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1Riga Technical University
2 Daugavgrivas street Riga LV 1007 Latvia

e-mail: v.koliskina@gmail.com, andrejs.koliskins@rtu.lv

2 Tallinn University of Technology
Ehitajate tee 5 19086 Tallinn Estonia

e-mail: rauno.gordon@ttu.ee,olev@elin.ttu.ee

Keywords: Eddy Currents, Truncated Eigenfunction Expansion

Abstract. A quasi-analytical method for the solution of direct eddy current testing problems
for the case of cylindrical volumetric flaws is presented in the paper. The method is based on
a simple physical assumption that the electromagnetic field induced by a coil carrying alter-
nating current is exactly equal to zero at a sufficiently large radial distance from the coil. The
axis of the coil concides with the axis of a cylindrical flaw. The method of truncated eigenfunc-
tion expansions is used to compute the change in impedance of the coil. Complex eigenvalues
are computed numerically using the method which does not require initial approximation for
the eigenvalue. Computations are presented for different values of the parameters of the prob-
lem. Calculated change in impedance is compared with numerical results obtained by means of
Comsol Multiphysics software. Good agreement between quasi-analytical method and numeri-
cal solution is found.
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1 INTRODUCTION

Eddy currents are widely used in nondestrutive testing of electrically conducting materials.
Identification of flaws in conducting media is one of the goals of nondestructive testing. This is
a complicated inverse problem which can be solved if a solution of a direct problem is available.
In cases where a conducting medium is unbounded in one or two spatial dimensions solutions
of a direct problem can be found by the method of integral transforms [1], [2]. In practice,
however, finite size of a conducting medium has to be taken into account especially in cases
where the size of an excitation coil is comparable to the size of the medium. Method of truncated
eigenfunction expansions (known as the TREE method in the literature) is suggested in [3],
[4] in order to construct solutions of direct problems for media of finite size. The method is
based on a simple physical assumption that the electromagnetic field induced by a coil carrying
alternating current is exactly equal to zero at a sufficiently large radial distance from the coil.
This assumption allows one to extend the class of problems which can be solved by a quasi-
analytical method i.e., by the method of truncated eigenfunction expansions. Examples of the
application of the TREE method to the solution of direct eddy current testing problems with
cylindrical symmetry can be found in [3], [5], [6], [7]. The case of an asymmetric infinite
cylindrical flaw is considered in [8]. In the present paper we present the solution of eddy current
testing problem for the case of a cylindrical flaw in a two-layer plate. Such a model can be used
to assess the effect of corrosion in metal coatings.

2 MATHEMATICAL FORMULATION OF THE PROBLEM

Consider an air core coil located above an electrically conducting nonmagnetic two-layer
plate of finite size. A flaw in the form of a circular cylinder is located in the medium. It is
assumed that the axis of the flaw coincides with the axis of the coil. An example of the flaw at
the surface of a two-layer plate is shown in Fig. 1.
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Figure 1: A coil carrying alternating current above a conducting two-layer plate with a flaw.

It is assumed that the electromagnetic field is equal to zero at a sufficiently large distance b
from the axis of the coil. Using the cylindrical symmetry of the problem we assume that the
vector potential has only one non-zero component in the azimuthal direction. As usual in such
type of problems, we consider a single-turn coil of radius r0 located at the distance h above the
top surface of the plate. The solution for the case of a coil with finite dimensions can be found
by the superposition principle. The system of the Maxwell’s equations in each of the regions
R0–R4 shown in Fig. 1 has the form:
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where σ1 and σ2 are the electrical conductivities of regions R2 and R3, respectively, σ = σ1 if
c < r < b and σ = 0 if 0 ≤ r < c.

The boundary conditions at r = b are

Ai|r=b = 0, i = 0, 1, ..., 4. (6)

The boundary conditions at r = c have the form

Aair1 |r=c = Acon1 |r=c,
∂Aair1

∂r
|r=c =

∂Acon1

∂r
|r=c, (7)

where we use the notations Aair1 and Acon1 in regions 0 ≤ r < c and c < r < b, respectively.
The conditions at the surfaces z = 0, z = −d1, z = −d3 and z = −d5, where d3 = d1 + d2,

d5 = d3 + d4 are
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In addition, the solution is bounded as z → ±∞:

A0|z→+∞ = 0, A4|z→−∞ = 0. (14)

3 PROBLEM SOLUTION

Problem (1)-(14) is solved by the method of separation of variables. It is convenient to
represent the solution in region R0 in the form

A00(r, z) =
∞∑
i=1

(D1i e
−λizJ1(λir), (15)

A01(r, z) =
∞∑
i=1

(D2i e
−λiz +D3i e

λiz)J1(λir), (16)
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where λi = αi/b and αi are the roots of the equation

J1(αi) = 0. (17)

HereA00 andA01 represent the solutions in subregionsR00 = {0 < z < h} andR01 = {z > h},
respectively. The vector potential is continuous at z = h:

A00|z=h = A01|z=h. (18)

Another condition at z = h can be obtained from equation (1). Integrating (1) with respect to z
from h− ε to h+ ε and considering the limit as ε→ +0 we obtain

∂A01

∂z
|z=h −

∂A00

∂z
|z=h = −µ0Iδ(r − r0). (19)

Using (15), (16), (18) and (19) we obtain
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∞∑
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The solution in region R1 can be written in the form

