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Abstract. In this contribution, a homogenized beam finite element of double symmetric cross-
section made of a Functionally Graded Material (FGM) is presented, which can be used for 
static, modal and buckling analysis of single beams and beam structures with three 
directional variation of material properties. The material properties in a real beam can vary 
continuously in longitudinal direction while the variation with respect the transversal and 
lateral directions is assumed to be symmetric in a continuous or discontinuous manner. The 
shear force deformation effect and the effect of inertia and rotary inertia are taken into 
account. Additionally, the longitudinally varying Winkler elastic foundation and the effect of 
axial force are included by the finite element equations as well. Homogenization of spatially 
varying material properties to effective quantities with a longitudinal variation is done by the 
extended mixture rules and multilayer method (MLM). For the homogenized beam the 1212 
finite element effective matrix, consisting of the linearized stiffness and consistent mass 
inertia terms, is established. Numerical experiments are made concerning static, modal and 
buckling analyses of single FGM beam and beam structures to show the accuracy and 
effectiveness of the proposed FGM beam finite element. 
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1 INTRODUCTION 

Important classes of structural components, where FGM is used, are beams and beam 
structures. FGM beams play an important role not only in classical structural applications, but 
we can find many applications in thermal, electric-thermal or electric-thermal-structural 
systems (e.g. micro-electro-mechanical systems (MEMS) as sensors and actuators and other 
mechatronic devices). In all these applications, using new materials like FGM can greatly 
improve the efficiency of the systems. FGM is built as a mixture of two or more constituents 
whose particles have almost the similar form and dimensions (powder, plasma particles, etc.). 
The continuous or multilayered variation of macroscopic material properties can be caused by 
varying the volume fraction of the constituents or by varying the constituent's material 
properties (e.g. by a non-homogeneous temperature field). In the literature a huge amount of 
papers can be found which deal with modeling and simulation of static and dynamic problems 
of FGM beams. 

The latest results of theoretical research on statics and vibration and loss of stability of 
FGM and composite beams are presented for example in the articles [1-13].The first 
significant feature of the references [1-8] (and also of those published in the previous period) 
is that variation of material properties is considered only in one direction, usually along the 
beam thickness, and exceptionally in the longitudinal direction of the beam. The second 
feature of these works is that they are analyzed only a simple planar beams with rectangular 
cross-section. The third feature of most of these works is that their fundamental equations are 
based on the equations of plane stress state in a continuum with varying material properties 
which are simplified for the solution of the beams. In [9-12], general formulations for non-
uniform shear warping are presented and an advanced 2020 stiffness matrix and the 
corresponding nodal load vector of a member of arbitrary composite cross section is 
developed, taking shear lag effects into account due to both flexure and torsion. In [13], a 
static analysis of three-dimensional FGM beams by hierarchical modeling and a collocation 
meshless solution method is presented. 

With regard to our work in the past period in the field, we presented in [14-16] a solution 
of free vibration of a single 2D FGM beam with continuous planar polynomial variation of 
material properties (in axial and transversal direction) by a fourth-order differential equation 
of second order beam theory. The focus of these publications is laid on a new concept for 
expanding the second order bending beam theory considering the shear deformation according 
to Timoshenko beam theory. There, the shear deformation effect in FGM beams with planar 
continuous variations of material properties is originally included by means of the average 
shear correction factor that has been obtained by an integration of the shear correction 
function [17]. A continuous polynomial variation of the effective elastic modulus and the 
mass density is considered by continuous polynomial planar variation of both the volume 
fraction and material properties of the FGM constituents. The choice of a polynomial 
gradation of material properties enables an easier integration of the derived differential 
equation and allows to model practically realizable variations of material properties. The 
effect of consistent inertia and rotary inertia, and the effect of axial forces are taken into 
account as well. 

As mentioned above, many time published papers registered e.g. in the Web of Science 
database, deal with static and dynamic and buckling analysis of the FGM single planar beam 
with transverse variation of material properties only. Less attention is paid on both the 
longitudinal and lateral variations of material properties. The authors failed in finding more 
papers which deal with analysis of single beams or spatial beam structures made of FGM with 
spatial variation of material properties (in three directions). 
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The proposed contribution is a continuation of our previous papers [14-18].  The derivation 
of the FGM beam finite element equations suitable for static, modal and buckling  analyses of 
single beams or spatial beam structures made of spatially varying FGM (in longitudinal and 
transversal and lateral direction) is presented. From the differential equations of axial, flexural 
and torsional deformation of the FGM beam with longitudinally varying material properties 
the transfer relations and following the local and global finite beam element matrices are 
established. Effects of axial and shear forces are included as well as the longitudinally varying 
Winkler elastic foundation and inertia loads. Homogenization of the spatially varying material 
properties in the real FGM beam and calculation of their effective values are done by 
extended mixture rules and by the multilayer method (MLM) [18,25]. This method can also 
be used in the homogenization of multilayer beams with symmetrically discontinuous 
(multilayered) variation of material properties in transversal and lateral direction. In the modal 
and buckling analysis an eigenvalue problem is solved. Numerical experiments are performed 
to calculate the elastostatic and modal response and the critical buckling force of chosen FGM 
beams and beam structures with rectangular and hollow cross-sections with spatial variations 
of material properties. The solution results are discussed and compared to those obtained by 
means of very fine 3D – solid and beam finite element meshes of the software ANSYS 
Workbench [34].  
The novel aspects of the current paper are: 

 extension of the MLM to homogenization of the spatially (polynomial) varying 
material properties (continuously in longitudinal and symmetrically in transversal 
and lateral direction (continuously or multilayered)) for calculation of the effective 
longitudinally varying elasticity modules for axial and flexural and torsional 
loading, and the competent effective mass-densities; 

 extension of the second order beam theory and the uniform torsion theory on static, 
modal and buckling analysis of FGM beams with spatial variation of material 
properties (in three directions); 

 including the effects of the shear and axial forces, as well as the longitudinally 
varying Winkler elastic foundations; 

 derivation of the transfer relations for the 3D straight FGM beam (with 
homogenized longitudinal variation of the effective material properties) of doubly 
symmetric cross-section; 

 establishing of the 1212 effective finite element matrix of the 3D FGM beam 
(with homogenized longitudinal variation of the effective material properties) 
consisting of the linear and linearized geometric stiffness and consistent mass 
inertia terms; 

 performing of the numerical experiments concerning the static and modal and 
buckling analysis of the FGM beams and beam structures with spatially varying 
material properties. 

