corresponding to the equations of motion of MDOFS without damping

MV + KV = p(t), (3.3)

has the solution: Aj =iwy; withthe free frequency wy;
X;, (j=12--,n) realeigenvectors

The modal matrix U, belonging to (3.2)
U=[U; U - Uy (3.4)

comprises n real, mass normalized eigenvectors

U =—— (G=12-,n). (3.5)
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The mass normalisation (3.5) leads to the orthogonality relationships

1
UTMU = 1 (3.62)
1
[w51 ]
2
UTKU = @o2 =0 (3.6h)
| w(z,nJ
The Rayleigh damping matrix D, can be diagonalized applying (3.6a,b) to (3.1a):
[« + Bwi 1 [2M o1
oo i | .
uTD,U = | = 37)
| a+ ,ngnJ 21, Won

The general form of the D, matrix (3.1b) can also be transformed in diagonal form by use
of the real modal matrix U, as shown in [7] p. 105.

The terms in the main diagonal of the right side of (3.7) are set to be equal to the modal
damping term 2nw, of the equation of motion for SDOFS (2.1). The two unknown parameter
a and B can be calculated by solving a system of two equations « +,8w§j = 21 wy; ,
(J = 1,2), using the first two lowest free frequencies w,; and by arbitrary choose of two ap-
propriate damping ratios 7; :

2w01wo2(Wo17M2= Wo271)

2 2
Wp1—~Wo2

B = 2(wo1M1~ Wo2M2) (3.8a,b)

2 2
Wp1—~Wo2

Typically for the viscous damping is evidently the frequency related damping parameters.
Below the parameter « and 8 are set to be known. In the general case (3.1b) the unknown
coefficients ay are to be determined by solving a system of n linear equation, see [7] for de-
tails.

We consider now the proportionally damped system (1.1) with D = D,,. Assuming the so-
lution (1.2), the associated quadratic eigenvalue problem (1.3) gives

AM® + 2 (@aM+BK) & +K®; =0 (3.9)
DP

The mass normalized eigenvectors @; in Eq. (3.9) are generally complex conjugate, see
Eg. (2.13) — (2.15). But the eigenvalue problem (3.9) possess also “classical” real
eigenmodes, identical to the eigenmodes U;, belonging to the eigenvalue problem without
damping, see Eq. (3.2) — (3.5).

Using the U; eigenmodes instead of ®;, the eigenvalue problem (3.9) can be transformed,
with regard to (3.6), (3.7), to
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EM+ 4 (a +poi; )M+ wj;M; U; =0 (3.11a)
D, K

The corresponding complex eigenvalue 4; is then computed from
A+ L +Bwh; )+ 0l =0

1 1 2
= App= —5(a +Bwg;) + jz(“ +Bwy;) —wf; =

27]]'(1)0]'

= Ajip = TN T iw; /1 —n3 (3.11b)

)'T' ~——————

Ai
By comparing (3.11b) to (1.7) is evidently, that the free frequency w, computed according
to (2.4), (2.5)

W = /A% + 27 = {(nw)z + (wy1 - nZ)Z}% (3.11¢c)

by use of the j conjugate complex eigenvalues A; of the proportional damped system, is iden-
tic to the free frequency wy; of the corresponding system without damping. With the eigen-
value 4;, Eq.(3.11b), the relationship (3.11a) proves that U; is a eigenvector of the
proportional damped system (3.9).

In the considered case the equations of motion (1.1) can be transformed in modal space —
Eq. (3.12), with regard to (3.6), (3.7):

U'MUy +U'D,Uy + U'KUy = U"p(t) , (3.12)

In (3.12) the modal superposition of the original DOF is supposed by use of the “classical”
modal matrix U of the undamped problem, see Eq.(3.4), :

B4t
Y2
V=[U; U, - Uy]-|"7|=U-y (3.13)

Yn

In order to transform the state space form of the equations of motion (2.12) we construct a
(2n x2n) transformation matrix Yy by the mass normalized eigenvectors U; (3.4), (3.5) in the
form

Yy

Ul 0 Uz 0 ce Un 0 ]
o U (3.14)

