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Abstract. An efficient low order finite shell element is derived for the thermo-elastic analysis of
shell structures made of functionally graded materials or multilayer composites. It is based on
a one-way coupling between the thermal and the mechanical analysis. The thermal quantities
are evaluated using a new iterative scheme that properly accounts for convection boundary con-
ditions and large gradients of the thermal conductivity. The resulting non-constant temperature
field with respect to the thickness direction gives nodal forces and couples, which are applied on
a shear weak six parameter shell formulation. Here, drill rotations are included, supplemented
with a proper method for calculating effective elastic properties. Numerical results indicate
efficiency and accuracy of the proposed approach.
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1 Introduction

This paper focuses on the analysis of thermo-elastic effects in shell structures of functionally
graded materials (FGM) or multilayer composites (MLC). The constitutive model is character-
ized by a variation of material properties, which is continuous in FGMs and discontinuous in
MLCs. We focus only on arbitrary variations in transverse direction. Variations with respect
to the membrane directions can be modeled easily using a discretization scheme with elements
each showing constant transverse variations. FGM and MLC structures play an important role
in the development of sensors and actuators (see [1] and references therein) and accurate virtual
analysis procedures are required.

Many papers deal with the static and dynamic analysis of FGM beams with transverse vari-
ations of material properties. In [2] elasticity solutions for simply supported FGM beams are
given using the Euler-Bernoulli beam theory. Chakraborty et al. [3] discuss thermo-elastic
beam problems based on the first order shear theory. Mahi et al. [4] consider free vibrations
of symmetric FGM beams subjected to an initial thermal stress. In case of combined variations
of material properties in transverse and longitudinal directions, many achievements are due to
Murin et al. [5, 6, 7]. The amount of literature dealing with FGM shells is also overwhelm-
ing. In Shen [8] special attention is put onto the nonlinear response of FGM plates. In [9, 10]
electro-mechanical analyses of FGM shells with piezo-electric layers are proposed. Thermo-
elastic analysis procedures of FGM plate and shell structures are discussed in [11]. There, a
higher order shell formulation is used. However, only little literature is found if drill rotations
(i.e. the rotation about the shell’s normal) are to be included. This frequently missing sixth
nodal degree of freedom gets important if shell structures are combined with beam structures.
There, any torsional moment within the beam directly activates drill rotations if the beam axis
is perpendicular to the shell’s membrane. In that field many achievements are due to Kugler
et al. [12, 13], where references to earlier procedures [14] can be found. A generalization of
those procedures to FGMs and MLCs are given in [15, 16] where elasticity is described using
effective elastic properties derived in [15].

In this paper we discuss a numerical framework to analyze thermo-elastic effects in FGM
and MLC shells. Frequently, the variation of Poisson’s ratio in FGMs and MLCs does not show
large gradients - therefore, we assume Poisson’s ratio to be constant. As boundary conditions
we consider the following cases:

• Nodal temperatures (Dirichlet-type): The mean temperature at any node is prescribed.

• Convection on top- and bottom-surface (von Neumann-type): Convection is applied inde-
pendently onto the top- and bottom-surface prescribing the gradient of the non-constant
transverse temperature distribution.

• Nodal displacements and rotations (Dirichlet-type): Displacements and rotations are pre-
scribed.

• Mechanical loads (von Neumann-type): Any transverse and in-plane mechanical loads
can be applied onto the finite element model.

The present paper is organized as follows: In Sect. 2 the details of the proposed numerical
framework is discussed. We start with describing the thermal analyses in Sect. 2.1. The tem-
perature field in FGM and MLC shells is found for an arbitrary variation of thermal conductivity
and convection conditions. Non-constant temperature distributions with respect to the thickness
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ŷ

ẑ

Figure 1: Plane quadrilateral with skew angled element coordinates ξ and η

direction require an iterative solution scheme. The mechanical analysis is discussed in Sect. 2.2.
There, a quadrilateral six parameter shell element is described, where drilling rotations are in-
cluded within the membrane part of the stiffness matrix. The bending part of the stiffness matrix
incorporates a shear elastic behavior with an exact thin plate limit. A projection procedure for
arbitrarily warped element geometries is included. Arbitrary variations of the Young’s modulus
require four effective elastic properties, i.e. the offset of a mechanical neutral surface from the
discretized mid-surface, effective moduli for membrane and bending properties and a shear cor-
rection factor. In Sect. 2.3 an efficient one-way coupling scheme between the thermal and the
mechanical field is proposed. Based on the evaluated temperature distributions internal nodal
forces and couples are calculated, which are applied onto the mechanical model. The numeri-
cal accuracy and the effectiveness of the proposed formulation is discussed in Sect. 3. There,
solutions based on the proposed framework are compared to continuum solutions found with
ANSYS an to reference solutions found in literature. Finally, in Sect. 4 conclusions are drawn.

2 Numerical procedure

Consider a curved FGM or MLC shell geometry of thickness h, where the geometrical mid-
surface is discretized by four noded shell elements. Thus, the element configuration could
possibly be warped. Any warped surface geometries do not pose a problem if scalar fields
like temperature distributions are analyzed (see Sect. 2.1). However, in mechanical analyses
warped shell elements lead to a coupling between membrane and bending properties, which
can be circumvented by special projection schemes (see Sect. 2.2). Within each element we
assume material properties to be constant in membrane directions x̂ - ŷ and variable in transverse
direction ẑ.