2 FINITE ELEMENT EQUATIONS OF THE 3D FGM BEAM 

Let us consider a straight beam element of doubly symmetric cross-section – Figure 1. The 
degrees of freedom at node i are: the displacements ui, vi, wi in the local directions x, y, z, and 
the cross-sectional area rotations about the x, y, z directions - iziyix ,,, ,,  . The degrees of 

freedom at the node j are denoted in a similar manner. The internal forces at node i are: the 
axial force Ni, the transversal forces iyR ,  and izR , , the bending moments iyM ,  and, the torsion 

moment ixM , .  
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Figure 1: The local internal variables, static and inertia and loads for transfer matrix and finite element methods. 

Furthermore,  xnn xx  denotes the axial force distribution,  xqq zz   and  xqq yy   are 

the transversal and lateral force distributions,    xmmxmm yyxx  ,  and  xmm zz   are the 

distributed moments,   zyx A denote the mass distribution, yy I  , zz I   

and pxT I   refer to the distributions of mass moments of inertia,   H

L

H

L x    is the 

homogenized effective mass density distribution, A is the cross-sectional area, yI and zI  are 

the second moments of area, zyp III  denotes the polar moment of area, 

         xkkxkkxkkxkkxkk zzyyzzyyxx  ,,,,  are the elastic foundation modules 
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(the torsional elastic foundation is not considered), and   is the circular frequency. The 

effective homogenized and longitudinally varying stiffness reads as follows:  AxEEA NH
L  is 

the axial stiffness (   NH

L

NH

L ExE  is the effective elastic modulus for axial loading), 

  y
HM

Ly IxEEI y  is the flexural stiffness about the y-axis (   HM

L

HM

L
yy ExE  is the effective 

elastic modulus for bending about axis y),   z
HM

Lz IxEEI z  is the flexural stiffness in axis z,   

(   HM

L

HM

L
zz ExE  is the effective elastic modulus for bending about axis z),   AkxGAG sm

y
H
Lyy   

is the reduced shear stiffness in y-direction (   H

Ly

H

Ly GxG   is the effective shear modulus and 
sm
yk is the average shear correction factor in y-direction),   AkxGAG sm

z
H
Lzz   is the reduced 

shear stiffness in z – direction (   H

Lz

H

Lz GxG   is the effective shear modulus and sm
zk is the 

average shear correction factor in z - direction),   T
HM

L IxG x  is the effective torsional stiffness,

  HM
L

HM
L

xx GxG   is the torsional elastic modulus and TI  is the torsion constant – Ip = IT for 
the circular and ring cross-section). The derivatives with respect to x of the relevant variable 
is denoted with an apostrophe “  ”  throughout the article. 

The differential equations for axial, transversal, lateral and torsional deformation and their 
solution are established according the Figure 1: Definition according the Transfer Matrix 
Method. The finite element equations of the 3D FGM beam are established from the transfer 
matrix relations according Figure 1: Definition according the Finite Element Method. 
 
2.1 Axial deformation 
 
Equation (1) results from the axial deformation problem of the FGM beam, including the 
specific case of harmonic oscillations (  xuu  is the axial displacement distribution,  xuu   

is its first derivative and  xuu   is its second derivative): 

  uknN xxx
2 , (1) 

 
EA

N
u  , (2) 

By combination of (1) and (2) we get the differential equation with non-constant polynomial 
coefficients 

 u u u xu u u n     2 1 0 , (3) 

with xuuu kAEEA  2
012 ,,  , and  xEE NH

L . The polynomial distributed axial 

force is: 
n

n

n

p
pk

x x ,k x , x , x , x ,p
k

n n x n x n x n x ... n x


      0 1 2
0 1 2

0

, where x,kn  are the values of the 

k-th derivative of the axial force xn at the beam node i. For the modal analysis of axial 

vibration the right hand side of (3) vanishes.  
The solution of (3) can be expressed by the polynomial transfer functions

 kN kNb b x , ( nk , p 0 2 ) for axial loading [19, 20]: 
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. (4) 

Here, iu is the axial displacement and iu is the value of first derivative of  u x  at node i. 

If the  xu  and iu  are replaced with the constitutive equation of the FGM beam (2), we get 
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, (5) 

where iE  is the initial value of the homogenized elastic modulus  xE NH

L  at node i.  

By setting Lx   in (5), the dependence of the nodal variables at node j on the nodal variables 
at node i are obtained. By appropriated mathematical operations and by considering the 
altered orientation of the local internal variables in FEM formulation (see Fig. 1), the local 
finite element equation for the axial loading (including the particular case of axial harmonic 
vibrations) are obtained (with i iN N  ): 

, ,
, ,

, , ,ii

jj , , , , ,
, , , ,

, ,

A A
B B F

A A AuN

uN A A A A A
B A B F A

A A A
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1 1 1 3
1 1 1 7 1

1 2 1 2 1 2

1 1 2 2 2 2 1 3 2 2
7 1 2 1 7 7 7 2 3

12 1 2 1 2

1

.  (6) 

 
It can be easy shown that the matrix B is symmetric. The terms of the matrix Band the loads 
vector F are calculated numerically using MATHEMATICA [21]. Their indices are 
deliberately numbered in order to indicate the position of the components in the local matrix 
and loads vector of the 3D beam finite element, which is established later. 
 
