
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

ALGORITHM FOR FAST SIMULATIONS OF SPACE–TIME FINITE
ELEMENT METHOD

Marcin Skotniczny1, Anna Paszynska2, and Maciej Paszynski1

1AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland

e-mail: {mskotn, maciej.paszynski}@agh.edu.pl

2Jagiellonian University
ul. Lojasiewicza 11, Krakw, Poland

anna.paszynska@uj.edu.pl

Keywords: Finite element method, Time–space formulations, h–adaptivity, Multi–frontal solver,
Orderings

Abstract. In this paper we consider element partition trees for multi–frontal solver algorithms
utilized in space–time finite element method. The element partition trees are utilized for gen-
erating the ordering for the multi–frontal solver algorithm. In particular, we consider three or
four dimensional finite element method grids where two or three dimensions represent space
and one additional dimension represents time. Additionally, we consider computational grids
resulting from h–adaptive algorithms, namely grids refined towards point, edge, face or hyper-
face singularity. We perform numerical experiments and compare our method with alternative
state of the art ordering algorithms available through MUMPS interface.

1



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

1 INTRODUCTION

We propose a heuristic algorithm generating element partition trees for 3D or 4D grids re-
fined towards singularities. This work is an extension of the algorithm proposed for two dimen-
sional problems [1]. When we solve 3D time dependent problem over a large grid, we need
to utilize a sequence of grids, that can be refined only in spatial domain, and we cannot take
advantage of possible time adaptivity. In this paper we consider an alternative approach that
allows for time adaptivity, i.e. allows to use different time steps over different parts of the 3D
mesh, at the same time allowing the time steps to change over time. As example, we investigate
four dimensional grids refined towards point, edge, face and hyper–face singularities. We gen-
erate element partition trees obtained by bisections weighted by element size and estimate the
resulting number of floating point operations of the multi–frontal solver algorithm. Our analysis
shows that for both three– and four–dimensional point and edge singularity we obtain the linear
computational cost O(N), for three– and four–dimensional face singularity we obtain compu-
tation cost O(N1.5) and for four–dimensional hyper–face singularity we obtain cost of O(N2)
where N is the number of nodes. Values for edge, face and hyper–face singularities correspond
to one, two and three dimensional uniform grids respectively. Our method is dedicated to stable
time-space formulations using classical finite element method [2] or the DPG method [3].

Figure 1: 3D mesh with point singularity and its element partition tree.

Figure 2: 3D mesh with edge singularity and its element partition tree.

2



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

Figure 3: 3D mesh with face singularity and its element partition tree.

2 BISECTIONS WEIGHTED BY ELEMENT SIZE ALGORITHM

In this section we introduce top down algorithm for the construction of element partition
trees, called bisections weighted by element size algorithm. The algorithm is based on the
multilevel recursive bisection. We make the following asumptions:

• The input is the graph in which vertices represent mesh elements and edges represent
spatial adjacency relation between them.

• We assign weights to vertices equal to the volume of element that each of them represents.

• The volume is proxy for refinement level and is defined as (1
2
)3R in 3D and (1

2
)4R in 4D,

where R is the refinement level of a mesh element. This way, the total volume over all
elements should equal 1.

The input graph is recursively partitioned into 2 equally–weighted parts by using graph parti-
tioning algorithm. The goal of the graph partitioning problem is to compute a balanced parti-
tioning, such that:

• the number of edges (or the sum of their weights) over the interface is minimal, and

• the number of vertices in each part of the graph is the same (or the sum of weights of
vertices in each part of the graph).

To solve the problem, we use METIS WPartGraphRecursive function to find a balanced
partition of a graph where weights on vertices are equal to the volumes of represented mesh
elements and weights on the edges equal to 1.

We illustrate the obtained partitions for the recursive partition over 3D meshes with point,
edge and face singularities in Figures 1–3. We also show the boundary of corresponding 4D
meshes with singularities in Figure 4. The recursive partitions generate the ordering in the
following way: we start traversing the partition tree from leaves up to the root in parallel. At
leaves we eliminate interiors of elements and on the internal tree nodes we eliminate mesh
nodes on faces shared between two partitioned blocks of the mesh. We continue this process
recursively up to the root of the partition tree.

3



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

(a) Point singularity. (b) Edge singularity.

(c) Face singularity. (d) Hyperface singularity.

Figure 4: 4D meshes with singularities.

4



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

(a) 3D point singularity.

(b) 3D edge singularity.

(c) 3D face singularity.

Figure 5: Scalability of the weighted nested dissections algorithm in 3D.