Since both the thermal analysis and the mechanical analysis is based on a four noded finite
element, we introduce a two dimensional element kinematics. The nodal coordinates of the i-th
node (i = 1, 2, 3, 4) read r̂i = X̂iêx + Ŷiêy and the mapping (Fig. 1) between the Cartesian and
the parameter coordinates is carried out using the classical bilinear shape functions [17],[

x̂
ŷ

]
=

[
N 0
0 N

] [
X̂

Ŷ

]
(1)

with
N =

[
N1 N2 N3 N4

]
N1 =

1

4
(1− ξ)(1− η) , N2 =

1

4
(1 + ξ)(1− η) ,

N3 =
1

4
(1 + ξ)(1 + η) , N4 =

1

4
(1− ξ)(1 + η) . (2)

3



Stephan Kugler, Peter A. Fotiu and Justin Murin

any membrane direction

ẑ
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Figure 2: Description of the thermal field problem

In (1) the nodal coordinates are arranged as X̂ =
[
X̂1 X̂2 X̂3 X̂4

]T
and Ŷ =

[
Ŷ1 Ŷ2 Ŷ3 Ŷ4

]T
.

An alternative formulation [18] of the shape functions (2) is

N = ∆ + bxx̂+ byŷ + γξη, (3)

with
bx =

1

2Ae

[
ŷ24 ŷ31 ŷ42 ŷ13

]
, by =

1

2Ae

[
x̂42 x̂13 x̂24 x̂31

]
, (4)

γ =
1

4Ae


X̂2ŷ34 + X̂3ŷ42 + X̂4ŷ23

X̂1ŷ43 + X̂3ŷ14 + X̂4ŷ31

X̂1ŷ24 + X̂2ŷ41 + X̂4ŷ12

X̂1ŷ32 + X̂2ŷ13 + X̂3ŷ21


T

, (5)

∆ =
1

4

[
t−

(
4∑
i=1

X̂i

)
bx −

(
4∑
i=1

Ŷi

)
by

]
, (6)

t =
[

1 1 1 1
]
, (7)

x̂IJ = X̂I − X̂J , ŷIJ = ŶI − ŶJ , Ae =
1

2
(x̂24ŷ31 + x̂31ŷ42) . (8)

2.1 Thermal analysis

In this section we evaluate the temperature field T (x̂, ŷ, ẑ) within the shell’s volume. Con-
sider a FGM or MLC shell structure of thickness h with a transversely varying thermal conduc-
tivity k, where convection is applied onto the outer surfaces. Figure 2 shows a cut through the
shell structure, where convection is applied independently onto the top- and bottom-surface, i.e.

ẑ = −h/2 : qbn = hcb(T (ẑ = −h/2)− TBb), (9)

ẑ = h/2 : qtn = hct(T (ẑ = h/2)− TBt). (10)

In (9) and (10) hct and hcb denote the convection coefficient on the top and bottom surface, while
TBt and TBb are the temperatures of the adjacent fluid. We decompose T (x̂, ŷ, ẑ) according to

T (x̂, ŷ, ẑ) = T̄ (x̂, ŷ) + T̃ (ẑ), (11)

where
T̄ (x̂, ŷ) = 1/h

∫
h

T (x̂, ŷ, ẑ) dẑ, (12)
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is the mean temperature, while T̃ (ẑ) describes the unknown temperature distribution in trans-
verse direction. The iterative solution strategy consists of two steps:

1. Evaluation of the mean temperature T̄ (x̂, ŷ) = 1/h
∫
h
T (x̂, ŷ, ẑ) dẑ in membrane direction.

2. Estimate T̃ (ẑ) based on a mean temperature T̄ .

An iterative procedure with iteration number I is required since the shell’s surface temperatures
are initially unknown. Hence, (9) and (10) cannot be satisfied exactly, and we rewrite (9) and
(10) according to

ẑ = −h/2 : qb I+1
n = hcb(T̄

I+1 − T ∗IBb),

ẑ = h/2 : qt I+1
n = hct(T̄

I+1 − T ∗IBt), (13)

with
T ∗IBb = TBb − T̃ I(ẑ = −h/2),

T ∗IBt = TBt − T̃ I(ẑ = h/2). (14)

The global iterative algorithm can be summarized as follows:

1. I = 0

2. T̃ I=0(ẑ = ±h/2) = 0

3. WHILE T̄ I+1−T̄ I

T̄ I+1 < tol (tol = tolerance limit)

(a) T ∗IBb = TBb − T̃ I(ẑ = −h/2) and T ∗IBt = TBt − T̃ I(ẑ = h/2)

(b) FIND T̄ I+1 according to Sect. 2.1.1 using convection boundary condition (13) and
(14).

(c) FIND T̃ I+1 according to Sect. 2.1.2

(d) I = I + 1

2.1.1 Evaluation of mean temperature

In this section we discuss a suitable procedure to evaluate the mean temperature T̄ . The
strong form of the corresponding boundary value problem [19] reads

k̄T̄,ii = 0, (15)

T̄ = T0 at ΓT , (16)

q0 = qn = −k̄T̄,ini at Γq. (17)

where a comma within an index denotes a partial derivative and Einstein’s summation conven-
tion is understood (i = x̂, ŷ). The Dirichlet boundary condition (16) prescribes a given value T0

at the boundary ΓT , while the von Neumann boundary condition prescribes the heat flux qini
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along Γq. In (17) −k̄T̄,i = q̄i is the mean heat flux, while k̄ denotes the mean value of thermal
conductivity,

k̄ =
1

h

∫
h

k(ẑ)dẑ. (18)

The weak form of (15)-(17) is given by,∫
V

k̄T̄,iiδT̄ dV −
∫
Γq

(q0 − qn)δT̄ dΓ = 0, (19)

where the weighting function δT̄ is a virtual temperature distribution that has to satisfy the
Dirichlet boundary condition δT̄ = 0 at ΓT . Applying the Gaussian theorem to the first integral
leads to ∫

V

k̄T̄,iδT̄,idV +

∫
Γq

q0δT̄ dΓ = 0. (20)

We use bilinear interpolations (2) for the mean temperature fields

T̄ = NT̄e and δT̄ = NδT̄e , (21)

where T̄e and δT̄e denote the corresponding nodal values. Introducing this into (20) yields