2.2 Flexural deformation about the y and z axis 

 
The differential equation of 4th order with non-constant coefficients of the homogenized FGM 
beam flexural transversal deformation (including the particular case of flexural harmonic 
vibrations) in the x-z plane (Figure 1) has the form [15]: 

  w w w w w Lxzw w w w w x            4 3 2 1 0  (7) 

with polynomial loads acting in the x-z plane 

max

, , , , , ,( ) ( )
myqz qz qz mypp p p ps

s k k k k k
Lxz Lxz s z k z k z k y k y k

s k k k k k

x x q x kq x k k q x m x km x    

     

           1 2 1

0 0 1 2 0 1

1 ,  

(8) 

where: ,Lxz s  are the  values of the k-th derivative of load polynomial (8) at the beam node i    

(s is the maximum degree of the polynomial); z,kq  are the  values of the k-th derivative of the 
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polynomial transversal force  xqq zz  , and y ,km are the  values of the k-th derivative of the 

polynomial moment  y ym m x at the beam node i ( qzp and myp  is the  maximum degree of 

the polynomials).For the modal analysis of flexural vibration the right hand side of (7) 
vanishes. Again,  xww   refers to the deflection curve in the zx plane. The derivation of 

the non-constant coefficients w0  to w4  and appropriated parameters of the differential 

equation (7) from the main coupled equations (9) and (10) of the 2nd order beam theory 
(including the inertia forces, shear and axial force) using the relation between the transversal 
and shear force (11) is described in [15, 17]. 

wwkqR zzz
2  yyyzy mQM  2   (9) 

e
yyy

y

y
y EIM

EI

M
   yzzz

z

z
y AGwAGQ

AG

Q
w      (10) 

   z
II

zz RwNkQ   (11) 

Here, zQ  is the shear force and NN II  is the resultant axial force of the 2nd order beam 

theory (it has a system character and has to be known). In our case, 
HM

L
yEE   is the 

homogenized elastic modulus for bending about y and H
LzGG   is the shear modulus in z-

direction. Further,  xyy   denotes the angle of cross-section rotation about they-axis. 

If the variation of the beam parameters is polynomial, the solution of the differential 
equation (7) based on the transfer functions [20] can be written as, 
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 
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 
 
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 
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 
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 4
0

. (12) 

There, jwb , jwb , jwb   and jwb  with ( 3,0j ),and s wb 4 , s wb  4 , s wb  4  and s wb 4 are the solution 

functions (so called the transfer functions for bending) of the differential equation (7). The 
dependence of the  xww  ,  xww   and  xww   on the    xMMx yyyy  ,  and 

 xRR zz   is described in [648], from which the transfer matrix expression is obtained 

 

, , , , i ,

, , , , y ,i ,y

, , , , y ,i ,y

, , , , z ,i ,z

A A A A w Aw( x )

A A A A A( x )

A A A A M AM ( x )

A A A A R AR ( x )


      
      
         
      
      

       

1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

3 1 3 2 3 3 3 4 3 5

4 1 4 2 4 3 4 4 4 5

. (13) 

The kinematical and kinetic variables at node I are denoted by index i in (12). The terms A in 
(12) are established semi analytically using MATHEMATICA [21].  
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 By setting Lx   in (13) the dependence of the nodal variables at node j on the nodal 
variables at node i are obtained. Then, using appropriate mathematical operations and by 
considering the altered orientation of the local internal variables in FEM formulation (see Fig. 
1), the local finite element equations for the deflection (in particular case for the flexural free 
vibration) about the y-axis read (with z ,i z ,iR R  , y ,i y ,iM M  , y ,i y ,i    and y , j y , j    ), 
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B B B BM F





      
      
              
      

        

3 3 3 6 3 9 3 12 3

5 2 5 5 5 8 5 11 5

9 3 9 6 9 9 9 12 9

11 2 11 5 11 8 11 11 11

. (14) 

Indices in matrix B and Fare deliberately numbered to indicate the position of members of the 
components in the local matrix of 3D beam finite element, which is shown later. The terms of 
matrix B and F have to be evaluated numerically. It can be easy shown that the matrix B is 
symmetric. 

The differential equation of 4th order with non-constant coefficients for the homogenized 
FGM beam flexural deformation (including the particular case of lateral flexural harmonic 
vibrations) in the x-y plane (Figure 1), can be derived similarly to the previous case: 

  v v v v v Lxyv v v v v x            4 3 2 1 0 , (15) 

with polynomial loads acting in the x-y plane 

max

, , , , , ,( ) ( )
m mqz qz qz p pp p ps

s k k k k k
Lxy Lxy s y k y k y k z k z k

s k k k k k

x x q x kq x k k q x m x km x    

     

           1 2 1

0 0 1 2 0 1

1 , 

(16) 

where: ,Lxy s  are the  values of the k-th derivative of load polynomial (16) at the beam node i 

(s is the maximum degree of the polynomial); y,kq  are the  values of the k-th derivative of the 

polynomial transversal force  y yq q x  and z,km  are the  values of the k-th derivative of the 

polynomial moment  z zm m x  at the beam node i ( qyp and mzp  is the  maximum degree of 

the polynomials). ). For the modal analysis of flexural vibration the right hand side of (15) 
vanishes.  
Again,  xvv   is the deflection curve in yx  plane. Its derivatives with respect to x are 
denoted by an apostrophe. 
By appropriated mathematical operations (similarly to the previous case) the local finite 
element equations for the flexural lateral deflection (in x-y plane) are obtained, 

 

i, , , ,y ,i

z ,i, , , ,z ,i

j, , , ,y , j

z , j, , , ,z , j

vB B B BR F

B B B BM F

vB B B BR F

B B B BM F





      
      
              
      

        

2 2 2 6 2 8 2 12 2

6 2 6 6 6 8 6 12 6

8 2 8 6 8 8 8 12 8

12 2 12 6 12 8 12 12 12

. (17) 

It can be easy shown that the matrix B is symmetric. 
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2.3  Uniform torsional deformation  

The differential equations of uniform torsion of a beam are formulated according the Figure 1 
and have a form, 

 xp
H
Lxx ImM  2 , (18) 

 
T

x
x GI

M
 . (19) 

Here,  xxx   is the angle of twist about x - axis and  xxx   is its first derivative. 

