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Abstract. The inclusion of damping in the equations of motion of FEM-based structural mod-

els yields a complex (quadratic) eigenvalue problem. In this paper is presented a variant of a 

general method [4], [5] for real-space modal transformation of damped multi-degree-of-

freedom-systems (MDOFS) with non-modal (non-proportional) symmetric damping matrix. 

The method is based on the conjugated complex right eigenvectors of the system, normalized 

relative to the general mass matrix. After state-space formulation of the equations of motion a 

real modal transformation matrix is built by a combination of two complex transformations, 

which is the main advantage of the presented method. Analytically expressions for the modal 

transformation basis are developed be the aid of computer algebra software (MATLAB).  

Applying the suggested method to the special case of proportionally damped system, an ana-

lytical expression for the constant phase lag of the free vibration modes has been derived. The 

conversion of the developed general real transformation matrix into the modal matrix of the 

undamped problem is analytically proved by taking into account the synchronous free oscilla-

tions in this special case. 

The derived formulas for the modal transformation basis contain the real and the imaginary 

parts of the eigenvectors and the associated eigenvalues.  

A numerical example – vibration of a rotor blade of a wind turbine - demonstrates the per-

formance of the presented modal decomposition method for the general case of non-

proportional damped system. The damping matrix of this example contains structural and 

aerodynamic damping. The initial computation of the complex eigensolution of the FEM 

beam model in the presented example and all subsequent computations are done by the aid of 

the Symbolic Math Toolbox of MATLAB. The suggested procedure can be applied in structur-

al systems containing different damping and energy-loss mechanism in various parts of the 

structure and also in structure-environment interaction problems, where a non-modal damp-

ing matrix is occurring. 

mailto:evgueni.stanoev@uni-rostock.de


E. Stanoev 

1 INTRODUCTION 

 

The modal decomposition of the equations of motion of multi-degree-of-freedom-systems 

(MDOFS) is usually applied to systems without damping. The associated eigenvalue problem 

has real eigenvectors and real free frequencies. The inclusion of damping in the equations of 

MDOFS leads to a quadratic eigenvalue problem with complex conjugate pairs of eigenvalues 

and eigenmodes. The modal decomposition of the equations has to be performed in complex 

space. Aiming to avoid the computation in complex arithmetic, a new modal decomposition 

method, presented in details in [2] – [5], is briefly outlined in Sec. 2. This procedure is based 

on a real modal transformation matrix, derived from the complex eigenvalue solution of a 

MDOFS with symmetric non-proportional (non-modal) damping matrix. 

 

In the suggested procedure the complex eigenvectors and eigenvalues of the structural 

model should be computed first. In the presented example in Sec. 4 – vibration of a rotor 

blade of a wind generator - computer algebra software was applied to solve the eigenvalue 

problem. In real life applications of the presented method to high dimensional problems it 

must be available a reliable eigenmode solver for large complex eigenvalue computations. 

There are many literature references for large scaled problems with various solution strategies, 

see [10] – [12]. The author has used an implicitly restarted Arnoldi/Lanczos method [11], [12] 

to solve the complex eigenvalue problem in an application of the method to a fluid-structure-

foundation interaction problem, see in [1],[2].  

 

Another topic of this paper is to show an analytical proof of the statement for the constant 

phase lag/lead of free vibrations in the proportional damping case – see the introduction in 

Sec. 1.2. The analytical proof in an indirect manner is based on the procedure, summarized in 

Sec. 2. A formula for computing of the constant ratio  
𝐼𝑚(𝐗)𝑘

𝑅𝑒(𝐗)𝑘
 has been derived in Sec. 3.1. 

  

In Sec. 4 the proposed modal analysis method, presented in Section 2, has been applied to 

a rotor blade beam structure with 54 DOF. The numerical example demonstrates the perfor-

mance of the method for the general case of non-proportional damping. In this case the damp-

ing matrix of the system contains a stiffness proportional (Rayleigh) damping and 

aerodynamic (non-proportional) damping parts. In the second variant of the solution – with 

proportional damping matrix, the formula for the constant phase of the resonance modes is 

verified numerically. 

1.1 Free vibrations of a viscously damped system 

The equations of motion of a damped MDOFS are 

 

            𝐌�̈� + 𝐃�̇� + 𝐊𝐕 = 𝐩(𝑡)                                                                     (1.1) 

 

where M, D and K are, respectively the (n x n) mass, damping and stiffness matrices, and V, 

V are the (n x 1) displacement and velocity vectors and p(t) is the (n x 1) excitation vector.  

 

In structural mechanics problems we consider the M and K matrices to be real, symmetric 

and positive definite, excluding the presence of rigid body modes.  The D matrix is assumed 

to be symmetric, non-negative, she presents a non-proportional damping.  
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With the assumed free vibration in the form     
tt ee  XVXV  , ,         (1.2) 

the associated quadratic eigenvalue problem is 

 

(𝜆𝑗
2 𝐌 + 𝜆𝑗𝐃 + 𝐊) 𝐗𝑗 = 𝟎  ∀ (𝑗 = 1,⋯ , 𝑛)     (1.3) 

 

In Eq. (1.3) the j
th

 eigenvalue 𝜆𝑗 and the corresponding eigenmode 𝐗𝑗 appear in complex 

conjugate pairs (index j omitted): 

 

𝜆 = 𝜆𝑟 + 𝑖𝜆𝑖  ,          𝜆 = 𝜆𝑟 − 𝑖𝜆𝑖                  (1.4a) 

𝐗 = 𝐗𝑟 + 𝑖𝐗𝑖 ,        𝐗 = 𝐗𝑟 − 𝑖𝐗𝑖                            (1.4b) 

 

The dynamic equilibrium of a viscously damped single oscillator is governed by 

 
𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑣(𝑡) = 𝑞(𝑡) resp.                 (1.5a) 

�̈�(𝑡) + 2𝜂𝜔�̇�(𝑡) + 𝜔2𝑣(𝑡) = 𝑝(𝑡)                 (1.5b) 

 

where    �̈�  is acceleration, 

  �̇�   - velocity, 

  𝜔 = √
𝑘

𝑚
 - free vibration frequency, 

  𝜂 =
𝑐

2𝑚𝜔
 - Lehr’s damping ratio and  𝑝(𝑡) =

𝑞(𝑡)

𝑚
. 