(
δT̄e

)T
k̄h

1∫
−1

1∫
−1

BTB det J dξdη

︸ ︷︷ ︸
Ke

T

T̄e +

+

1∫
−1

1∫
−1

(hct + hcb) NTN det J dξdη

︸ ︷︷ ︸
Ke

Tc

T̄e−

−
1∫

−1

1∫
−1

(hctT
∗
Bt + hcbT

∗
Bb) NT det J dξdη

︸ ︷︷ ︸
Fe

Tc

 = 0, (22)

with B referring to the gradient of the shape functions,

B =

[
Bx̂

Bŷ

]
=

[
N1,x̂ N2,x̂ N3,x̂ N4,x̂

N1,ŷ N2,ŷ N3,ŷ N4,ŷ

]
. (23)

We assume that T̃ (ẑ) is constant within one element, thus, T ∗Bt and T ∗Bb from (14) is also ele-
mentwise constant and is evaluated at each element’s center. The differential volume of a shell
structure is given by dV = hdA = h det J dξdη, where det J denotes the determinant of the
element Jacobian. With (22) we finally obtain

(Ke
T + Ke

Tc) T̄e = Fe
Tc, (24)

Equations (24) have to be assembled to a global system in a standard manner [20]. All integra-
tions over the element domain are carried out numerically by a 2× 2 Gauss integration.
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Figure 3: Transverse temperature distribution

2.1.2 Evaluation of transverse temperature distribution

Once the mean temperature T̄ (x̂, ŷ) is evaluated at every point of the shell’s structure, the
temperature distribution with respect to the thickness direction is calculated. Thereby, we ana-
lyze the problem depicted in Fig. 3(a) showing an infinitesimal volume portion of cross section
dA and a height of h where a convection boundary condition on the top and bottom surface is
applied. In what follows we discuss a procedure where the temperature distribution with re-
spect to the thickness direction is found from a thermal conduction problem with two Neumann
conditions. At every location x̂ and ŷ the following system of equations holds1

d

dẑ

(
k(x̂, ŷ, ẑ)

d

dẑ
T (x̂, ŷ, ẑ)

)
+K∗ = 0 , (25)

ẑ = h/2 : −k(x̂, ŷ, ẑ = h/2)
dT (x̂, ŷ, ẑ)

dẑ

∣∣∣∣
ẑ=h/2

− hct (T (x̂, ŷ, ẑ = h/2)− TBt) = 0 , (26)

ẑ = −h/2 : −k(x̂, ŷ, ẑ = −h/2)
dT (x̂, ŷ, ẑ)

dẑ

∣∣∣∣
ẑ=−h/2

− hct (T (x̂, ŷ, ẑ = −h/2)− TBb) = 0 .

(27)
In (25) K∗ is given by

K∗ = Kk(ẑ), (28)

where K represents an unknown constant. The inclusion of (28) in (25) is mandatory for ac-
curate results and is in contrast to [11] where a similar strong form is used without K∗. The
inclusion of K∗ can be motivated by the following thought experiment: Within a shell’s section
of constant conductivity the transverse temperature distribution is expected to be parabolic with
prescribed gradients at the top and bottom surface. In absence of K∗ the solution of (25) leads
to a linear distribution and (26) and (27) cannot be satisfied exactly. The introduction of a non-
vanishing constant K∗ avoids such a deficiency. The unknown constant K is found from the

1Within one element the thermal conduction coefficient k is assumed to be constant, however, k can be discon-
tinuous from element to element.
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constraint that the mean value of T (x̂, ŷ, ẑ) must equal T̄ (x̂, ŷ) from (12). Rewriting (25)-(27)
with T (x̂, ŷ, ẑ) = T̄ (x̂, ŷ) + T̃ (ẑ) leads to

d

dẑ

(
k(x̂, ŷ, ẑ)

d

dẑ
T̃ (ẑ)

)
+Kk(ẑ) = 0 , (29)

ẑ = h/2 : −k(x̂, ŷ, ẑ = h/2)
dT̃ (ẑ)

dẑ

∣∣∣∣∣
ẑ=h/2

− hct
(
T̄ (x̂, ŷ) + T̃ (ẑ = −h/2)− TBt

)
= 0 , (30)

ẑ = −h/2 : −k(x̂, ŷ, ẑ) = −h/2)
dT̃ (ẑ)

dẑ

∣∣∣∣∣
ẑ=−h/2

− hct
(
T̄ (x̂, ŷ) + T̃ (ẑ = −h/2)− TBb

)
= 0 ,

(31)∫
h

T̃ (ẑ) dẑ = 0 . (32)

An analytical solution of (29)-(32) can be given in case of a constant conductivity, i.e. k(ẑ) = k,
however, for arbitrary variations of k(ẑ) we propose a FEM like solution procedure using a
discretization with n linear elements of length le = h/n, see Fig. 3(b). Hence, we find for
interior elements

dA

∫
le

k(ẑ)T̃,ẑδT̃,ẑ dẑ = dAK

∫
le

k(ẑ)δT̃ dẑ, (33)

and for the top and bottom elements

bottom (ẑ = −h/2) : dA

∫
le

k(ẑ)T̃,ẑδT̃,ẑ dẑ = dA

∫
le

K∗δT̃ dẑ−
(
hcbdA

(
T̄ + T̃ − TBb

)
δT̃
)∣∣∣

ẑ=−h/2
,

(34)

top (ẑ = h/2) : dA

∫
le

k(ẑ)T̃,ẑδT̃,ẑ dẑ = dA

∫
le

K∗δT̃ dẑ −
(
hctdA

(
T̄ + T̃ − TBt

)
δT̃
)∣∣∣

ẑ=h/2
,

(35)
where k(ẑ) is assumed to the be the value of thermal conductivity at each element’s center,
being constant throughout each element. This finally leads to the following system of equations

n

h


k1 · · · 0 0
... . . . ...

...
0 · · · kn−1 −kn
0 · · · −kn kn

+


hcb · · · 0 0
... . . . ...