By a combination of equations (18) and (19) and after some mathematical manipulations 
the differential equation for uniform torsion (including the particular case of torsional 
harmonic vibrations) has been obtained 

 xxTxTxT m  012 , (20) 

with non-constant parameters TT GI1 , TT IG2 ,
2

0  p
H
LT I and HM

L
xGG  . Further, 

 xxx    is the second derivative of the angle of twist. The polynomial distributed axial 

force is: 
n

mx

n

p
pk

x x ,k x , x , x , x ,p
k

m m x m x m x m x ... m x


      0 1 2
0 1 2

0

, where x ,km  are the  values of 

the k-th derivative of the distributed torsional moment xm at the beam node i. For the modal 

analysis of axial vibration the right hand side of (3) vanishes.  According to [19], the solution 
of the differential equation (20) reads: 

 
 
 

mx

mx

p

x ,k k T
x ,i kx T T

p
x ,ix T T

x ,k k T
k

m b
x b b

x b b
m b










 
                        
 





2
00 1

0 1
2

0

. (21) 

In equation (21), the kTb  and kTb ,  mxk , p  0 2 , are the transfer functions for torsion and 

their first derivatives, respectively and represent the solution functions of the differential 
equation (20). The transfer functions depend on the longitudinal variation of the torsional 
shear modulus, the natural frequency, the polar moment of inertia, the torsion constant and the 
consistent mass density. They are calculated in a similar way as is shown in the previous 
loading cases. By inserting (18) and (19) into (21) and after some mathematical manipulations 
the transfer matrix relations (22) for the particular case of uniform torsion harmonic free 
vibration are obtained, 

 
 
 

mx

mx

p
T

T , x,k k T
x,i kx i T

p
x,ix T

T T T , x,k k T
ki T

b
b A m b

x G I

MM x GI
GI b b A GI m b

G I

 





   
                         

  





1
0 1 3 2

0

0 1 2 3 2
0

. (22) 

By setting x = L in (22) a dependence of the state variables at point j on the state variables at 
initial point i for modal analysis reads 
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T x L

x,k k TT x Lx Lx , j x ,i ki T
p
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GI m bG I b b
G I
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                                          





1
20

0

20 1
0

. (23) 

By simple mathematical manipulations we get the local finite element equation for uniform 
torsion (with x,i x,iM M  ): 

 

,

,x ,i, ,x ,i

x , j, ,x , j , ,
,

,

A
F

AB BM

B BM A A
F A

A




 
                      

  

1 3
4

1 24 4 4 10

10 4 10 10 1 3 2 2
10 2 3

1 2

.  (24) 

The transfer constants kT x L
b


    and kT x L

b


   ,  mxk , p  0 2 , can be calculated with a 

simple numerical algorithm [20] which we programmed using software[21]. The variables iG  

and jG  correspond to the values of the homogenized torsional shear modulus at point iandj. It 

can be easy shown that the matrix B is symmetric. The case of non-uniform torsion will be 
considered in our future work. 

2.4  Local FGM beam finite element equation 

The local equation of the FGM finite beam element is obtained by superposition of the 
equations for axial, flexural, lateral and torsional deformation, and it reads, 
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. (25) 

The local finite element matrix B in (25) consists formally of the linear stiffness matrix KL and 
the linearized geometric stiffness matrix KN (containing the terms with second order axial 
force NII that has to be known or has to be evaluated by a linear elastic-static calculation) and 
the consistent mass matrix M: 
    MKKB NL

2 .     (26) 
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The terms B and F correspond to the previously derived terms of the local beam element 
matrices and load vectors in (6), (14), (17) and (24). In the modal analysis of a single straight 
beam the global finite element matrix coincides with the local matrix. For a general case, the 
global matrix of the beam and the beam structure are established in the usual finite element 
method way. In the modal and buckling analysis the eigenvalue problem is solved. In modal 
analysis, for given or calculated axial forces NII and defined geometrical parameters and 
homogenized material properties and the global boundary conditions, the circular frequency 
  is increased until the determinant of the global beam structure matrix tends to zero. This 
circular frequency is the natural circular frequency from which the natural frequency 
(eigenfrequency) can be calculated. In buckling analysis, the circular frequency   is set to 

zero, and the second order beam theory axial force IIN  is increased until the determinant of 
the global beam structure matrix tends to zero. Then, the axial force represents the buckling 
force II

KiN .Further, the mode or buckling shapes can be calculated by the transfer relations (5), 

(13), and (22). In static analysis, the circular frequency   is set to zero and the load vector 
hast be established. The global and local displacements and rotations at the nodes are 
calculated from those the local internal forces and moments in the homogenized beam 
elements cross-sections are evaluated. After that the normal and shear stress is calculated in 
the beam cross sections with real distribution of material properties. The solution approach we 
have implemented into the software MATHEMATICA [21] by which the numerical 
calculations presented in the chapter 4 were done. 

3 HOMOGENIZATION OF IN THREE DIRECTIONS VARYING MATERIAL 
PROPERTIES  

One important goal of mechanics of heterogeneous materials is to derive their effective 
properties from the knowledge of the constitutive laws and complex micro-structural behavior 
of their components. Microscopic modeling expresses the relation between the characteristics 
of the components and the average (effective) properties of composites. In the case of FGM it 
is the relation between the characteristics of the components and the effective properties of 
FGM. 
The methods based on homogenization theories (e.g. the mixture rules [22,23]; self-consistent 
methods [24]) have been designed and successfully applied to determine the effective material 
properties of heterogeneous materials from the corresponding material behavior of the 
constituents (and of the interfaces between them) and from the geometrical arrangement of the 
phases. In this context, the microstructure of the material under consideration is basically 
taken into account by a representative volume element (RVE). 