~lo U, 0 U,

EQ. (2.12) can be transformed into n uncoupled real SDOFS block equations by the aid of
Yy, with regard to Egs. (3.6), (3.7):
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rll ;
V1 [}’1]
D K
vy [M IR TR R ) [Kp ] Yo c|v|=vi[?] (3.15)
1 [?nJ 2 w; @2 Xn g1
[ -} l In [ -w? ; l I [?
| 1 | In
l i) |[ P wj} ‘o'
where the modal velocity is

Equation (3.15) is another form of the modal decomposition (3.12). Note the difference of

Eq. (3.16) from EQq.(2.30a) in the general case of non-proportional damping, see further Eq.
3.17).
( Wza compare now the transformed equations (3.15) for the case of proportional damping
with the general form (2.23) where D = D,,. For both of the compared SDOFS block equa-
tions to be identic, it is evidently that each “load” term h; from (2.23) must be equal to zero,
see (2.29b):

2

w

h =
1-n2

{zZzoI -z, ®f}p=0 (3.17)

All terms in Eq. (3.17) exclusive of p belong to the considered j™ eigenmode. Thus, with
regard to (2.11a), (2.5)

(z,@f-z,@f)=0

Qigg 2z NIV n g (3.18)

Do (k) Z2 \/\/1_—112_(1_112) 1_\/1_772

for all k™ DOF of the j™ eigenmode pair (@, + i®;) with corresponding eigenvalue

(A4, £ i4;). Equation (3.18) proves the statement of a constant phase lag/lead, see Eq. (1.10),
i.e. in the case of proportionally damped system each free vibration is a synchronous motion
of all DOF.

3.2 The transformation matrix Y

The modal equations (3.15) demonstrate, that for the investigated case of proportional
damping the modal transformation matrix Yy, Eq. (3.14), must be identical to the matrix Y,
Eq. (2.23), (2.24), derived for the case D = D,, . By comparing the two columns of Y, see Eq.
(2.27b,c), to the corresponding zero-columns of Yy, it follows

1
1-n2

1
YY = ﬁ(—zlcbr +Z,®) =0 (3.19b)

Y = (W2Z,®, — w?Z,®;) =0 (3.19a)
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> —Z,®. +Z,®, =0 (3.20)

The relationship (3.20) leads again to y = ? = const. (Eq.(3.18)) for all k™ DOF of

r(k)
the considered eigenmode.

Thus the modal transformation matrix Y, see Eq. (2.25) and (3.14), has in this case the
form

~.

(v U
0 Y

~.

4 NUMERICAL EXAMPLE

4.1 Structural system, stiffness and geometry data

¥ 10
//
71
| ]
//
| ]
el e 7 ,
LN | ]
o~ ot 17
x
0] | |
//
4%
// ]VZ
m__ ) ’/
O‘ e .> y

Fig. 1  Rotor blade beam model subjected to wind loads

The stiffness data of the blade cross sections have been calculated in [14]. The generic aero-
dynamic blade geometry has been derived from real blade data. Below are given for instance
the stiffness data, referred to the origin of the coordinate system of the cross section, at the
distance of 2.0 m from the blade root — see Fig. 2:

Center of mass F (0.124, -0.0119) [m] distributed mass 73.835 [kg/m]
EA =947410000.0 [N] (axial stiffness)

EA, =86101990.0 [Nm] EA, =-4408355.0 [Nm]

EA,, = 48655550.0 [Nm’] EA,, = 16441220.0 [Nm°]

EA,, = 281046.0 [Nm’] Glr =6500099.0 [Nm?] (torsional stiffness)
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The finite element solution is based on the numerical integration of the system of differen-
tial equations for the Bernoulli-beam. The reference axis of the beam model coincides with
the centre of the circular-section at the root — it is the real rotational axis of the rotor blade.
Thereby the differential equations and all cross section stiffness data are refered to this axis,
accounting for the eccentric mass application.