...
0 · · · 0 0
0 · · · 0 hct





ϑ1
...
ϑn
ϑn+1

 =

=
K h

2n


k1
...

kn−1

kn

+


hcb
(
TBb − T̄

)
...
0

hct
(
TBt − T̄

)
 , (36)
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where ϑi for i = 1...n+ 1 denotes the nodal value of T̃ and ki for i = 1...n refers to the thermal
conductivity at the i-th element’s center. Equation (36) can be rewritten according to

Kϑ = KF + Fc, (37)

and represents a linear algebraic system of equations approximating (29)-(31). Equation (32) is
modeled as

1

2
(ϑ1 + ϑn+1) +

n∑
i=2

ϑi =
[

1/2 · · · 1 1/2
]


ϑ1
...
ϑn
ϑn+1

 = Lϑ = 0, (38)

and can be used to evaluate the unknown constant K,

K = −LK−1Fc

LK−1F
, (39)

consequently, the nodal values ϑ read

ϑ = −LK−1Fc

LK−1F
K−1F + K−1Fc. (40)

2.2 Mechanical analysis

The derivation of a six parameter shell element is based on four steps. In Sect. 2.2.1 we
present useful equations for evaluating effective elastic quantities. Arbitrary warped element
geometries show a computationally expensive coupling between membrane and bending prop-
erties. In order to avoid the derivation of those coupling matrices, we describe in Sect. 2.2.2
a projection scheme, which extracts a plane element configuration. Using that projection the
derivation of the stiffness matrix can be separated into a membrane (Sect. 2.2.3) and a bending
part (Sect. 2.2.4).

2.2.1 Effective elastic quantities

The element formulation requires four effective quantities that are directly related to the
distribution of Young’s modulus E(ẑ). We present here only the main results and refer to [15]
for details. In case of unsymmetrical variations of E the offset z of a neutral surface from the
discretized mid-plane is evaluated as

z =

∫ h/2
−h/2

E(ẑ)ẑdẑ∫ h/2
−h/2

E(ẑ)dẑ
. (41)

With respect to this plane, membrane and bending deformations are decoupled and an arbitrary
normal strain reads

εij(ẑ
′) = κij ẑ′ + ε

(0)
ij , (42)

with ẑ′ = ẑ−z. In (42) ε(0)
ij denotes the strain in the neutral surface and κij refers to a curvature.

The effective moduli for membrane (Em) and bending (Eb) read

Em =
1

h

h/2−z∫
−h/2−z

E(ẑ′)dẑ′, (43)
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Figure 4: Discretized mid-surface, warped neutral surface, projected plane neutral surface

Eb =
12

h3

h/2−z∫
−h/2−z

E(ẑ′)ẑ′2dẑ′. (44)

Since shear deformations are accounted for, a shear correction factor αs is to be introduced. For
homogenous shells αs = 5/6, while in case of varying E(ẑ) one finds [15]

1

αs
=

144

Ebh5

h/2−z∫
−h/2−z

1

E(ẑ′)

 h/2−z∫
ẑ′

E(ζ)ζdζ

2

dẑ′. (45)

2.2.2 A projection scheme

We decouple the membrane and bending properties in two steps. Firstly, we shift the element
configuration, which is discretizing the geometrical mid-plane to the mechanical neutral surface
(41). According to Fig. 4 this is done via

rni = rdi + zini no sum on i, (46)

where rdi and rni denote the coordinates of the i-th node (i = 1, 2, 3, 4) of the discretized and
the neutral surface. The projection is carried out along a nodal fiber direction ni, which can
be extracted from the preprocessor or can be found with the aid of an algorithm discussed
in [15]. Since the element configuration discretizing the neutral surface may be warped, we
extract a plane element configuration as shown in Fig. 4. A local Cartesian coordinate system
x̂ − ŷ − ẑ is placed at the element’s center point with rnm = 1

4

∑4
i=1 rni . The base vectors ex̂

and eŷ share an equal angle δ to g1 and g2, which join the center and the mid-side points (Fig.
4). Finally, the nodes are projected onto the êx − êy plane giving a plane element with local
nodal vectors r̂i =

[
X̂i Ŷi 0

]T
as depicted in Fig. 1. The proposed projection scheme may

introduce some rigid body error. This problem is indicated by many authors, e.g. [21, 22] and
can easily be corrected by a method proposed by Rankin and Nour-Omid [23]. The details of
this procedure are discussed in [12, 24], we only give the final result

K̂proj = P̂T
RK̂P̂R, (47)
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with P̂R =

[
I(24×24) − R̂

(
R̂

T
R̂
)−1

R̂
T
]

denoting the projection with

R̂ =


R̂1

R̂2

R̂3

R̂4

 with R̂i =



1 0 0 0 Ẑi −Ŷi
0 1 0 −Ẑi 0 X̄i

0 0 1 Ŷi −X̄i 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (48)

The parts of the element stiffness matrix

K̂ =

[
K̂membrane 0

0 K̂plate

]
(49)

are derived in Sect. 2.2.3 and Sect. 2.2.4, while the global stiffness matrix K̃ is assembled after
a transformation of K̂proj to the global Cartesian coordinate system. Note that K̃ refers to the
mechanical neutral surface (41), while the load vector is usually applied onto the discretized
mid-plane. Therefore, an element load vector applied onto the mid-surface

[
Fd Md

]T has
to be reduced to a force vector, which refers the neutral surface

[
Fn Mn

]T via

Fn = Fd and Mn = Md − zini × Fd. (50)

After solving the global system of equations the resulting displacements Un and rotations φn

also refer to the neutral surface. During post-processing at the discretized configuration, a
transformation according to

Ud = Un + zini × φn and φd = φn (51)

has to be carried out [15].