Mixture rules are one of the methods for micromechanical modeling of heterogeneous 
materials. Extended mixture rules [25] are based on the assumption that the constituents 
volume fractions, formally denoted as fibers – f and matrix – m (the notation is very often 
used in the literature also for the FGM constituents, although this material is point wise 
isotropic and the reinforcing constituents are not of several forms and dimensions) vary 
continuously as polynomial functions,  zyxv f ,,  and  zyxvm ,, . The condition 

    1,,,,  zyxvzyxv mf  has to be fulfilled. The appropriated material property distribution 

in the real FGM beam (Figure 2a) then reads 

          , , , , , , , , , , .f f m mp x y z v x y z p x y z v x y z p x y z   (27) 
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Here,  zyxpf ,, and  zyxpm ,,  are the spatial distribution of material properties of the FGM 

constituents. The extended mixture rule (27) can be analogically used for FGM made of more 
than two constituents. The assumption of a polynomial variation of the constituent’s volume 
fractions and material properties enables an easier establishing of the main field equations and 
allows the modeling of many common realizable variations.  
In the research studies and in practical applications, the one directional variation of the FGM 
properties is mostly considered. For the FGM beams and shells the transversal variation 
(continuously or discontinuously, symmetrically or asymmetrically) has been mainly 
considered. There, an exponential law for variation of the constituents volume fractions 
through the beam's height is often presented, e.g. in [26-28] and in references therein. The 
homogenization of such variations is relatively simple. If the material properties vary only 
with respect to the longitudinal direction, the homogenization is frequently not needed since 
there are the FGM beam and link finite elements established that consider such variations in a 
very accurate and effective way [29-31]. The more complicated case is, when the material 
properties vary in three directions - namely in transversal, lateral and longitudinal directions 
of the FGM beam. 

In this contribution, the homogenization techniques of spatially varying (continuously or 
discontinuously and symmetrically in transversal and lateral direction, and continuously in 
longitudinal direction) material properties of FGM beams of selected doubly-symmetric 
cross-sections are presented. The expressions are proposed for the evaluation of effective 
elastic modules for axial loading and for transversal and lateral bending complemented with 
the shear modules for transversal and lateral shear and uniform torsion and for themass 
density by the extended mixture rules (EMR) and the multilayer method (MLM).  

Let us consider a two node straight beam element with predominantly rectangular cross-
sectional area A (Figure 2). The composite material of this beam arises from mixing two 
constituents. The continuous polynomial spatial variation of the elastic modules and mass 
density can be caused by continuous polynomial spatial variation of both the volume fractions 
(  zyxv f ,,  and  zyxvm ,, ) and the material properties (  zyxp f ,,  and  zyxpm ,, ) of the 

FGM constituents. 
In our case the elastic modulus  zyxE ,, , the Poisson ratio  zyx ,, , and mass density 

 zyx ,,  are calculated by expression (27). The FGM shear modulus is calculated by 
expression: 

    
  zyx

zyxE
zyxG

,,12

,,
,,


  (28) 

If the Poisson’s ratio of the constituents is approximately of the same value and the 
constituents volume fraction variation is not strong, then the FGM shear modulus can by 
calculated using a simplification  

    


zyxE
zyxG

,,
,,  , (29)  

where  is an average value of the function     zyxzyx ,,12,,    

  
 

dxdAzyx
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L

A
  
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









0
,,

11  . (30) 
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Figure 2: FGM beam with rectangular cross-section. 

 
Homogenization of the spatially varying material properties (the reference volume is the 

volume of the whole beam) is done in two steps. In the first step, the real beam (Figure 2a) is 
transformed into a multilayer beam (Figure 2b). Homogenized material properties of the 
layers are calculated with the EMR [30]. Competent homogenized layer k at position x has a 
constant volume fractions and the material properties of the constituents in the y and z 
direction. They are calculated as an average value from their values at the boundaries of the 
respective layer. Polynomial variation of these parameters appears with respect to the 
longitudinal direction of the layer. Sufficient accuracy of the proposed substitution of the 
continuous transversal and lateral variation of material properties by the layer-wise constant 
distribution of material properties is reached if the division to layers is fine enough. In the 
second step, the effective longitudinal material properties of the homogenized beam are 
derived using the MLM. These homogenized material properties are constant through the 
beam’s height and depth but they vary continuously along the longitudinal beam axis. 
Accordingly, the beam finite element equations are established for the homogenized beam 
(Figure 2c) in order to calculate the primary effective beam unknowns (the displacements, 
temperatures, electric potential, eigenfrequency, buckling force, etc…). The secondary 
variables, for example the mechanical stress, have to be calculated from the internal local 
forces and moments on the real beam [29].  

The homogenized elastic modules for tension-compression -  xE NH
L , bending about axis y -

 xE HM
L

y , bending about axis z -  xE HM
L

z , shear in y direction -  xGH
Ly , shear in z direction -

 xGH
Lz , torsion  xG HM

L
x , and the homogenized mass density for axial loading  xNH

L  and 

torsion  xHM
L

x   can be calculated using the following expressions: 
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Here, Ak denotes the cross-sections area, Ek(x)is the elastic modulus, Iy,k and Iz,k are the second 
moments of area, Gk(x) is the shear modulus, IT,k is the torsion constant and  xk  is the mass 

density, Ip,k is the polar moment of area of the kth layer. The exact expressions for 
homogenization of spatial varying (continuously or discontinuously and symmetrically in 
transversal and lateral direction, and continuously in longitudinal direction) material 
properties for the FGM beams depend on the form of the cross-section. For rectangular 
hollow cross-sections we present the corresponding expressions in the following chapters. 