ZKoordinate

Fig. 2 Rotor blade sections at 2.0 m — thin wall cross section model

4.2 Wind loads

The wind loads are calculated according to the formula for the aerodynamic lift force per
unit length of an aerofoil, see [13] p.59:

L =%p- c(r) -w? ¢, (4.1)

where: w . air velocity relative to the aerofoil
p : air density = 1.225 [kg/m?]
c(r) :chord of the aerofoil
¢, :lift coefficient ¢, = 2m a = 21 (% 6.0) = 0.658,
the flow angle « is assumed to be 6.0 [deg]

The air velocity W is the vector sum of the rotational speed Q (with assumed 60 rpm) and
the wind speed wu, incident on the aerofoil in accordance with the Betz-theory:

2
W = J(Q r)? + G u) where Q = (%n) in [rad/s] (4.2)
The wind speed function is assumed to be
u(t) = 16.0 + 8.0 sin(2mft), where f =1[Hz] (4.3)

The resulting wind thrust loads per unit length along the x-axis of the rotor blade are given
below. In the structural model the wind thrust loads are acting as summarized nodal forces.
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r c wind thrust F(t)
[m] [m] [N/m]
011 0

0.5 1.1 0.440881 (5.33333 sin(6.28319 1) =+ 10.6667)% = 4.35132

2.0 1.25 0.501001 (5.33333 sin{6.28319 1) = 10.6667)° = 79.115

(=]

3.5 1.15 0.460921 (5.33333 sin(6.28319 1) = 10.6667)7 = 222.906
5.0 1.05 0.420841 (5.33333 sin(6.28319 1) = 10.6667)% = 415.354
6.5 0.95 0.380761 (5.33333 sin(6.28319 1) = 10.6667)7 + 635.095

-

8.0 0.85 0340681 (5.33333 sin(6.28319 1) + 10.6667)~ + 860.771

-

9.5 0.75 0300601 (533333 sin(6.28319 1) + 10.6667)° + 1071.02

-

11.0 0.65 0.260521 (533333 sin(6.28319 1) + 10.6667)° + 1244 48

12,5 0,55 0.220441 (533333 sin(6.28319 1) + 1[}_666?}2 + 135579

The wind thrust functions F(t) are acting on the rotor blade as shown in Fig. 3 for 10 sec.

Wind thrust at 12.5 m

F(t) = 0.2204 [5.333 sin(2rft) + 10.6667]2 + 1359.79

1400 -
1390
—F(t
7F©
1380 -
1370 1 - 1
t t t t t t t t t H—
0 1 2 3 4 5 6 7 8 9 10
time [s]

Fig. 3 Wind thrust function at 12.5 m

4.3 Relationships and data for the damping approach
Starting point of the computation are the equations of motion
M 0 ' D K||W P(t
V.V + = ®) (4.4)
0 -K||V K 0}V 0
where P(t) is the nodal force vector, representing the wind thrust according to Sec. 4.2.

The system equations (4.4) will be solved applying the proposed modal analysis method in
Sec. 2 for two cases: non-proportional and proportional damping.

The lowest four free-vibration frequencies and associated periods for the undamped system
are calculated to
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fi =2.643 [s71] T, = 0.378 [s]

fo =4.622 [s71] T, = 0.216 [s] (4.5)
f3 =7.942 [s71] T; = 0.126 [s] '
fo = 16.650 [s71] T, = 0.060 [s]

Assuming stiffness proportional damping in accordance with Eq.(3.1), the damping system
matrix is

D, =K (4.6)
With an assumed damping ratio n = 0.008, see [13] p.249, for the first natural period T,,
we obtain with regard to Eq.(3.8a,b)

g =22="1 = 0.000964[s] (4.7)

w1 Y

The non-proportional symmetric damping matrix Dy, is build adding to the D,-matrix a
new matrix D,, which represents the aerodynamic damping. The formulation is based on a

simple expression for the aerodynamic damping coefficient per unit length c(r), given in [13],
p. 247:

C(T) — %,0 - Qr - C(T) . acL [k_gl , where % =21 (48)

da s m

With Eq. (4.1), (4.2), the corresponding damping coefficients along the x-axis of the rotor
blade are calculated to

r ¢ c(r)
[m] [m]  [kg/s.m]

0 11 0

1.1 13.2993
60.4513
97.3266
126.948
149315
164 428
172 286
172,891
166.241/

ot

LN R UL T e LN e LWL

WO Oy L L e O

[ e e }
LA Oy =] 00 N D

L b LA LA L LA LA LA

—
P =
i

fo]

The coefficients c¢(r) , which represent the aerodynamic damping, are active for vibration
in z-direction of the cross-section coordinate system, see Fig. 2. The associate symmetric
damping matrix for the Bernoulli-beam element is derived by analogy with the method used
to derive the finite element mass matrix, see [15]. Finally the symmetric system damping ma-
trix, Dyp, is assembled in a finite-element manner, including structural (proportional) and aer-
odynamic damping:

D,, =D, + D, (4.9)
4.4 Non-proportional damped system

We use here the matrix D, — Eq.(4.9). The vector of the first ten complex conjugate ei-
genvalue pairs of the matrix A=M¢ -K, see Eq.(2.13), is
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" —0.40981 +29.0336
—0.40981 —29.0336 1
— 543041 + 1052191
— 543041 - 1052191
— 536181 +15.7652 1
— 5356181 —15.7652 1
—6.33469 + 492454 1
—6.33469 — 492454 1
—9.53814 + 104.542 1
—9.53814 — 104.542 1
—20.7608 + 185.185 1
—20.7608 — 185.185 1
—22.1068 + 207402 1
—22.1068 — 207402 1
—27.8796 + 238911
—27.8796 238911
—45.8047 +292.379 1
—45.8047 —292.3791
—63.5216 +353.962 1

 —63.5216 - 353.962 1

(4.10)

The number of modes considered in the modal transformation is limited to the first four ei-

genvector pairs — this are in ascending order the #3, 1, 4, 5 of the vector in (4.10). The struc-

tural system has in Fig. 1 has 54 DOF. The corresponding (108x8) modal matrix ®¢ with

mass normalized eigenvectors — Eq.(2.18), is computed to (only the first ten rows are printed)

157107+ 11107

1981074130107

20ta707f 207t -1271074
00084122107 0008-1221075

23610702007 2561070272007

L7107 112071 -6.12107 - 146107 ~6.12107 + 14610785 -528 107 - 1121071 -528 107+ 10210775 241 107+ 1301077 240107 - 130 1077
1981070 -13910771 -782107 - 185107 782107 - 18510751 6651078 - 14110771 -665 108+ 14110771 -3.03 10 F - 1671077 -3.03 107 - 167 107
4341075133101 4341071331071 - 1981076 -665107%1 - 1982078 +665 1071 61106+ 175107%5
10753007 13007503007 34107853007 —30400F 530078 7107870 07TE 7411077870007 —a2 0t -1 a0t —s a0t 12 078
—1i0t 5407 07524007 77407t 258 107 T 028107 —242107 69107 2421074691070 781070 +646107% 78107 6461075
7851070 +5520071 7851070 -552007 5051070723107 ~305 10772310780 2831077 - 55910771 - 2631077 55910776 - 1301077 65610771 - 1311077 656 1077
~67107-820107%1 -67107+820 107 11107428107 —11107 4281078 276107 433 007% 276107 -353 1074
~0.00609- 12610741 ~000609+126 1071 ~276107 ~188 1071 27610+ 188 1071 566107 +186 1071 566107186107
S13107H 00031 - 134107000031 0.00133 + 366 107

5510702271070 585107 -2270078 —7nn07 23007t - 1T 10T e 230107 33107 38 10

611076 -175107%% -199107 - 16710785 - 199107 + 167 1075

000133-366107 1 -000386-282107  -0.00386 2821071

3300738810700 3571070 -53 10771 -357107F 453 1077

(4.11)

The matrix ¥~ is now calculated in the case of four involved eigenmodes according to Eq.

(2.24):

(v@)"

(@)

()

(p®) ]
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" —0.717706 —0.122888 1 —2.05439 — 11.9983 1 0 ] 0 o o 0
—0.717706 = 0.122888 1 —2.05439 - 11.9983 1 0 o u] o 1] u]
0 0 —0.707124 — 0.0049903 i —0.1449 —20.5324 { 0 0 0 0
] 0 —0.707124 = 0.0049903 i —0.1449 = 205324 1 0 ] 0 0
] 0 0 ] —0.708562 —0.0453861 —2.25347 — 3518091 0
o 1] 0 o —0.708562 +0.0453861 —2.25347 = 351809 0 1]
0 0 0 0 0 0 —0.707841 —0.0322241 —3.38274 —74.3061 i
] V] 0 o V] ] —0.707841 = 0.0322241 — 338274 + 74 3061 1
(4.12)

Finally the (108x8) real transformation matrix Y is computed according to (2.24) — here
only the first ten rows:

/ ] —0.000002 —0.000022 ] ] 0.000008 0 —0.001258"
] —0.000002 —0.000028 ] ] 0.000012 ] —0.001609
—0.000008 0.000017 —0.000001 0.000005  0.000028 —0.000027 —0.000067 0.000011
—0.000001  0.000018 0 0.000002  0.000011 -0.00004% —0.000053 0.000259
Y = 0.000033 -0.000060 0.000002 -0.000021 -0.00011 0.000103 0.00023% -0.000027
] —0.000012 —0.000111 ] ] 0.000047  0.000001 —0.00628

0.00001> —-0.000058 —0.000257 —0.000009 —0.00003% 0.000124  0.00008 —0.013754

0.000035 -0.000337 -0.00255 -0.00002 -0000079 0.001052 0.000202 -0.125274
—0.001819 0003317 -—0.000036 0.001111 0.005438 —0.002459 —0.011388 —0.001937
\ —0.000038 0.000796 —0.000008 0.000091 0.000501 -0.002123 -0.002276 0.011014 )

(4.13)

After the modal transformation in regard to (2.23) the time-dependent “load” vector (here

for the time 0...5 sec) is calculated to be, see also Fig. 3,

" —0.1878 (5.333 sin(6.283 £) = 10.67)% —690.3

0.02234 (5.333 sin(6.283 1) + 10.67)% — 165.7
[Zl (t)] —0.003661 (5.333 sin(6.283 1) + 10.67)° — 14.86
1(t) —yT. [p] _ 0.07117 (5.333 sin(6.283 1) + 10.67)° + 2279 (4.14)
gs(t) 0.04344 (5.333 sin(6.283 1) + 10.67)% —212.1
hs(t) 1.025 (5.333 sin(6.283 1) + 10.67) + 3882.0
—0.06672 (5.333 sin(6.283 1) + 10.67)° — 114.6

_ 1871.0 - 0.01053 (5.333 sin(6.283 1) + 10.67)°

The resultant four uncoupled SDOFS block equations from type of Eq. (2.23), prepared in
the form (2.30a,b), are solved by step-by-step integration:

[1 1 [xl] 2n 0, i X1 91
| ot | 1] | —wi O [}’1] [h1]
| e I o o] [ [
~wl bl | oz 0] bal Inl
X X
(4.15)
where [w;] = (16.7175 29.0365 49.6511 104.976 )

[;] = (0332693 0.0141136 0.127584 0.0908603 ) (4.16a,b)
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The effect of the implied additional aerodynamic damping results evidently in the large
damping ratio n; = 0.33269 for the first free vibration.
The vibration-response has been determined in the time 0...10 s, the time step length for the
applied Newmark integration method is 0.005 s.

The time response of the modal coordinates y,(t), (j=1...4), are shown in the following
figure 4 for the time 0...5 sec:

y1(t) y2(t)
time [s] Lo 7 g < time!s]
5 <2
Y o‘ : 1. ? ; 4 = Y 000 i -
14 0,01
5 .02t
-0.03 1 - L
34
y3(t) yA(t)
Ao 1 2 3 4 tmg el time [5]
Y 000 H s

-0.005

) -0.010

?— Y 0.000 Ao
|
|
\
|

‘ -0.015 g

-0.020
Fig. 4 Time response of the modal coordinates 'y i (t) for the case “non-proportional damping”

By a back transformation according to Eq. (2.24) the total response V(t) is obtained - see
Figs. ba-c:

V2(t)- vibration (edgewise direction)

time [s]

(M1 500 Ao fat ? ? 5. s
\

| ! | —
T T T -

-0.005

-0.006

-0.007 11

-0.008

-0.009

-0.010 -~

Fig.5a Total vibration uz(t) [m] at the rotor blade tip (y-direction at node #10)
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V3(t)- vibration (flapwise direction)

LR A

AU
il ]

0.45 -
0 1 2 3 B 5 6 7 8 9 10
time [s]

Fig.5b  Total vibration u3(t) [m] at the rotor blade tip (z-direction at node #10)

Phi2(t)- flapwise bending

time [s]
o 1 2 3 4 5 6 7 8 9 10

rad] 4 5, ‘

-0.094 h A A AA

M Vs

W

-0.100

Fig.5c Total rotation ¢2(t) [rad] at the rotor blade tip (y-axis at node #10)

Phi1(t) - torsion
[rad] A

0.0094

0.0092 /\ /\ /\ /\
0.0090

0.0088 /

0.0088

Ham—
0 1 2 3 4 S 6 7 8 9 10

time [s]

Fig.5d Total torsional rotation gol(t) [rad] at the rotor blade tip (x-axis at node #10)
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The vibration responses, computed by direct step-by-step integration of the equations (4.4),
are practically identical to those in Fig. 5a-d.