 

The exponential solution   𝑥 𝑒𝜆𝑡   , introduced into the homogenous form of the differential 

equation (1.5b), yields the eigenvalue problem 

𝜆2 + 2𝜂𝜔 𝜆 + 𝜔2 = 0                   (1.6) 

The eigenvalue solution (assuming that  𝜂 ≪ 1, subcritical damping) of Eq. (1.6) is a com-

plex conjugate pair: 

 ir ii

Dir










2

2/1 1                        (1.7) 

1.2 The constant phase lag problem 

Interpreting the eigenvalue pair (1.4a) as the single-oscillator-eigenvalues (1.7), we can 

express the j
th

 free vibration of the MDOFS as linear combination of the two complex conju-

gate eigenpairs (1.4a,b): 

 

𝐕 = 𝐗 𝑒𝜆𝑡 = 𝐗 𝑒(−𝜂𝜔±𝑖𝜔
√1−𝜂2)𝑡 = 

= 𝑒−𝜂𝜔𝑡[(𝐗𝑟 + 𝑖𝐗𝑖)(𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝑖 sin𝜔𝐷𝑡) + (𝐗𝑟 − 𝑖𝐗𝑖)(𝑐𝑜𝑠𝜔𝐷𝑡 − 𝑖 sin𝜔𝐷𝑡)] 
 

= 𝑒−𝜂𝜔𝑡 [
𝟐(𝐗𝑟 𝑐𝑜𝑠 𝜔𝐷𝑡 − 𝐗𝑖 sin𝜔𝐷𝑡) +

𝑖(𝐗𝑖 𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝐗𝑟 sin𝜔𝐷𝑡)  − 𝑖 (𝐗𝑖 𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝐗𝑟 sin𝜔𝐷𝑡)
] 
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= 𝑒−𝜂𝜔𝑡 [ 2𝐗𝑟⏟
𝐅 cos𝜑

𝑐𝑜𝑠 𝜔𝐷𝑡 − 2𝐗𝑖⏟
𝐅 sin𝜑

sin𝜔𝐷𝑡]       (1.8) 

 

The last relation leads to the real form of a damped free oscillation for every k
th

 DOF: 

 

𝑉𝑘 = 𝑒
−𝜂𝜔𝑡[𝐹𝑘 𝑐𝑜𝑠(𝜔𝐷𝑡 + 𝜑𝑘)]        (1.9) 

 

where  𝜑𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛
(𝑋𝑖)𝑘

(𝑋𝑟)𝑘
 : phase lag/lead for the k

th
 DOF            (1.10) 

 

Since the viscous damping is assumed to be non-proportional, the free vibration solution 

(1.9) represents non-synchronous damped oscillation (i.e. the phase 𝜑𝑘 is different for each 

DOF). In the case of proportionally damped system we have to deal with synchronous free 

oscillation – i.e. the phase 𝜑𝑘 is constant (the same for all DOF), for undamped systems 𝜑𝑘 is 

zero – see [6], [7], p.118.  

The features, showed in Eq.(1.9), (1.10) are well known and used in modal analysis, see 

for example [6]. In the present paper the statement of synchronous free oscillations in the pro-

portional damping case should be proved analytically in Sec. 3.1. 

 

2 MODAL DECOMPOSITION METHOD INCLUDING THE COMPLEX RIGHT 

EIGENVECTORS 

2.1 The single mass oscillator  

The equation of motion of a damped single degree of freedom system (SDOFS) (1.5b) can 

be written in the form 
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                        (2.1a) 

pqkqm              pmqkmq
1

a

1   
                                    (2.1b) 

where the velocity is 

vw                                            (2.2) 

The exponential solution  tt ee  xqxq  , , introduced into the homogenous form of 

the differential equation (2.1), gives the quadratic eigenvalue problem 
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xkm
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The two complex conjugate eigenvalues ( 1 , subcritical damped system) are:  
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222

2/1 1                      (2.4) 

where        22

ir   ,    



 r ,         21  D                     (2.5) 

The two corresponding complex conjugate eigenvectors  𝜑1/2 ,  at first normalized relative 

to the mass matrix 

 
 2,1,

1

1
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are combined into a modal matrix: 

  21                           (2.7) 

Due to normalization Eq. (2.6) the orthogonality relationships can be derived: 
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The inverse of the complex modal matrix   ,  can be expressed analytically using 

computer algebra software: 
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                     (2.10) 

 

where 

   22

2

22

1 1111   ZZ               (2.11a) 

 

   21

2

12

2 11 ZZQZZP                 (2.11b) 

 

2.2 The damped multi-degree-of-freedom-system 

The equations of motion (1.1) of damped MDOFS (n DOF) will be written in the state-

space form: 
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PQKQM GG   ,                          (2.12b) 
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where MG and KG are, respectively the (2n x 2n) symmetric generalized mass and the gener-

alized stiffness matrices. The symmetric damping matrix D is non-negative and represents a 

non-proportional damping. 