2.2.3 The membrane part

The inclusion of drill rotations, i.e. the rotation about the shell’s normal, is a main issue
of this paper. These in-plane rotational degrees of freedom are introduced using a recently
proposed Cosserat-type functional [13, 12],

δΠmembrane = h

∫
Ω

δε̂
T

s Ĉmε̂sdAe + 2αh

∫
Ω

δε̂aε̂adAe. (52)

In (52), ε̂s and ε̂a denote the symmetric and the antimetric part of the membrane strain tensor,
respectively. The overbar indicates assumed strains, which can be assumed independently and
are not directly related to prescribed deformations and rotations,

ε̂s =
[
ux̂,x̂ uŷ,ŷ ux̂,ŷ + uŷ,x̂

]T and ε̂a = 1/2 (ux̂,ŷ − uŷ,x̂) + ϕẑ. (53)

For sake of convenience the direct strain-displacement-relation is given in (53), where ui for
i = x̂, ŷ and ϕẑ refer to membrane displacements and drill rotations, respectively. In (52) Ae
denotes the area of the element (8) and Ĉm refers to the plane stress elasticity matrix (43)

Ĉm =
Em

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 . (54)
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The variable α represents an additional material constant relating the skew symmetric parts of
stresses and strains. As frequently recommended (e.g. [14]), this constitutive parameter can be
related to the shear modulus of the corresponding material,

α = α
Em

2 (1 + ν)
, (55)

where α denotes an additional scaling factor. The present formulation can be optimized accord-
ing to accuracy and efficiency, while avoiding any internal (incompatible) degrees of freedom
to circumvent membrane shear locking in low order elements [18]. The predictive quality is
nearly independent of α and suitable scaling factors are discussed in [12]. The assumed strain
fields are related to nodal displacements and rotations, i.e.

ε̂s = B̂su0

[
Ux̂

Uŷ

]
+ B̂suH

[
γ 0
0 γ

] [
Ux̂

Uŷ

]
, (56)

ε̂a =
1

2

(
B̂au0

[
Ux̂

Uŷ

]
+ B̂auH

[
γ 0
0 γ

] [
Ux̂

Uŷ

])
+ NϕΦ̂, (57)

where Ux̂ =
[

Ux̂1 · · · Ux̂4

]T and Uŷ =
[

Uŷ1 · · · Uŷ4

]T are the inplane nodal dis-
placements while Φ̂ =

[
φẑ1 · · · φẑ4

]
contains the drill rotation angles. The corresponding

B̂-matrices and the shape functions Nϕ read

B̂su0 =

√
j0

j

 bx 0
0 by
by bx

 , B̂suH =

√
j

j0

 (ξη),x̂ −ν (ξη),ŷ
−ν (ξη),x̂ (ξη),ŷ

0 0

 , (58)

B̂au0 =

√
j0

j

[
by −bx

]
, B̂auH = 2

√
j

j0

[
(ξη),ŷ − (ξη),x̂

]
, (59)

Nϕ =

√
j0

j

[
N1 N2 N3 N4

]
, (60)

where j = det J and j0 = det J0 = det J(ξ = η = 0) (see (2) - (8)). The prefactors
√

j/j0 and√
j0/j enable an analytical integration of all parts of the membrane stiffness matrix avoiding a

four point Gaussian quadrature. The resulting membrane part of the stiffness matrix may be
found in [25].

2.2.4 The bending part

The bending part of the stiffness matrix is based on the Mindlin-Reissner hypothesis and is
valid for thin to moderately thick shell structures [17, 24, 12]. Equilibrium requires the potential
Πplate to be a minimum, i.e.

Πplate = Πb + Πs − Πext → min, (61)

with
Πb =

1

2

∫
Ω

ε̂
T

b Ĉbε̂bdΩ,

12
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Πs =
1

2
αsh

Eb
2(1 + ν)

∫
Ae

γ̂
T

s γ̂sdA,

Πext =

∫
Ae

puẑdA. (62)

An overbar again indicates that the corresponding field can be interpolated independently, i.e.
without any relation to strain displacement equations. The subscripts b and s indicate that
the corresponding quantity refers to bending and shear, respectively, and Πext is due to the
externally applied pressures p. The variables ε̂b and γ̂s denote bending and transverse shear
strains. In (62) Ĉb refers to the bilinear plane stress elasticity matrix (44)

Ĉb =
Eb

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (63)

while αs denotes the shear correction factor (45). Following the procedure in [12, 24], the
corresponding interpolations read

ε̂b = B̂b0

[
Φx̂

Φŷ

]
+ B̂bH

[
γ 0
0 γ

] [
Φx̂

Φŷ

]
, (64)

with

B̂b0 = ẑ

√
j0

j

 0 bTx
−bTy 0
−bTx bTy

 , B̂bH = ẑ

√
j

j0

 ν (ξη),ŷ (ξη),x̂
− (ξη),ŷ −ν (ξη),x̂

0 0

 , (65)

and
γ̂s = J−1

0 NsΓ (66)

with

Ns =

√
j0

j

[
1
2
(1− η) 0 1

2
(1 + η) 0

0 1
2
(1 + ξ) 0 1

2
(1− ξ)

]
and Γ = AuzUẑ + AϕxΦx̂ + AϕyΦŷ. The coefficients Auz, Aϕx and Aϕy only depend on the
element’s geometry and read

Auz =
1

2


−1 1 0 0
−1 0 0 1
0 0 1 −1
0 −1 1 0

 ,

Aϕx =
1

4


ŷ12 ŷ12 0 0
ŷ14 0 0 ŷ14

0 0 ŷ43 ŷ43

0 ŷ23 ŷ23 0

 , Aϕy =
1

4


x̂21 x̂21 0 0
x̂41 0 0 x̂41

0 0 x̂34 x̂34

0 x̂32 x̂32 0

 , (67)

leading to a formulation, which ensures the satisfaction of the Kirchhoff patch test [26, 27].
Again, the prefactors

√
j/j0 and

√
j0/j enable an analytical integration of all parts of the plate

bending stiffness matrix, see e.g. [25].
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2.3 Weak one-way coupling

The finite element formulation discussed in Sect. 2.2 is based on a weak form of the equilib-
rium conditions,

δΠ =

∫
(δε)T σdV − δΠext = 0, (68)

where any external loads are neglected in this paper2. The strain field in membrane directions
reads