4.5 Proportional damped system

In this case we use the derived symmetric damping matrix D, — Eq.(4.6), (4.7). The first

ten lowest complex conjugate eigenvalue pairs, resulting from Eqg. (2.13), are now:

" —0.132832 + 16.6035 1"
—0.132832 - 16.6035 1
—0.406268 +29.0352
—0.406268 —29.0352 1
—1.19966 + 49.8844 i
—1.19966 —49.8844 i
—5.27314 + 104.483
—5.27314 - 104.483 i
—5.39463 + 105.676 1
—5.39463 — 105.676 1 (4'17)
—16.7361 + 185.622 1
—16.7361 — 185.622
—20.9751 +207.591
—20.9751 —207.591

—27.8753 +238.911
—27.8753 238911
—42.2056 +292.945 1
—-292.945

The corresponding (108x8) ®; modal matrix — Eq. (2.18), comprises the first four mass
normalized complex conjugate eigenvector pairs. In order to verify the derived relationship

D; . . .
q)‘(") =7 Z — = const., see (3.14), we compute this ratio for all components of the in-
r(k) - -

volved (@, + i®,)P (j = 1,..4) eigenvectors (for instance the first ten rows only):

"250.0 143.0
250.0 143.0
250.0 143.0
250.0 143.0
250.0 143.0
250.0 143.0
250.0 143.0
250.0 143.0
250.0 143.0
.250.0 143.0

The corresponding damping ratios 7; , see Eq. (4.21b), are computed in accordance with Eg.
(2.5).

The next step is the computation of the matrix ¥~ , Eq. (2.24). The (108x8) real trans-
formation matrix Y, computed in regard with Eq. (2.24), (2.27), has now the form of (3.21):

250.0° ,
(‘s?_f] =—1_  (j=1,..4) (4.18)
J 1

O D O O G0 GO G D
G G G G 03 05 L0 L3 05 0
b bt b b b b b b b o
4l el el = e e ] e ]

Lt L L Lad Lad Ll L sd L L)
D AD AD AD D D D ND AD ND

0 0 —0.000022 0 0 0 0.000023 0

0 0 —0.000028 O 0 0 0.000068 0O
—0.00000% 0 —0.000001 O 0000028 0 -—0.00005 O
—0.000002 O 0 0 0000011 O —0.000038 O
0000035 0 0.000003 0O -—-0.00011 O O0.0001%5 O

Y= 0.000001 0 —0.000111 O 0 0 0.000265 0 (419)

0.000017 0 —0.000297 0 —0.00003% 0 0.000042 0
0.000053 0 —0.002545% 0 —0.000082 0 0.005423 O
—0.001%35 0 —0.000051 O 0.005447 0 —0.008771 0

. — 0.000065
In (4.19) are printed again only the first ten rows of Y.

0 —0.00001 O 0.0004%% 0 —0.001632 0,
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now (here for the time 0...5 sec) - see also Eq. (3.15) and (4.12):

0
[91 (t)] )
- 24 (5 n(6.283 1) ~ 32
hy(t) 0.004824 (5.333 sin(6.283 1) = 10.67)% - 18.84
s —_— D
0.03913 (5.333 sin(6.283 1) = 10.67)2 = 227.6
ga(t)
ha(t) X
4 —0.052 (5.333 sin(6.283 1) + 10.67)% — 94.4

The time-dependent “load” vector in the general modal transformed equations (2.23) is

" —0.1872(5.333 5in(6.283 1) + 10.67)° — 678.6

0

(4.20)

Eq. (4.20) implies x; = y;, see Eq.(3.15), (3.16), contrary to the general case Eq.(2.30a).

In the resultant four uncoupled SDOFS block equations, see (4.15), the free frequencies

and the modal damping ratios are resp.