 

The exponential solution (1.2), substituted into the homogenous form of Eq.(2.12), leads to 

the 2n-dimensional eigenvalue problem 

  0

Χ

Χ

KM GG 





















                     (2.13) 

The solution of Eq. (2.13) is given by n complex conjugate eigenpairs (1.4), now written in 

the form: 
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Each j
th

 eigenvector-pair 
)()( ,

jj
ΧX  is normalized (index (j) omitted) relative to the general 

mass matrix GM : 
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Subject to the normalization (2.15) follow the orthogonality relationships –expressed in 

terms of the j
th

 eigenvector-pair (index (j) omitted): 
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The (2n x 2n) complex square modal matrix, denoted by GΦ , is made up of the n eigen-

vector-pairs, see Eqn.(2.15):  
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The orthogonality properties – see Eq. (2.16), (2.17), are used to perform a modal decom-

position of the equations of motion (2.12): 
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where  



E. Stanoev 
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               (2.20) 

 

is a coordinate transformation, and    jj ba ,  are new complex variables. 

Introducing real modal coordinates    jj yx ,  for each j
th

 eigenpair, i.e.: 
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the differential equations (2.19) can be transformed in pairs into the real form of SDOFS-

equation (index (j) omitted), regarding Eqs.(2.8), (2.9) and using (2.5): 
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For each eigenvalue pair )()()( j

i

j

r

j i   the matrix    1
,


  of the corresponding 

SDOFS can be computed by Eqs. (2.4),(2.5),(2.10), (2.11). 

2.3 The real modal transformation basis  

Using both transformations (2.19) and (2.22), the equations of motion (2.12) will be un-

coupled into n real SDOFS block equations as follows: 

 

𝐘T ∙ [𝐌
−𝐊
] ∙ 𝐘

⏟          

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2 ]
 
 
 
 

∙

[
 
 
 
 
�̇�1
�̇�1
⋯
�̇�𝑛
�̇�𝑛]
 
 
 
 

⏟
�̇�

+ 𝐘T ∙ [
𝐃 𝐊
𝐊

] ∙ 𝐘
⏟          

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

−𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

= 𝐘T ∙ [
𝐩
]⏟    

[
 
 
 
 
𝑔1
ℎ1
⋯
𝑔𝑛
ℎ𝑛]
 
 
 
 

           (2.23) 

The new (2n x 2n) transformation basis Υ is defined by combination of two complex 

transformations (2.19), (2.22): 
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It can be shown that the Υ -matrix in Eq. (2.24) and all „load“-vectors  [𝑔(𝑡) ℎ(𝑡)]𝑇 , see 

Eq.(2.22), are purely real. After component multiplication of the analytically expressed terms 
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of 𝚽𝑮 and of 𝚿−𝟏 all imaginary parts cancel each other, see details in [4]. This is briefly 

sketched below by developing the two columns of Υ , belonging to the j
th

 eigenvector-pair: 
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With regard to Eq. (2.5), (2.10), (2.11) the multiplication 
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leads to purely real components of the two columns of the transformation basisΥ : 

 

 

 

 

 

            (2.27a-d) 

 

 

 

 

 

In the same manner we develop the “load”-vector in Eq. (2.22) 

 

[
𝑔(𝑡)

ℎ(𝑡)
] =

1

2√1−𝜂2
[
(−𝑍1 − 𝑖𝑍2) (−𝑍1 + 𝑖𝑍2)
𝑃 − 𝑖𝑄 𝑃 + 𝑖𝑄

] [
(𝜆𝑟 + 𝑖𝜆𝑖)(𝚽𝐫

𝐓 + 𝑖𝚽𝐢
𝐓)

(𝜆𝑟 − 𝑖𝜆𝑖)(𝚽𝐫
𝐓 − 𝑖𝚽𝐢

𝐓)
]  𝐩(𝑡)                 (2.28) 

 

𝑔(𝑡) =
𝜔

√1−𝜂2
 {(𝑍2√1 − 𝜂

2 + 𝑍1𝜂)𝚽𝐫
𝐓 + (𝑍1√1 − 𝜂

2 − 𝑍2 𝜂)𝚽𝐢
𝐓}  𝐩(𝑡)                     (2.29a) 

 

ℎ(𝑡) =
𝜔2

√1−𝜂2
 {𝑍1𝚽𝐫

𝐓 − 𝑍2 𝚽𝐢
𝐓} 𝐩(𝑡)                          (2.29b) 

 

Each j
th

 SDOFS block equation in (2.23) can be easily solved, eliminating the modal coor-

dinate 
)( jx  to obtain the usual form of the SDOFS equation of motion (index (j) omitted):  

)(
1

2
thyx
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The dynamic response   ty j  can be obtained by step-by-step integration, applied to Eqs. 

(2.30b,a). The final time response of the original n DOFs is calculated by superposition of the 

modal coordinates    jj yx , in accordance to Eq. (2.24).  

 

The major advantage of the suggested method is the developed new modal transformation 

matrix Υ , see (2.24), in real space for damped MDOFS with symmetric non-diagonalisable 

(i.e. non-modal) damping matrix. The method has also the usual modal superposition ad-

vantage - an uncompleted transformation employing only a few modes (k<<n) in the Y -basis 

leads with sufficient numerical accuracy - after the final back coordinate transformation - to 

the dynamic response of all n DOF. 