εx̂x̂ =
1

E(ẑ)
(σx̂x̂ − νσŷŷ) + α(ẑ)∆T (ẑ),

εŷŷ =
1

E(ẑ)
(σŷŷ − νσx̂x̂) + α(ẑ)∆T (ẑ),

εẑẑ =
−ν
E(ẑ)

(σx̂x̂ + σŷŷ) + α(ẑ)∆T (ẑ),

γx̂ŷ =
2(1 + ν)

E(ẑ)
σx̂ŷ, (69)

where we adopted a plane stress constraint, i.e. σẑẑ = 0. The thermal expansion coefficient
shows an arbitrary variation with respect to the thickness direction and is denoted by α(ẑ).
Solving (69) for the stresses yields

σx̂x̂ =
E(ẑ)

1− ν2
(εx̂x̂ + νεŷŷ)−

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
,

σŷŷ =
E(ẑ)

1− ν2
(εŷŷ + νεx̂x̂)−

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
,

σx̂ŷ =
E(ẑ)

2(1 + ν)
γx̂ŷ, (70)

or in matrix notation σx̂x̂
σŷŷ
σx̂ŷ

 =
E(ẑ)

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εx̂x̂
εŷŷ
εx̂ŷ

− E(ẑ)α(ẑ)∆T (ẑ)

1− ν

 1
1
0

 ,

σ = Cε− E(ẑ)α(ẑ)∆T (ẑ)

1− ν

 1
1
0

 . (71)

Within the proposed weak one way coupling procedure we introduce (71) into (68) obtaining

δΠ = δΠm − δΠt =

∫
Ve

(δε)T CεdV −
∫
Ve

(δε)T
E(ẑ)α(ẑ)∆T (ẑ)

1− ν

 1
1
0

 dV = 0. (72)

2The inclusion of external loads can be done in a standard manner [18] and does not introduce any complica-
tions.
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The first term on the RHS is devoted to the element stiffness matrix (Sect. 2.2.3 and Sect. 2.2.4),
while the second part refers to internal forces and couples caused by thermal loading, which can
be simplified according to

δΠt =

∫
Ve

[
δεx̂x̂ δεŷŷ

] E(ẑ)α(ẑ)∆T (ẑ)

1− ν

[
1
1

]
dV. (73)

The virtual normal-strain field is related to virtual displacements and rotations according to[
δεx̂x̂ δεŷŷ

]
=
[
δux̂,x̂ + ẑϕŷ,x̂ δuŷ,ŷ − ẑϕx̂,ŷ

]
. Interpolating the displacement and rota-

tion field with classical bilinear shape-function (2),[
ux̂
uŷ

]
=

[
N 0
0 N

] [
Ux̂

Uŷ

]
and

[
ϕx̂
ϕŷ

]
=

[
N 0
0 N

] [
Φx̂

Φŷ

]
, (74)

leads to

δΠt =
[
δUT

x̂ δUT
ŷ

] [ Fx̂

Fŷ

]
+
[
δΦT

x̂ δΦT
ŷ

] [ Mx̂

Mŷ

]
, (75)

with

Fx̂ =

∫
Ve

N,x̂
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV , Fŷ =

∫
Ve

N,ŷ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV,

Mx̂ = −
∫
Ve

N,ŷẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV , Mŷ =

∫
Ve

N,x̂ẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV. (76)

Differentiating the shape functions indicates that the integral over the element area can be car-
ried out analytically, if the distributions of Young’s modulus E, thermal expansion α and tem-
perature ∆T are assumed to be constant. Thus, we get

Fx̂ =
1

2


ŷ24

ŷ31

ŷ42

ŷ13


h/2∫

−h/2

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ , Fŷ =

1

2


x̂42

x̂13

x̂24

x̂31


h/2∫

−h/2

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ,

Mx̂ =
1

2


x̂24

x̂31

x̂42

x̂13


h/2∫

−h/2

ẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ , Mŷ =

1

2


ŷ24

ŷ31

ŷ42

ŷ13


h/2∫

−h/2

ẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ.

(77)
These element forces and couples refer to the discretized mid-surface and have to be trans-
formed to the neutral surface by (50).

2.4 Stress evaluation

The stress components are evalutated element-wise at ξ = η = 0 based on an a posteriori
procedure, requiring the nodal displacement and rotation vector in the elemental Cartesian base.
The membrane strains at the elements center are evaluated with respect to the nodal degrees of
freedom by  εx̂x̂

εŷŷ
γx̂ŷ

 =

 bx 0
0 by
by bx

[ Ux̂

Uŷ

]
+ ẑ′

 0 bTx
−bTy 0
−bTx bTy

[ Φx̂

Φŷ

]
. (78)

15



Stephan Kugler, Peter A. Fotiu and Justin Murin

x

x

y

y

z

z

z

L

L

w

h

w

1 , 0ct Bth T= =

1 , 30cb Bbh T= =

0( 0, ) 100T x z T= = =

Figure 5: FGM fin with a discretization of N = 6

Consequently, the membrane stresses are found by applying the constitutive relation (71), σx̂x̂
σŷŷ
σx̂ŷ

 =
E(ẑ′)

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εx̂x̂
εŷŷ
εx̂ŷ

− E(ẑ′)α(ẑ′)∆T (ẑ′)

1− ν

 1
1
0

 .
The definition of transverse shear strains read γx̂ẑ = uẑ,x̂ + ϕŷ and γŷẑ = uẑ,ŷ − ϕx̂. The trans-
verse displacement and the two bending angles are interpolated with classical bilinear shape
functions yielding to the following estimates of the averaged shear strains[

γx̂ẑ
γ ŷẑ

]
=

[
bx
by

]
Uẑ +

[
1/4
∑4

i=1 φŷi
−1/4

∑4
i=1 φx̂i

]
. (79)

Accordingly, the averaged shear stresses read τ iẑ = Eb(ξ=η=0)
2(1+ν)

γiẑ for i = x̂, ŷ, and the integrated
shear force is given by si = αshτ iẑ. Finally, we evaluate the shear stress distribution from

τiẑ(ẑ
′) =

12si
Ebh3

h/2−z∫
ẑ′

E(ζ)ζdζ , γiẑ(ẑ
′) =

2(1 + ν)τiẑ(ẑ
′)

E(z′)
, (80)

see [15]

3 Benchmark examples

In this Section we compare the proposed formulation to continuum solutions evaluated by
ANSYS. A main issue of this paper is the correct estimation of temperature distributions based
on the procedures discussed in Sect. 2.1. Consequently, a pure thermal problem is discussed in
Sect. 3.1, which shows interesting results for two MLC structures with the same mean value of
thermal conductivity. More examples can be found in [25].