[w;] =

[n:] =

modal coordinates x;(t), y;(t), (j=1..4), are obtained — Fig. 6:

[ 16.604 290381 498988 104.616 )
( 0.008 0.0139%09 0.0240418 0.0504049 )

(4.21a,b)

After step-by-step integration of the four modal equations (4.15), the time series of the

yi(t)

time [s]
5

-

A

y3(t)
Ao 1 2 3 times[s]
f i I f
M |
]
|

Y 0.00

time [s]
3

-0.01 - n

-0.02 11

-0.03 1

o !

0

y o.ooo‘

H—

time [s]
5

—

-0.002

-0.004

-0.006

-0.008

-0.010

-0.012

-0.014

-0.018

Fig. 6 Time response of the modal coordinates Yy j (t) for the case “proportional damping”
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The total responses V(t) are computed by a back transformation according to Eq. (2.24) — see
Figs. 7a-d:

V2(t)- vibration (edgewise direction)

™ 008
0.004
0.002 }
0.000 0

-0.002
-0.004
-0.006
-0.008

-0.010 \
-0.012
-0.014
-0.016
-0.018

cv

1
ipg [s]

[ —
——

——
—
=
-
-
-

Fig 7a - Total vibration u, (t) [m] at the rotor blade tip (y-direction at node #10)

V3(t)- vibration (flapwise direction)

|

m A
0.8 H n

. I

I

e |
cﬁ_b
CR‘D

[ Se—

0TI AR L A

02 i V
"3 H1 SRR NN W R W o
time [s]

Fig 7b - Total vibration u, (t) [m] at the rotor blade tip (z-direction at node #10)

Phi1(t)- torsion

| JTmTeTIy v
AL

Fig 7c - Total torsion (pl(t) [rad] at the rotor blade tip (x-direction at node #10)
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Phi2(t)- flapwise bending

; time [s]
Bl ht i =0 8 8 B & 8 B Gs

-0.02 1
-0.04

-0.06

-0.08 1

-0.10 1

-0.12 1

-0.14 1

-0.16

-0.18 1

Fig 7d - Total rotation qu(t) [rad] at the rotor blade tip (y-axis at node #10)

CONCLUSIONS

A general modal decomposition method of MDOFS with non-proportional damping is
briefly presented in Sec. 2. The procedure is based on the complex eigenvalue solution of
a structural model with symmetric non-proportional damping matrix. By use of the right
complex conjugate eigenvector pairs, normalized relative to the general mass matrix, a
new real transformation matrix Y, see Eq. (2.24), (2.27), is developed analytically to per-
form a modal decomposition of the equations of motion in real arithmetic. The complex
conjugate eigenpairs — eigenvalues and the corresponding eigenvectors — are to be com-
puted first, at least for the lowest few modal shapes.

The equations of motion are transformed into uncoupled SDOFS block equations. Em-
ploying only a few (K) eigenvector pairs in the Y -basis (k<<n) is leading — typical for a
modal transformation procedure — with sufficient numerical accuracy to the total time re-
sponse of all n DOF. The modal equations are numerically integrated and finally trans-
formed back to the original DOF. In more details the method has been described in [3],
and in [4] has been developed a similar method, based on the right and left eigenvector
pairs.

The application of the suggested method to the special case of proportional damped sys-

tem is considered in details in Sec. 3. Employing a Rayleigh damping matrix, it has been
shown that the modal transformation from Sec. 2 implies a ratio z"—(("k)) = const. for all k"
DOF of each considered eigenmode (@, + i®;), i.e. the “constant phase” statement.
This proves in an indirect manner that the free vibrations in the proportional damping
case are synchronous. A simple formula for computing of the constant ratio has been also
derived, expressing it through the associated modal damping ratio 7.

In Section 4 a numerical example — vibration of a rotor blade with 54 DOF - demon-
strates the performance of the presented modal method for the two cases — non-
proportional and proportional (Rayleigh) damping. In the first variant the damping matrix
of the system contains a stiffness-proportional part and a simple approximated aerody-
namic damping part. In the second variant the formula for the constant phase of the reso-
nance modes is verified numerically.

Real life applications of the proposed modal analysis method and possible numerical
complications are discussed more widely in [4], [5]. The present paper studies some
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known features of proportionally damped systems — the synchronous free vibrations —

from a viewpoint of a new proposed modal analysis method.
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