3 THE PROPORTIONAL DAMPED SYSTEM  

3.1 Modal transformation of the equations of motion 

A simple method to construct a damping matrix 𝐃𝑝, presenting a proportional damping, is 

the Rayleigh damping assumption: 

 

𝐃𝐩 = (𝛼 𝐌 + 𝛽 𝐊)                  (3.1a) 

 

where   𝛼, 𝛽 : unknown weighting parameter, see Eq.(3.7),(3.8a,b) 

The modal damping matrix is a particular case of a more general proportional damping as-

sumption, see [7] p.105, in the form: 

 

𝐃𝐩 = ∑ 𝑎𝑘𝐌
𝑛
𝑘=1 (𝐌−𝟏𝐊)𝑘−1                 (3.1b) 

 

The matrix (3.1b) turns for 𝑛 = 2  to  𝐃𝐩 = 𝑎1𝐌+ 𝑎2𝐊 , which is the Rayleigh approach 

(3.1a).  

The eigenvalue problem 

 

(𝜆𝑗
2 𝐌 + 𝐊) 𝐗𝑗 = 𝟎 ,                     (3.2) 

 

corresponding to the equations of motion of MDOFS without damping 

 

𝐌�̈� + 𝐊𝐕 = 𝐩(𝑡),                    (3.3) 

 

has the solution:  𝜆𝑗 = 𝑖𝜔0𝑗     with the free frequency  𝜔0𝑗  

 𝐗𝑗  , (𝑗 = 1,2 ⋯ , 𝑛) real eigenvectors 

 

The modal matrix 𝐔, belonging to (3.2) 

 

𝐔 = [𝐔1 𝐔2 ⋯ 𝐔𝑛]                  (3.4) 

 

comprises n real, mass normalized eigenvectors 

 

𝐔𝑗 =
 𝐗𝑗

√𝐗𝒋
𝑻 𝐌  𝐗𝑗

         (𝑗 = 1,2,⋯ , 𝑛).                (3.5) 
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The mass normalisation (3.5) leads to the orthogonality relationships 

𝐔𝑻𝐌𝐔 = [

1
1

⋯
1

]                      (3.6a) 

𝐔𝑻𝐊𝐔 =

[
 
 
 
𝜔01
2

𝜔02
2

⋯
𝜔0𝑛
2 ]
 
 
 

= 𝛀                (3.6b) 

 

The Rayleigh damping matrix  𝐃𝐩 can be diagonalized applying (3.6a,b) to (3.1a):  

 

𝐔𝑻𝐃𝐩𝐔 =

[
 
 
 
𝛼 + 𝛽𝜔01

2

⋯
⋯

𝛼 + 𝛽𝜔0𝑛
2 ]
 
 
 
= [

2𝜂1 𝜔01
⋯

⋯
2𝜂𝑛 𝜔0𝑛

]             (3.7) 

 

The general form of the 𝐃𝐩 matrix (3.1b) can also be transformed in diagonal form by use 

of the real modal matrix 𝐔, as shown in [7] p. 105. 

The terms in the main diagonal of the right side of (3.7) are set to be equal to the modal 

damping term 2𝜂𝜔0 of the equation of motion for SDOFS (2.1). The two unknown parameter 

𝛼  and 𝛽  can be calculated by solving a system of two equations  𝛼 + 𝛽𝜔0𝑗
2 = 2𝜂𝑗 𝜔0𝑗   ,

(𝑗 = 1,2) , using the first two lowest free frequencies  𝜔0𝑗 and by arbitrary choose of two ap-

propriate damping ratios 𝜂𝑗 : 

 

𝛼 =
2𝜔01𝜔02(𝜔01𝜂2− 𝜔02𝜂1)

𝜔01
2 −𝜔02

2

𝛽 =
2(𝜔01𝜂1− 𝜔02𝜂2)

𝜔01
2 −𝜔02

2

                     (3.8a,b) 

 

Typically for the viscous damping is evidently the frequency related damping parameters. 

Below the parameter  𝛼 and 𝛽 are set to be known. In the general case (3.1b) the unknown 

coefficients  𝑎𝑘 are to be determined by solving a system of n linear equation, see [7] for de-

tails. 

We consider now the proportionally damped system (1.1) with  𝐃 = 𝐃𝐩. Assuming the so-

lution (1.2), the associated quadratic eigenvalue problem (1.3) gives 

 

𝜆𝑗
2 𝐌 𝚽𝑗 + 𝜆𝑗 (𝛼 𝐌 + 𝛽 𝐊)⏟        

𝐃𝐩

 𝚽𝑗 + 𝐊 𝚽𝑗  = 𝟎                          (3.9) 

The mass normalized eigenvectors 𝚽𝑗 in Eq. (3.9) are generally complex conjugate, see 

Eq. (2.13) – (2.15). But the eigenvalue problem (3.9) possess also “classical” real 

eigenmodes, identical to the eigenmodes 𝐔𝑗 , belonging to the eigenvalue problem without 

damping, see Eq. (3.2) – (3.5).  