3.1 Hollow cross-section 

A straight beam of hollow cross-sectional area nnhbhbA  11 (Figure 3) is made of a FGM 

whose properties vary in the y and z direction continuously and symmetrically according the 
main inertial planes, yx   and zx  , and continuously in longitudinal beam direction x . 

Further, 
1212

33
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I   and 

1212

33
11 nn
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bhbh
I  are the second moments of area, zyp III   

is the polar moment of area, AkA sm
yy   and AkA sm

zz   refer to the reduced cross-sectional 

areas – by the average shear correction factors 
sm
yk and sm

zk [17,32,75], and 
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 is the torsion constant. Here, s and t refer to the thicknesses of the 

cross-section walls.  
For the homogenization of spatially varying material properties the hollow cross-sectional 
area is divided into n hollow parts, where   nhht nk 2/1   is the flange thickness and 

  nbbs nk 2/1   is the web thickness (Figure 3), respectively. The hollow area of the kth part 

  nk ,1  is:      122122 11  kthsksbtA kkkkk . The second moments of area of 

the kth part are:          12/2212/2222 3
1

3
11, kkkkky kthksbkthksbI  , 

          12/2212/2222 1
3

11
3

1, kkkkkz kthksbkthksbI  .The polar moment of 

area of kth part is kzkykp III ,,,  . 

 



Justín Murín, Mehdi Aminbaghai, Juraj Hrabovský, Vladimír Kutiš, Juraj Paulech, Stephan Kugler 

 

 

Figure 3: A straight FGM beam of hollow cross-section. 
 
According to (27) and (28) the real material properties are:  zyxE ,,  is the elastic modulus, 

 zyx ,,  is the Poisson’s ratio,        zyxvzyxEzyxG ,,12/,,,,   is the shear modulus 

and  zyx ,,  is the mass density:   2/,2/,2/,2/,,0 11 bbzhhyLx nn . 

The effective homogenized material properties, like the elastic modules, are calculated under 
assumption, that the relevant stiffness of the homogenized beam is equal to the stiffness of the 
real beam virtually divided on the hollow parts. Thus, we get the effective elastic modulus for 
axial loading 

  
 

A

AxE
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n
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

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1

1 ,     (34) 

with     
k

k
zz
yy

k zyxExE

 ,,  and the effective elastic modules for bending about the y and z 

axis, 
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 
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k
kyk
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L I
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.   (35) 

The effective elastic modulus for uniform torsion reads, 
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with     
k

k
zz
yy

k zyxGxG

 ,, . The torsion constant of the kth hollow part   nk ,1  can be 

evaluated as 

      
     

k

k

k

k

kk
kT

s

kth

t

ksb
kthksb

I
1212

12122

11

2

1

2

1
, 





 . (37) 

The effective shear modulus in y direction is given by, 

 
 

Ak

AxGk
xG

sm
y

n

i
kk

sm
ky

H
Ly


 1

,

,    (38) 

with the average shear correction factors: 
sm
yk for whole rectangular cross-section and 

sm
kyk , for 

kth part. 
The shear modulus in z direction then reads, 

 
 

Ak

AxGk
xG

sm
z

n

k
kk

sm
kz

H
Lz


 1

,

,    (39) 

with the average shear correction factors: sm
zk for whole rectangular cross-section and 

sm
kzk ,  for 

kth part. 

The effective mass density for tension -  xNH
L   and torsion  xHM

L
x   is 

  
 

A

Ax
x

n

k
kk

H
L


 1


 ,         

 

p

n

k
kpk

HM
L I

Ix
xx


 1

,
 , (40) 

with     
k
k

zz
yy

k zyxx

 ,, .It should be noted, that the effective mass density for tension has 

been taken also for the lateral and transversal bending. 

4 NUMERICAL INVESTIGATIONS 

4.1 Example 1: FGM beam structure - hollow cross-section 

The FGM beam structure with a constant rectangular hollow cross-section is considered 
(Figure 4), which consists of two parts – Beam1 and Beam2. Its geometry is given 
byh1 = 0.005 m, hn = 0.00375 m, b1 = 0.01 m, bn = 0.0075 m and L = 0.1 m. The angle 

between the beams is 150 . The cross-sectional area is 5101875.2 A m2, the second 

moments of area are 111012077.7,


y
I m4 and 

101084831.2,


z
I  m4, the polar moment of 

area is 101056038.3,,


zyp III m4 and the torsion constant is 10106748.1 TI m4. 
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Figure 4: FGM beam structure in global (x, y, z) coordinate system. 

 
The material of the beam consists of two components: Aluminum Al6061-TO – denoted 

with index m and Titanium carbide TiC – denoted with index f. The material properties of the 
components are assumed to be constant and their values are: Aluminum Al6061-TO – the 
elasticity modulus 0.69mE GPa, the mass density 2700m  kgm-3, the Poisson’s ratio 

33.0m ; Titanium carbide TiC – the elasticity modulus 0.480fE GPa, the mass density 

4920f  kgm-3, the Poisson’s ratio 20.0f .  