3.1 Temperature distributions in a MLC fin

Consider a rectangular MLC structure of length L = 10, width w = 1 and height h = 1
shown in Fig. 5, which is discretized with N elements. On the top and bottom surface
(z = ±h/2) there is convection with hct = hcb = 1 and a fluid temperature TBt = 0 and
TBb = 30, while at the left end x = 0 the temperature is set to T̄ (x = 0, z) = T0 = 100.
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Figure 6: Distribution of thermal conductivity of layered fin

Interval in transverse direction Configuration 1 Configuration 2
−0.5 ≤ z ≤ −0.25 k = 100 k = 0.1
−0.25 ≤ z ≤ 0 k = 0.1 k = 100
0 ≤ z ≤ 0.25 k = 0.1 k = 100

0.25 ≤ z ≤ 0.5 k = 100 k = 0.1

Table 1: Conductivity distribution

The fin is composed of four equidistant layers of height hL = h/4, with two different thermal
conductivities. We compare two symmetric configurations (i.e. Configuration 1 and Configu-
ration 2) according to Tab. 1 (see Fig. 6). Configuration 1 is characterized by a high thermal
conductivity on the top and bottom layer, while Configuration 2 has nearly isolating outside
layers. The mean value k of thermal conductivity is equal for both configurations and classical
approaches from literature assuming a constant temperature in thickness direction lead to equal
temperature distributions in membrane direction for both configurations. The reference results
are evaluated using ANSYS by discretizing the x− z plane with 500×100 PLANE55 elements
[28]. The application of the Dirichlet boundary condition, i.e. T (x = 0, z) = T0, is in contrast
to the applied convection boundary conditions at x = 0, z = ±h/2, since the thermal gradient
with respect to the thickness direction is not vanishing on the top and bottom side. Therefore,
we apply a von Neumann boundary condition onto the ANSYS model based on Fourier’s law,
i.e.

qn(x = 0, z) = −k(z)T̄,x = Ck(z), (81)

where the constant C is found iteratively so that the evaluated mean value of the temperature
distribution at x = 0 equals T0. By this we obtain

Config. 1: q(1)
n (x = 0, z) = −16.3613k(z), (82)

Config. 2: q(2)
n (x = 0, z) = −8.7069k(z). (83)

The distribution of the mean value of temperature is depicted in Fig. 7, where we used N = 20
shell elements in membrane direction and ten elements through each layer in transverse direc-
tion (n = 40). The solid line corresponds to the present approach, while the dots refer to the
ANSYS solution. Figure 7 indicates excellent accuracy of the proposed solution algorithm for
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Figure 7: Mean temperature distribution of both configurations N = 20, n = 40

-0.5 -0.25 0 0.25 0.5
25

30

35

40

45

50

z

T

 

 
Present
ANSYS

(a) Configuration 1

-0.5 -0.25 0 0.25 0.5
20

30

40

50

60

70

80

z

T

 

 

Present
ANSYS

(b) Configuration 2

Figure 8: Temperature distribution in transverse direction at x = L, (N = 20, n = 40)

both configurations, and we observe large differences between the two configurations, even if
the average value of the thermal conductivity is identical. The temperature distribution in trans-
verse direction is shown in Fig. 8, and, again, indicates a good predictive quality of the proposed
approach. The crucial step in our derivation is the iterative solution procedure discussed on page
5. The convergence rate is depicted in Fig. 9 for both configurations. We observe that in case of
Configuration 2 (low conductivity on the top and bottom layer) about ten iterations are required
to get accurate results, while Configuration 1 requires only two iterations.

3.2 Thermo-elastic analysis of a bi-quadratic FGM beam

In this example, originated by Lü et al. [29], a bi-directional FGM beam (L = 0.1, h = w =
0.01) depicted in Fig. 10 is analyzed. The state equations vary exponentially along the axial
and transverse direction,

E(x, z) = E0e
α1x+α3(z+h/2), (84)

β(x, z) = β0e
ax+b(z+h/2), (85)

where β denotes the thermal stress constant,

β(x, z) =
E(x, z)α(x, z)

1− ν
. (86)
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Figure 9: Convergence with respect to the number of iterations at x = L, (N = 20, n = 40)
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Figure 10: The schematic representation of a bi-quardratic FGM beam

Poisson’s ratio is assumed to be constant ν = 0.25 and the temperature field is prescribed by

T (x, z) = T0e
λ1x+λ3(z+h/2). (87)