Using the 𝐔𝑗 eigenmodes instead of 𝚽𝑗, the eigenvalue problem (3.9) can be transformed, 

with regard to (3.6), (3.7), to 



E. Stanoev 

{𝜆𝑗
2 𝐌 + 𝜆𝑗 (𝛼 + 𝛽ω0𝑗

2  )𝐌⏟          
𝐃𝐩

+ω0𝑗
2 𝐌⏟  
𝐊

} 𝐔𝑗 = 𝟎              (3.11a) 

 

The corresponding complex eigenvalue 𝜆𝑗 is then computed from 

𝜆𝑗
2  + 𝜆𝑗(𝛼 + 𝛽ω0𝑗

2  ) + ω0𝑗
2 = 0 

→   𝜆𝑗1,2 = −
1

2
(𝛼 + 𝛽ω0𝑗

2  )⏟        
2𝜂𝑗𝜔0𝑗 

 ±  √
1

4
(𝛼 + 𝛽ω0𝑗

2  )
2

−ω0𝑗
2  = 

→   𝜆𝑗1,2 = −𝜂𝑗𝜔0𝑗⏟    
𝜆𝑟

 ± 𝑖 𝜔0𝑗√1 − 𝜂𝑗
2

⏟        
𝜆𝑖

                  (3.11b) 

By comparing (3.11b) to (1.7) is evidently, that the free frequency 𝜔, computed according 

to (2.4), (2.5) 

𝜔 = √𝜆𝑟2 + 𝜆𝑖
2 = {(𝜂𝜔)2 + (𝜔√1 − 𝜂2)

2
}

1

2
             (3.11c) 

 

by use of the j
th

 conjugate complex eigenvalues 𝜆𝑗 of the proportional damped system, is iden-

tic to the free frequency 𝜔0𝑗 of the corresponding system without damping. With the eigen-

value 𝜆𝑗 , Eq.(3.11b), the relationship (3.11a) proves that 𝐔𝑗  is a eigenvector of the 

proportional damped system (3.9). 

In the considered case the equations of motion (1.1) can be transformed in modal space – 

Eq. (3.12), with regard to (3.6), (3.7): 

 

𝐔𝑻𝐌𝐔 �̈� + 𝐔𝑻𝐃𝐩𝐔 �̇� + 𝐔
𝑻𝐊𝐔 𝐲 = 𝐔𝑻𝐩(𝑡) ,                         (3.12) 

 

In (3.12) the modal superposition of the original DOF is supposed by use of the “classical” 

modal matrix 𝐔 of the undamped problem, see Eq.(3.4),  : 

 

𝐕 = [𝐔1 𝐔2 ⋯ 𝐔𝑛] ∙ [

𝑦1
𝑦2
⋯
𝑦𝑛

] = 𝐔 ∙ 𝐲                  (3.13) 

 

In order to transform the state space form of the equations of motion (2.12) we construct a 

(2n x2n) transformation matrix 𝐘U by the mass normalized eigenvectors 𝐔𝑗 (3.4), (3.5) in the 

form 

 

𝐘U = [
𝐔1 𝟎
𝟎 𝐔1

𝐔2 𝟎
𝟎 𝐔2

⋯
⋯

𝐔𝑛 𝟎
𝟎 𝐔𝑛

]                   (3.14) 

 

Eq. (2.12) can be transformed into n uncoupled real SDOFS block equations by the aid of  

𝐘U, with regard to Eqs. (3.6), (3.7): 
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𝐘𝑈
T ∙ [𝐌

−𝐊
] ∙ 𝐘U⏟            

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2 ]
 
 
 
 

∙

[
 
 
 
 
�̇�1
�̇�1
⋯
�̇�𝑛
�̇�𝑛]
 
 
 
 

+ 𝐘𝑈
T ∙ [

𝐃𝐩 𝐊

𝐊
] ∙ 𝐘U⏟            

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

−𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

=  𝐘𝑈
T ∙ [

𝐩
]⏟    

[
 
 
 
 
𝑔1
0
⋯
𝑔𝑛
0 ]
 
 
 
 

          (3.15) 

 

where the modal velocity is 

 

𝑥𝑗 = �̇�𝑗                                          (3.16)

  

Equation (3.15) is another form of the modal decomposition (3.12). Note the difference of 

Eq. (3.16) from Eq.(2.30a) in the general case of non-proportional damping, see further Eq. 

(3.17). 

We compare now the transformed equations (3.15) for the case of proportional damping 

with the general form (2.23) where 𝐃 = 𝐃𝑝. For both of the compared SDOFS block equa-

tions to be identic, it is evidently that each “load” term ℎ𝑗  from (2.23) must be equal to zero, 

see (2.29b): 

 

ℎ =
𝜔2

√1−𝜂2
 {𝑍1𝚽𝐫

𝐓 − 𝑍2 𝚽𝐢
𝐓} 𝐩 = 0                                   (3.17) 

 

All terms in Eq. (3.17) exclusive of p belong to the considered j
th

 eigenmode. Thus, with 

regard to (2.11a),  (2.5) 

 

(𝑍1𝚽𝐫
𝐓 − 𝑍2𝚽𝐢

𝐓) = 𝟎 

  →    
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=
𝑍1

𝑍2
=
√√1−𝜂2+(1−𝜂2)

√√1−𝜂2−(1−𝜂2)

=
𝜂

1−√1−𝜂2
= 𝑐𝑜𝑛𝑠𝑡.                     (3.18) 

 

for all k
th

 DOF of the j
th

 eigenmode pair (𝚽𝐫 ± 𝑖𝚽𝐢) with corresponding eigenvalue  
(𝜆𝑟 ± 𝑖𝜆𝑖). Equation (3.18) proves the statement of a constant phase lag/lead, see Eq. (1.10), 

i.e. in the case of proportionally damped system each free vibration is a synchronous motion 

of all DOF. 

3.2 The transformation matrix 𝐘  

 

The modal equations (3.15) demonstrate, that for the investigated case of proportional 

damping the modal transformation matrix 𝐘U, Eq. (3.14), must be identical to the matrix 𝐘 , 

Eq. (2.23), (2.24), derived for the case 𝐃 = 𝐃𝑝 . By comparing the two columns of  𝐘, see Eq. 