The TiC volume fraction varies in the local ,y  and ,z  direction linearly and symmetrically 

according to the ,, yx   and ,, zx   planes:       1,,0,
2/
2/

,,

2/
2/

,,

1
,

1
,

,

, 






bz
hyf

bz
hyf zyvzyv

n

n  - the 

inner edges of the cross-sectional area are made of pure Al6061-TO –and the outer cross-
section edges are made of pure TiC. Constant effective material properties are considered in 
the local ,x  – direction of both beams. Using EMR and MLM the effective elastic modulus 

(in [GPa]) for axial loading NH
LE , for bending about axis ,y  -

HM
L

yE and about axis ,z  - HM
L

zE  

the shear moduli 
H
LyG  and H

LzG , the torsional shear modulus HM
L

xG , and the mass density 
NH
L [kgm-3] for tension and HM

L
x [kgm-3] for torsion have been calculated by equations (34 - 

40). The influence of the number of divisions n to the layers on the homogenized material 

properties [32, 33] is shown in Table 1. The average shear correction factors sm
yk  and sm

zk  for 

20n  layers are 4712.0sm
yk  and 2910.0sm

zk   [32, 33].  For homogeneous hollow cross-

section, following shear correction factors are obtained:  5081.0yk   and 3291.0zk   

(calculated e.g. with ANSYS [34], for rectangular hollow beam-section).              
 

layers 
n 

NH
LE  

HM
L

yE = HM
L

zE H
LyG = H

LzG HM

L
xG  NH

L  HM
L

x  

2 281.839 296.151 112.716 120.614 3849.643 3926.946 
5 283.894 302.229 113.901 124.066 3860.743 3959.777 

10 284.188 303.098 114.071 124.561 3862.328 3964.469 
15 284.242 303.259 114.102 124.653 3862.222 3965.339 
20 284.261 303.315 114.113 124.685 3862.725 3965.643 

Table 1: Influence of the number of division n to the layers on the homogenized material properties. 
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Modal analysis 
 
The FGM beam structure, clamped at the node i and j, is studied by modal analysis. The effect 
of axial force is not considered by this example. The first six eigenfrequencies f [Hz] are given 
in Table 2 using the new FGM beam finite element (NFE) and homogenized material 
properties for n = 20. Only two of our proposed FGM finite element are used – one for each 
part. For comparison purposes, the same problem is solved using a very fine mesh – 21600 of 
SOLID186 elements of the FEM program ANSYS [34]. The average relative difference  [%] 
between eigenfrequencies calculated by our method (NFE) and the ANSYS solution is 
evaluated. 
 

eigenfrequencies f [Hz] 
NFE 

without  
shear 

NFE 
with  
shear 

ANSYS 
 [%] 

without  
shear 

 [%] 
with  
shear 

1st flexural – xz plane 2392.0 2361.1 2343.6 2.07 0.75 
2nd flexural – xy plane 3859.1 3765.4 3798.8 1.65 0.82 
3rd flexural – xy plane 4444.0 4384.0 4341.1 2.37 0.99 
4th flexural – xz plane 7391.0 7123.3 7182.5 2.96 0.77 
5th flexural – xy plane 9147.1 9027.1 8928.4 2.57 1.23 
6th torsional 10051.1 10013.4 9896.8 1.56 1.18 

Table 2: Eigenfrequencies of the FGM beam structure. 
 
A comparison of 1st,2nd and 3rd eigenforms of the FGM beam structure evaluated by the new 
FGM beam finite element and FEM program ANSYS is shown in Figures 5 - 7. 
 

 
Figure 5: The 1steigenform of the FGM beam structure displayed by the ANSYS postprocessor and comparison 

of NFE and ANSYS.  
 

 
Figure 6: The 2ndeigenform of the FGM beam structure displayed by the ANSYS postprocessor and comparison 

of NFE and ANSYS.  
 
 

undeformed model
NFE
ANSYS

undeformed model
NFE
ANSYS
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Figure 7: The 3rd eigenforms of the FGM beam structure displayed by the ANSYS postprocessor and comparison 

of NFE and ANSYS.  
 
Elasto-static analysis 
 
The FGM beam structure, clamped at the node i and j, loaded by the vertical 
force  100kyF  N in the global negative y direction and the torsion moment 100kxM  Nm 

about global x-axis at point k, is studied by elasto-static analysis. The effects of axial forces is 
not considered by this example. The displacements according the global coordinate system at 
the point k are given in Table 3 using the new FGM beam finite element (NFE) and 
homogenized material properties for n = 20. Only two of the herein proposed new FGM finite 
elements were used – one for each part. For comparison purposes, the same problem is solved 
using a very fine mesh – 21600 of SOLID186 elements of the FEM program ANSYS [34]. 
The average relative difference  [%] between displacements calculated by our method and 
the ANSYS solution is evaluated. 
 

Displacements
[mm], [rad] 

NFE 
without 
shear 

correction 

NFE 
with shear 
correction 

ANSYS 

 [%] 
without 
shear  

correction 

 [%] 
with 

 shear 
correction 

kv  -0.01135 -0.01137 -0.01140 0.39 0.27 

kw  -2.56285 -2.56285 -2.58651 0.91 0.91 

xk  0.19804 0.19804 0.20030 1.13 1.13 

Table 3: Global displacements at point k. 
 
The total deformation of the FGM beam structure is shown in Figure 8.  

 
Figure 8: Total deformation of the FGM beam structure. 

 
As can be seen in Table 4, a very good agreement of our results is obtained. 

undeformed model
NFE
ANSYS
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4.2 Example 2: FGM beam – spatial variation of material properties 

The cantilever FGM beam on varying horizontal and vertical Winkler foundation is 
considered (as shown in Figure 9). Its rectangular cross-section is constant with height 
h = 0.005 m and width b = 0.01 m. The length of the beam is L = 0.1 m.  
 

 
Figure 9: Clamped beam on elastic foundation with spatially varying material properties. 

 
The beam is made of a mixture of two components: Aluminum Al6061-TO and Titanium 

Carbide TiC, their constant constituent’s material properties are given in Case I. The 
Aluminum volume fraction, in this case, varies linearly and symmetrically according to the 

yx and zx   planes: At node i is       0,,1,
2/
2/

0
0 







bz
hyfi

z
yfi zyvzyv  and then vary 

continuous linearly in the longitudinal direction to the constant value at node j ( 1fjv ). 