We choose E0 = 1, while β0 is defined by β0T0 = 10−4E0

1−ν . A clamped-clamped situation is
analyzed. This example is solved analytically by Lü et al. [29] based on a two-dimensional
thermo-elastic model. Lezgy-Nazargah [30] analyzed the same problem using a fully coupled
isogeometric two-dimensional finite element approach. For sake of comparison we consider an
ANSYS solution with a very fine mesh (1000x100) of fully integrated quadrilateral plane stress
elements. A study of the transverse displacements is depicted in Fig. 11. We observe a close
agreement of the evaluated bending line compared to ANSYS (Fig. 11(a)). A convergence
study with respect to the number of elements over the length N and thickness n is given in Fig.
11(b), indicating a fast rate of convergence. For N = n ≥ 6 a relative error of less than ±3% is
provided, while the present approach converges to a 3% stiffer solution compared to ANSYS.
In Fig. 12 the stress distributions at x = L/2 are compared to ANSYS and to the solutions
published in [29, 30]. The axial thermal stress distribution σxx is in good agreement compared
to the reference solutions (see Fig. 12(a)). The transverse shear stress distributions τxz are less
accurate (see Fig. 12(b)). Considering the maximum shear the analytical solutions of Lü et al.
are in good agreement to ANSYS, Lezgy-Nazargah’s results show a relative error of 13%, while
our proposed algorithm delivers a relative error of 10%. A qualitative comparison indicates that
our peak stress is located at z = 0.0018 (neutral plane) while the continuum solutions show a
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Figure 11: Transverse displacement of bi-directional thermo-elastic beam
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(a) Axial stress distribution
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(b) Shear stress distribution

Figure 12: Stress analysis of bi-directional thermo-elastic beam at x = L/2 with N = n = 100
subjected to a non-uniform temperature field

peak-location of z = 0.0023. This may stem from stress rearrangements in the two-dimensional
regime which are not covered in our proposed approach.

3.3 FGM shell structure

Consider a hemisphere with a radius R = 10 and a thickness of h = 0.5 (Fig. 13(a)). Due
to symmetry only one quarter of the structure is discretized by a mesh according to Fig. 13(b).
The material properties and boundary conditions depend only on the radial coordinate r, thus,
only one quarter of the structure needs to be analyzed3. The model is loaded at the inner and
outer surface with a convection boundary condition,

hct = hcb = 10 , TBt = 0 , TBb = 300. (88)

At the equator the mean temperature is kept at T = 500. Due to these thermal boundary
conditions we expect strong variations of temperature in thickness direction ẑ and in membrane

3This axisymmetric problem could be analyzed with less than a quarter, however, in order to check the perfor-
mance of the proposed formulation regarding warped element configurations, we use on quarter of the structure.
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Figure 13: Problem description - FGM shell structure

ur uz Error in ur Error in uz
ANSYS 0.2104 -0.1256 - -

Present N = 48 elements 0.2646 -0.1216 25.7% 3.2%
Present N = 192 elements 0.2261 -0.1211 7.5% 3.6%
Present N = 768 elements 0.2100 -0.1210 0.2% 3.7%

Table 2: Displacements of FGM shell structure

direction φ. The material parameters show only spatial variations of the thermal conductivity,

k(ẑ) = 3.5 + 20ẑ + 40ẑ2, (89)

representing a parabolic distribution with low conductivity at the outside, k(ẑ = −h/2) = 1, and
high conductivity at the inner surface, k(ẑ = h/2) = 11. Since we focus mainly on temperature
effects Young’s modulus E, Poisson’s ratio ν and thermal expansion α are assumed constant
with respect to the thickness direction, i.e.

E = 10 , ν = 0.3 , α = 1 · 10−4. (90)

Elastic solutions of an FGM hemisphere with a varying Young’s modulus can be found in [16].
The reference results are evaluated using an axisymmetric model in ANSYS with the fully
coupled PLANE 13 element and a very fine discretization of 100×500. For sake of convenience
we apply a thermal Dirichlet boundary condition of T (R− h/2 ≤ x ≤ R+ h/2) = 500 accepting
some error discussed in Sect. 3.1. The temperature distributions with respect to the meridian
0 ≤ φ ≤ 90 are shown in Fig. 14(a). Due to high4 convection coefficients hcb = hct =
10 the results do not show any variations for φ > 20. The temperature field with respect to
the thickness direction is depicted in Fig. 14(b). The distributions evaluated with the present
formulation (solid lines) are compared to the ANSYS solutions, indicting a good accuracy. The
displacements in radial direction ur and in height direction uz are listed in Tab. 2 for different
numbers of shell elements. We observe a clear convergence with respect toN for displacements

4The term “high” can not be seen absolutely, however, it causes large thermal gradients with respect to the
meridian direction φ.
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Figure 14: Temperature distributions in FGM shell structure (Solid line: Present formulation,
Dashed line: ANSYS) - N = 768, n = 50, I = 10

in radial direction leading to very accurate results for N = 768. In terms of displacements in
height direction some error of < 4% has to be accepted. Since a main issue of the proposed
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Figure 15: Convergence issues in FGM shell structure

procedure is the iterative strategy discussed on page 5, the convergence of mean temperature T
(normalized to the ANSYS result) at φ = 90 with respect to the number of iterations I is studied
in Fig. 15(a). There, a stable value is reached after six iterations. A final error of less than four
percent is also indicated in Fig. 14 and stems from the large temperature gradient in meridian
direction at the equator, which may not be resolved properly with low numbers of N . Figure
15(b) indicates convergence with respect to the number of elements discretizing the transverse
direction. Obviously, using fifty elements in transverse direction leads to accurate solutions.

4 Conclusion

In this paper a novel approach to the evaluation of thermo-elastic effects in FGM or multi-
layer shell structures is proposed. The temperature field is evaluated by an iterative procedure
assuming non-constant temperature variations with respect to the thickness direction. A key
issue is the decomposition of T (x̂, ŷ, ẑ) according to (11). The resulting displacement fields
are evaluated with the aid of a quadrilateral shell element based on effective elastic quantities.
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Suitable projection schemes enable an independent derivation of the membrane and the plate
bending part. Drilling rotations are included based on an enlarged functional, where the sym-
metry of stress and strain is enforced only in a weak sense. Special strain field interpolations
ensure that all parts of the stiffness matrix can be given analytically even for arbitrarily shaped
element configurations, thus, any Gaussian quadrature is avoided. It is shown that thermal ex-
pansion causes internal forces and couples, which are applied onto the proposed shell element.
The resulting analysis procedure can be termed efficient and leads to accurate results compared
to ANSYS solutions where continuum formulations are used.
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