(2.27b,c), to the corresponding zero-columns of  𝐘U, it follows  

 

𝐘𝐲
𝐖 =

1

√1−𝜂2
(𝜔2𝑍1𝚽𝐫 −𝜔

2𝑍2𝚽𝐢) = 𝟎                     (3.19a) 

𝐘𝐱
𝐕 =

1

√1−𝜂2
(−𝑍1𝚽𝐫 + 𝑍2𝚽𝐢) = 𝟎                       (3.19b) 
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→     −𝑍1𝚽𝐫 + 𝑍2𝚽𝐢 = 𝟎                  (3.20) 

 

The relationship (3.20) leads again to  
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=
𝑍1

𝑍2
= 𝑐𝑜𝑛𝑠𝑡.  (Eq.(3.18)) for all k

th
 DOF of 

the considered eigenmode.  

Thus the modal transformation matrix 𝐘, see Eq. (2.25) and (3.14), has in this case the 

form 

 

𝐘 = [
⋯ 𝐘𝐱

(𝑗)𝐖
𝟎 ⋯

⋯ 𝟎 𝐘𝐲
(𝑗)𝐕

⋯
] = [

⋯ 𝐔𝑗 𝟎 ⋯

⋯ 𝟎 𝐔𝑗 ⋯
]               (3.21) 

 

 

4 NUMERICAL EXAMPLE 

4.1 Structural system, stiffness and geometry data 

  

 
 

Fig. 1 Rotor blade beam model subjected to wind loads 

 

The stiffness data of the blade cross sections have been calculated in [14]. The generic aero-

dynamic blade geometry has been derived from real blade data. Below are given for instance 

the stiffness data, referred to the origin of the coordinate system of the cross section, at the 

distance of 2.0 m from the blade root – see Fig. 2: 

 
Center of mass F  (0.124, -0.0119)  [m]  distributed mass  73.835  [kg/m] 

EA    = 947410000.0    [N]  (axial stiffness)  

EAy  = 86101990.0  [Nm]   EAz  = -4408355.0  [Nm] 

EAyy = 48655550.0 [Nm
2
]   EAzz = 16441220.0 [Nm

2
] 

EAyz = 281046.0 [Nm
2
]    GIT  = 6500099.0 [Nm

2
]  (torsional stiffness) 
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The finite element solution is based on the numerical integration of the system of differen-

tial equations for the Bernoulli-beam. The reference axis of the beam model coincides with 

the centre of the circular-section at the root – it is the real rotational axis of the rotor blade. 

Thereby the differential equations and all cross section stiffness data are refered to this axis, 

accounting for the eccentric mass application.  
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Rotor blade sections at 2.0 m – thin wall cross section model 

 

4.2 Wind loads  

  

The wind loads are calculated according to the formula for the aerodynamic lift force per 

unit length of an aerofoil, see [13] p.59: 

 

𝐿 =
1

2
𝜌 ∙  𝑐(𝑟)  ∙ 𝑊2  ∙ 𝐶𝐿          (4.1) 

 

where:  𝑊  : air velocity relative to the aerofoil 

  𝜌  : air density = 1.225 [kg/m
3
] 

        𝑐(𝑟) : chord of the aerofoil 

  𝐶𝐿  : lift coefficient  𝐶𝐿 = 2𝜋 𝛼 = 2𝜋 (
𝜋

180
6.0) = 0.658,   

  the flow angle 𝛼 is assumed to be 6.0 [deg] 

   

The air velocity 𝑊 is the vector sum of the rotational speed Ω (with assumed 60 rpm) and 

the wind speed  𝑢, incident on the aerofoil in accordance with the Betz-theory: 

𝑊 = √(Ω 𝑟)2 + (
2

3
𝑢)

2

       where  Ω = (
60

30
𝜋) in [rad/s]     (4.2) 

 

The wind speed function is assumed to be  

 

𝑢(𝑡) = 16.0 + 8.0 𝑠𝑖𝑛(2𝜋𝑓𝑡),     where    𝑓 = 1 [Hz]     (4.3) 

 

The resulting wind thrust loads per unit length along the x-axis of the rotor blade are given 

below. In the structural model the wind thrust loads are acting as summarized nodal forces. 
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 r      c                    wind thrust F(t) 

[m]  [m]                     [N/m] 

 

 

 
 

 

 

 

 

 

  

  

 

 

The wind thrust functions F(t) are acting on the rotor blade as shown in Fig. 3 for 10 sec.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   Wind thrust function at 12.5 m 

 

4.3 Relationships and data for the damping approach  

 

Starting point of the computation are the equations of motion  












































 0
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W
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                  (4.4) 

where   )(tP  is the nodal force vector, representing the wind thrust according to Sec. 4.2. 

 
The system equations (4.4) will be solved applying the proposed modal analysis method in 

Sec. 2  for two cases: non-proportional and proportional damping. 