Aair1 (r, z) =
∞∑
i=1

(D4iJ1(pir) e
piz +D5iJ1(pir) e

−piz, (22)

Acon1 (r, z) =
∞∑
i=1

[(D6iJ1(qir) +D7iY1(qir)) e
piz

+(D8iJ1(qir) +D9iY1(qir)) e
−piz], (23)

where pi =
√
q2i + jωσ1µ0. Using (22), (23) and the first condition in (7) we obtain

Aair1 (r, z) =
∞∑
i=1

J1(pir)T1(qic)[D̂6i e
piz + D̂8i e

−piz], (24)

Acon1 (r, z) =
∞∑
i=1

J1(pic)T1(qir)[D̂6i e
piz + D̂8i e

−piz], (25)

where
T1(qir) = J1(qir)Y1(qib)− J1(qib)Y1(qir)

and D̂6i, D̂8i are arbitrary constants. Using the second condition in (7) the following equation
is obtained

qiT
′
1(qir)J1(pic) = piJ

′
1(pic)T1(qic). (26)

Equation (26) is used to calculate complex eigenvalues pi and the corresponding values qi.
The solution in region R2 is

A2(r, z) =
∞∑
i=1

(D10i e
p1iz +D11i e

−p1iz)J1(λir), (27)
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where p1i =
√
λ2i + jωσ1µ0.

Similarly, the solution in region R3 can be written in the form

A3(r, z) =
∞∑
i=1

(D12i e
p2iz +D13i e

−p2iz)J1(λir), (28)

where p2i =
√
λ2i + jωσ2µ0.

Finally, the bounded solution in region R4 is

A4(r, z) =
∞∑
i=1

D14i e
λizJ1(λir). (29)

Unknown constants in (20)–(25), (27)–(29) can be found from the boundary conditions (8)–
(13). It can be shown that the corresponding system of equations can be reduced to system of
two linear algebraic equations with respect to the unknowns D̂6i and D̂8i. It is neccesary to
truncate the infinite series to a finite number of terms, m. Computational details for the solution
of similar problems can be found elsewhere (see, for example, [3] and [5]).

Assuming that the coefficients D̂6i and D̂8i are calculated (this can be done using any linear
solver) we obtain the induced vector potential of the single-turn coil in the form

Aind0 (r, z, r0, h) =
m∑
k=1

D2k e
−λkzJ1(λkr). (30)

Induced vector potential for the coil of finite dimensions can be computed as follows

Aindcoil(r, z) =
∫ r2

r1

∫ z2

z1
Aind0 (r, z, r0, h)drodh. (31)

The induced change in impedance of the coil is given by the formula (see [3]):

Zind =
2πjωN

I(r2 − r1)(z2 − z1)

∫ r2

r1

∫ z2

z1
rAindcoil(r, z)drdz, (32)

where N is the number of turns in the coil.
Using (30)–(32) we obtain

Zind =
2πjωN2µ0

(r2 − r1)2(z2 − z1)2)

n∑
i=1

e−λiz1 − e−λiz2
λ3i

∫ λir2

λir1
yJ1(y) dy

×
n∑
k=1

Yik
e−λkz1 − e−λkz2

λ3k

∫ λkr2

λkr1
ξJ1(ξ) dξ. (33)

The coefficients Yik in (33) are bulky and are not shown here for brevity.

4 NUMERICAL RESULTS

Calculations of the change in impedance of the coil are performed with Mathematica. Inte-
grals in (33) are evalauted in closed form using Bessel and Struve functions (see [9]). Complex
eigenvlaues (the roots of equation (26)) are computed using the method described in [10] and
[11]. Numerical results are presented for the following values of the parameters of the problem:
z1 = 0.3 mm, z2 = 2.6 mm, σ1 = 3 Ms/m, σ2 = 7 Ms/m, d1 = 0.4 mm, d2 = 0.5 mm,

5



Valentina Koliskina, Andrei Kolyshkin, Rauno Gordon and Olev Märtens

d3 = 0.8 mm, c = 2.2 mm. The real amd imaginary parts of the change in impedance for the
seven frequencies of the excitation current (from 1 kHz to 7 kHz with a step size of 1 kHz) are
shown in Figs. 2 and 3. The inner and outer radii of the coil in Fig. 2 are r1 = 1.5 mm and
r2 = 2.5 mm, respectively. The same problem is also solved numerically using Comsol Multi-
physics software. The details of the finite element modeling of similar problems with Comsol
Multiphysics can be found in [12].
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Figure 2: The change in impedance of the coil with r1 = 1.5 mm, r2 = 2.5 mm.

The change in impedance of the coil is also shown in Fig. 3 for the case r1 = 2.5 mm,
r2 = 4.5 mm (the other parameters are the same as in Fig. 2).
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Figure 3: The change in impedance of the coil with r1 = 2.5 mm, r2 = 4.5 mm.

As can be seen from the graphs good agreement is found between the results obtained by the
TREE method and finite element modeling with Comsol Multiphysics.
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5 CONCLUSION

The model described in the paper represents the continuation of the authors’ work related
to the solution of direct eddy current testing problems for the case of cylindrical flaws. Good
agreement is found between quasi-analytical solution and finite element modeling for all cases
considered. The results obtained in the paper can be generalized for the case of magnetic mate-
rials (assuming that the magnetic permeability of a medium is constant).
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