5



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

3 NUMERICAL RESULTS

In this section we present numerical experiments concerning the execution time of our bi-
sections weighted by element size algorithm for 3D and 4D grids with singularities. We show
that our method outperforms MUMPS [4, 5] state of the art solver with (approximate) mini-
mum degree or filling orderings [6, 7, 8], METIS [9] or PORD [10] orderings. The comparison
is presented in Figures 5 and 6, for 3D and 4D respectively. The FLOPs for the 4D singular-
ities, namely point singularity (kind=0), edge singularity (kind=1), face singularity (kind=2),
hyperface singularity (kind=3) are also summarized in Table 1.

Figure 6: Scalability of the weighted nested dissections algorithm in 4D.

4 CONCLUSIONS

We have presented preliminary results for a promising method for the generation of the
orderings for the multi–frontal solver algorithm — the numerical results show that the approach
presented can outperform the current state of the art solutions. At the same time we have verified
a novel approach to solve space–time formulations considering the time dimension as another
space dimension. We intend to investigate this approach and the possibilities it presents for
various finite element methods. In particular, it promises benefits over traditional algorithms in
the areas of adaptivity and parallelization.

6



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

Table 1: Floating point operation costs for four dimensional singularities.

Dimensions Singularity Depth Elements Nodes FLOPs
4 0 0 1 81 180441
4 0 1 16 625 6438573
4 0 2 31 865 9260925
4 0 3 46 1105 12083277
4 0 4 61 1345 14905629
4 0 5 76 1585 17727981
4 0 6 91 1825 20550333
4 0 7 106 2065 23372685
4 0 8 121 2305 26195037
4 0 9 136 2545 29017389
4 0 10 151 2785 31839741
4 0 11 166 3025 34662093
4 0 12 181 3265 37484445
4 0 13 196 3505 40306797
4 0 14 211 3745 43129149
4 0 15 226 3985 45951501
4 0 16 241 4225 48773853
4 0 17 256 4465 51596205
4 0 18 271 4705 54418557
4 0 19 286 4945 57240909
4 1 0 1 81 180441
4 1 1 16 625 6438573
4 1 2 46 1161 15728465
4 1 3 106 2177 45010855
4 1 4 226 4153 132140065
4 1 5 466 8049 372950179
4 1 6 946 15785 986944501
4 1 7 1906 31201 2449394343
4 1 8 3826 61977 5755536601
4 1 9 7666 123473 12948968907
4 1 10 15346 246409 28178439933
4 2 0 1 81 180441
4 2 1 16 625 6438573
4 2 2 76 1821 46109087
4 2 3 316 6121 517831573
4 2 4 1276 22389 5999916811
4 2 5 5116 85633 64220568465
4 3 0 1 81 180441
4 3 1 16 625 6438573
4 3 2 136 3291 222691306
4 3 3 1096 21485 12813363367

7



Marcin Skotniczny, Anna Paszynska, and Maciej Paszynski

ACKNOWLEDGEMENTS

The work presented in this paper has been supported by National Science Centre, Poland
grant no. DEC-2012/06/M/ST1/00363.

REFERENCES

[1] H. AbouEisha, V. M. Calo, K. Jopek, M. Moshkov, A. Paszynska, M. Paszynski,
M.Skotniczny, Optimization of Element Partition Trees for Two-Dimensional h Refined
Meshes, submitted to Computers and Mathematics with Applications (2016)

[2] T.J.R. Hughes, G.M. Hulbert, Space-Time Finite Element Method for Elastodynamics:
Formulations and Error Estimates, Computer Methods in Applied Mechanics and Engi-
neering 66 (1988) 339-363

[3] L. Demkowicz, J. Gopalakrishnan, Recent Developments in Discontinuous Galerkin Fi-
nite Element Methods for Partial Differential Equations (eds. X. Feng, O. Karakashian,
Y. Xing). In: vol. 157. IMA Volumes in Mathematics and its Applications, (2014). An
Overview of the DPG Method, 149–180

[4] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent, 2001. A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM Journal of Matrix Analy-
sis and Applications, 23(1) :15–41.

[5] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, 2006. Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing Vol 32(2):136-156.

[6] P. Heggernes, S.C. Eisenstat, G. Kumfert, A. Pothen, 2001. The Computational Complex-
ity of the Minimum Degree Algorithm, ICASE Report No. 2001-42.

[7] P. R. Amestoy, T. A. Davis, I. S. Du, 1996. An Approximate Minimum Degree Ordering
Algorithm, SIAM Journal of Matrix Analysis & Application, 17(4):886-905.

[8] G.W. Flake, R.E. Tarjan, K. Tsioutsiouliklis, 2003. Graph clustering and minimum cut
trees, Internet Mathematics 1:385-408.

[9] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM Journal of Scientiffic Computing, 20, 1 (1998) 359-392.

[10] J. Schulze, Towards a tighter coupling of bottom-up and top-down sparse matrix ordering
methods, BIT, 41, 4 (2001) 800.

8


	INTRODUCTION
	BISECTIONS WEIGHTED BY ELEMENT SIZE ALGORITHM
	NUMERICAL RESULTS
	CONCLUSIONS