 

The lowest four free-vibration frequencies and associated periods for the undamped system 

are calculated to 

𝐹(𝑡) = 0.2204 [5.333 𝑠𝑖𝑛(2𝜋𝑓𝑡) + 10.6667]2 + 1359.79 

1

4
𝐹(𝑡) 
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𝑓1 = 2.643  [𝑠
−1] 𝑇1 = 0.378  [𝑠]

𝑓2 = 4.622  [𝑠
−1] 𝑇2 = 0.216  [𝑠]

𝑓3 = 7.942  [𝑠
−1] 𝑇3 = 0.126  [𝑠]

𝑓4 = 16.650  [𝑠
−1] 𝑇4 = 0.060  [𝑠]

               (4.5) 

  

Assuming stiffness proportional damping in accordance with Eq.(3.1), the damping system 

matrix is  

𝐃𝐩 = 𝛽 𝐊                      (4.6) 

With an assumed damping ratio  𝜂 = 0.008, see [13] p.249,  for the first natural period 
1T , 

we obtain with regard to Eq.(3.8a,b) 

 

𝛽 =
2𝜂

𝜔1
=
𝜂 𝑇1

𝜋
= 0.000964[𝑠]             (4.7) 

 

The non-proportional symmetric damping matrix 𝐃𝐧𝐩 is build adding to the 𝐃𝐩-matrix a 

new matrix 𝐃𝐚, which represents the aerodynamic damping. The formulation is based on a 

simple expression for the aerodynamic damping coefficient per unit length 𝑐(𝑟), given in [13], 

p. 247: 

 

𝑐(𝑟) =
1

2
𝜌 ∙  Ω𝑟 ∙ 𝑐(𝑟) ∙

𝑑𝐶𝐿

𝑑𝛼
      [

𝑘𝑔

𝑠

1

𝑚
],      where       

𝑑𝐶𝐿

𝑑𝛼
= 2𝜋    (4.8) 

 

With  Eq. (4.1), (4.2), the corresponding damping coefficients along the x-axis of the rotor 

blade are calculated to 

 
         r      c          𝑐(𝑟)   
       [m]  [m]      [kg/s.m] 

 

 

 

 

 

 

 

 

The coefficients  𝑐(𝑟) , which represent the aerodynamic damping, are active for vibration 

in z-direction of the cross-section coordinate system, see Fig. 2. The associate symmetric 

damping matrix for the Bernoulli-beam element is derived by analogy with the method used 

to derive the finite element mass matrix, see [15]. Finally the symmetric system damping ma-

trix, 𝐃𝐧𝐩, is assembled in a finite-element manner, including structural (proportional) and aer-

odynamic damping:  

 

𝐃𝐧𝐩 = 𝐃𝐩 + 𝐃𝐚                 (4.9) 

 

4.4 Non-proportional damped system 

We use here the matrix 𝐃𝐧𝐩 – Eq.(4.9). The vector of the first ten complex conjugate ei-

genvalue pairs of the matrix 
G

1

G KMA   , see Eq.(2.13), is  
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        (4.10) 

 

 

 

 

 

 

 

 

The number of modes considered in the modal transformation is limited to the first four ei-

genvector pairs – this are in ascending order the #3, 1, 4, 5 of the vector in (4.10). The struc-

tural system has in Fig. 1 has 54 DOF. The corresponding (108x8) modal matrix 𝚽𝐆 with 

mass normalized eigenvectors – Eq.(2.18), is computed to (only the first ten rows are printed) 

 

                   (4.11) 

 

The matrix  𝚿−1 is now calculated in the case of four involved eigenmodes according to Eq. 

(2.24): 

 

𝚿−1 =

[
 
 
 
 
 (𝜑

(1))
−1

(𝜑(2))
−1

(𝜑(3))
−1

(𝜑(4))
−1
]
 
 
 
 
 

=                         
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                   (4.12) 

 

Finally the (108x8) real transformation matrix 𝐘 is computed according to (2.24) – here 

only the first ten rows: 

 

  

 

 

  
𝐘 = 

 

 

 

 

  

                     (4.13) 

After the modal transformation in regard to (2.23) the time-dependent “load” vector (here 

for the time 0…5 sec) is calculated to be, see also Fig. 3,   

 

[
 
 
 
 
𝑔1(𝑡)

ℎ1(𝑡)
⋯
𝑔3(𝑡)

ℎ3(𝑡)]
 
 
 
 

= 𝐘T ∙ [
𝐩
] =         (4.14) 

 

 

The resultant four uncoupled SDOFS block equations from type of Eq. (2.23), prepared in 

the form (2.30a,b), are solved by step-by-step integration:  

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2]
 
 
 
 

∙

[
 
 
 
 
�̇�1
�̇�1
⋯
�̇�𝑛
�̇�𝑛]
 
 
 
 

⏟
�̇�

+

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

−𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

=

[
 
 
 
 
𝑔1
ℎ1
⋯
𝑔𝑛
ℎ𝑛]
 
 
 
 

, (𝑛 = 4) 

                        (4.15) 
 

where  [𝜔𝑖] = 

 

               [𝜂𝑖] =      (4.16a,b) 
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The effect of the implied additional aerodynamic damping results evidently in the large 

damping ratio 𝜂𝑖 = 0.33269  for the first free vibration. 

The vibration-response has been determined in the time 0…10 s, the time step length for the 

applied Newmark integration method is 0.005 s. 

 

The time response of the modal coordinates  ty j
,  4...,1j , are shown in the following 

figure 4 for the time 0…5 sec:  

 

Fig. 4 Time response of the modal coordinates  ty j
 for the case “non-proportional damping” 

 

By a back transformation according to Eq. (2.24) the total response  tV  is obtained  - see 

Figs. 5a-c: 

 

 

 

 

 

 

 

 

Fig.5a   Total vibration    mtu2
 at the rotor blade tip (y-direction at node #10) 
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Fig.5b   Total vibration    mtu3
 at the rotor blade tip (z-direction at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5c   Total rotation    radt2  at the rotor blade tip (y-axis at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5d   Total torsional rotation    radt1  at the rotor blade tip (x-axis at node #10) 
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The vibration responses, computed by direct step-by-step integration of the equations (4.4), 

are practically identical to those in Fig. 5a-d. 

4.5 Proportional damped system 

 

In this case we use the derived symmetric damping matrix 𝐃𝐩 – Eq.(4.6), (4.7). The first 

ten lowest complex conjugate eigenvalue pairs, resulting from Eq. (2.13), are now: 

 

 

 

 

 

 

        (4.17) 

 

 

 

 

 

 

 

 

The corresponding (108x8) 𝚽𝐆 modal matrix – Eq. (2.18), comprises the first four mass 

normalized complex conjugate eigenvector pairs. In order to verify the derived relationship  

 
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=

𝜂

1−√1−𝜂2
= 𝑐𝑜𝑛𝑠𝑡. , see (3.14), we compute this ratio for all components of the in-

volved  (𝚽𝐫 ± 𝑖𝚽𝐢)
(𝑗) (𝑗 = 1,…4)  eigenvectors (for instance the first ten rows only): 

 

 

=
𝜂𝑗

1−√1−𝜂𝑗
2
    ,     (𝑗 = 1,… 4)            (4.18)      ↔    

 

 

The corresponding damping ratios 𝜂𝑗 , see Eq. (4.21b), are computed in accordance with Eq. 

(2.5). 

The next step is the computation of the matrix 𝚿−1 , Eq. (2.24). The (108x8) real trans-

formation matrix 𝐘, computed in regard with Eq. (2.24), (2.27), has now the form of (3.21):  

 

 

 

 

           (4.19)                 𝐘 = 

 
 

 

In (4.19) are printed again only the first ten rows of 𝐘. 
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The time-dependent “load” vector in the general modal transformed equations (2.23) is 

now (here for the time 0…5 sec) - see also Eq. (3.15) and (4.12):  

 

[
 
 
 
 
𝑔1(𝑡)

ℎ1(𝑡)
⋯
𝑔4(𝑡)

ℎ4(𝑡)]
 
 
 
 

=                       (4.20) 

 

 

Eq. (4.20) implies  𝑥𝑗 = �̇�𝑗, see Eq.(3.15), (3.16), contrary to the general case Eq.(2.30a).  

In the resultant four uncoupled SDOFS block equations, see (4.15), the free frequencies 

and the modal damping ratios are resp. 

[𝜔𝑖] = 

            (4.21a,b) [𝜂𝑖] =

After step-by-step integration of the four modal equations (4.15), the time series of the 

modal coordinates    tytx jj , ,  4...,1j , are obtained – Fig. 6:  

 

Fig. 6   Time response of the modal coordinates  ty j
 for the case “proportional damping” 
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The total responses  tV  are computed by a back transformation according to Eq. (2.24) – see 

Figs. 7a-d: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7a - Total vibration    mtu2
 at the rotor blade tip (y-direction at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7b - Total vibration    mtu3
 at the rotor blade tip (z-direction at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7c - Total torsion    radt1   at the rotor blade tip (x-direction at node #10) 
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Fig 7d - Total rotation    radt2  at the rotor blade tip (y-axis at node #10) 

 

5 CONCLUSIONS  

 A general modal decomposition method of MDOFS with non-proportional damping is 

briefly presented in Sec. 2. The procedure is based on the complex eigenvalue solution of 

a structural model with symmetric non-proportional damping matrix. By use of the right 

complex conjugate eigenvector pairs, normalized relative to the general mass matrix, a 

new real transformation matrix 𝐘, see Eq. (2.24), (2.27), is developed analytically to per-

form a modal decomposition of the equations of motion in real arithmetic. The complex 

conjugate eigenpairs – eigenvalues and the corresponding eigenvectors – are to be com-

puted first, at least for the lowest few modal shapes.  

 The equations of motion are transformed into uncoupled SDOFS block equations. Em-

ploying only a few (k) eigenvector pairs in the 𝐘 -basis (k<<n) is leading – typical for a 

modal transformation procedure – with sufficient numerical accuracy to the total time re-

sponse of all n DOF. The modal equations are numerically integrated and finally trans-

formed back to the original DOF. In more details the method has been described in [3], 

and in [4] has been developed a similar method, based on the right and left eigenvector 

pairs. 

 The application of the suggested method to the special case of proportional damped sys-

tem is considered in details in Sec. 3. Employing a Rayleigh damping matrix, it has been 

shown that the modal transformation from Sec. 2 implies a ratio  
Φ𝑖(𝑘)

Φ𝑟(𝑘)
= 𝑐𝑜𝑛𝑠𝑡. for all k

th
 

DOF of each considered eigenmode  (𝚽𝐫 ± 𝑖𝚽𝐢), i.e. the “constant phase” statement. 

This proves in an indirect manner that the free vibrations in the proportional damping 

case are synchronous. A simple formula for computing of the constant ratio has been also 

derived, expressing it through the associated modal damping ratio 𝜂.  

 In Section 4 a numerical example – vibration of a rotor blade with 54 DOF - demon-

strates the performance of the presented modal method for the two cases – non-

proportional and proportional (Rayleigh) damping. In the first variant the damping matrix 

of the system contains a stiffness-proportional part and a simple approximated aerody-

namic damping part. In the second variant the formula for the constant phase of the reso-

nance modes is verified numerically. 

 Real life applications of the proposed modal analysis method and possible numerical 

complications are discussed more widely in [4], [5]. The present paper studies some 
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known features of proportionally damped systems – the synchronous free vibrations – 

from a viewpoint of a new proposed modal analysis method.  
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