Using EMR and MLM with n = 20 layers the effective elastic modulus for axial loading 
NH
LE , for bending about axis y -

HM
L

yE and about axis z - HM
L

zE , shear modules
H
LyG and H

LzG , 

torsional shear modulus HM
L

xG , and mass density NH
L for tension and  HM

L
x  for torsion are 

evaluated as: 

 xENH

L 095.2731109.342  GPa;  

 xEE HM

L

HM

L
zy 293.3274429.396  GPa;  

 xGG H
Lz

H
Ly 418.1129581.138  GPa;   

 xG HM
L

x 936.1362233.162  GPa; 

 xNH
L 9.1475119.4175  kgm-3;   

 xHM
L

x 43.1768334.4468  kgm-3. 

 
Modal analysis 

 
The FGM cantilever beam, clamped at the node i, and resting on varying Winkler elastic 

foundation ky(x)=5000-30000x+60000x2 kN/m2 and kz(x)=5000-1000x+6000x2 kN/m2 is 

studied by modal analysis. The average shear correction factors in ,y – direction 6/5sm
yk  and 

in ,z  – direction 6/5sm
zk are used [35]. The first nine eigenfrequencies f [Hz] are evaluated as 

shown in Table 4. It is use only one of our proposed finite element. The effect of axial force 
was not considered in this example. The same problem is solved using a very fine mesh – 
32000 of SOLID186 elements of the FEM program ANSYS [34]. The results of ANSYS as 

k (x)z k (x)z

k (x)y k (x)y



Justín Murín, Mehdi Aminbaghai, Juraj Hrabovský, Vladimír Kutiš, Juraj Paulech, Stephan Kugler 

 

well as the results of the NFE are presented in Table 4. The average relative difference  [%] 
between eigenfrequencies calculated by our method and the ANSYS solution is evaluated. 

 

eigenfrequencies f [Hz] 
NFE 

without 
foundation 

ANSYS 
without 

foundation 
 [%]

NFE 
with 

foundation 

ANSYS 
with 

foundation 
 [%]

1st flexural - axis y 838.9 844.9 0.71 1356.1 1365.3 0.67 
2nd flexural - axis z 1660.0 1674.4 0.86 1896.3 1911.3 0.78 
3rd flexural - axis y 4329.5 4301.7 0.65 4433.4 4413.5 0.45 
4th flexural - axis z 8288.5 8228.8 0.73 8332.2 8275.1 0.69 
5th flexural - axis y 11046.0 10920.0 1.15 11125.8 10961.0 1.50 
6th torsional 11182.0 10926.0 2.34 11048.0 10969.0 0.72 

7th flexural - axis z 20023.0 19907.0 0.58 20051.0 19925.0 0.63 

8th flexural - axis y 20379.0 20312.0 0.33 20397.1 20333.0 0.32 

9th axial 22212.6 22213.0 0.01 22212.7 22213.0 0.01 

Table 4: Eigenfrequencies of the FGM beam with and without elastic foundation. 
 
Again, a very good agreement of our results compared to ANSYS is indicated in Table 4. For 
instance, the 1st, 6th and 9th mode of the FGM beam structure displayed by ANSYS is shown 
in Figure 10. 
 

 

Figure 10: The 1th and 6th and 9th eigenforms of the beam  
(with Winkler elastic foundations). 

 
 
Buckling and elastic-static analysis 
 
The FGM cantilever beam, clamped at the node i, has been studied by buckling and elastic-
static analysis. All the calculations were done with our 3D FGM beam finite element (NFE) 
which we have implemented into the code MATHEMATICA [21]. Additionally, the effect of 
axial force was considered. It has to be pointed out that the entire structure is discretized using 
only one herein proposed finite element.  

The critical buckling force calculated by our 3D FGM beam finite element is             
171.7II

KiN kN and calculated by ANSYS (with 50 of BEAM188 elements) is          

081.7II
KiN kN. The first buckling form is shown in Figure 11. In the elasto-static analysis 

the axial force NN II  have been chosen as a part of the critical buckling force II

KiN . 
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Figure 11: The first buckling form. 

 
In the elastic-static analysis, the cantilever FGM beam resting on varying vertical Winkler 

elastic foundation 2600000300005000 xxky  kN/m2 is loaded by forces 50 zy FF N 

and 2xF kN at node j (Figure 12). The average shear correction factors in ,y – direction 

6/5sm
yk  and in ,z  – direction 6/5sm

zk are used [35]. The displacements at node j are 

evaluated using the only one new FGM beam finite element (NFE). The same problem is 
solved using a very fine mesh – 23015 of SOLID186 elements of the FEM program ANSYS 
[34]. The results of ANSYS as well as the results of the NFE are presented in Table 5. The 
average relative difference  [%] between displacements calculated by our method and the 
ANSYS solution is evaluated. 

 
Figure 12: Loaded FGM beam. 

 

Displacements at node j 
[mm], [rad] 

NFE 
with  

foundation

ANSYS 
with  

foundation

NFE 
without 

foundation

ANSYS 
without 

foundation 

ju  -0.02445 -0.02507 -0.02445 0.02507 

jv  0.24641 0.24933 0.74414 0.75348 

jw  0.14452 0.14791 0.14452 0.14791 

yj  -0.00247 -0.00256 -0.00247 -0.00256 

zj  0.00503 0.00527 0.1304 0.01321 

Table 5: Displacements at node j with and without elastic foundation. 
 
The comparison of the vertical beam deflection curve with and without elastic foundation is 
shown in Figure 13. 
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Figure 13: Vertical beam deflection curve with and without elastic foundation. 

 
The bending moments about the y and z – axis for case without elastic foundation are shown 
in Figures 14 and 15, respectively. The Figures 16 and 17 show the transversal force in y and 
z – axis. The comparison of the bending moments  0xM y ,  0xMz  and transversal 

forces  LxRy  ,  LxRyz   for the case Fx = -2 kN calculated by our approach and by 

ANSYS are compared in Table 6. 
 

 
Figure 14: Bending moment about the y – axis (without elastic foundation). 

 

 
Figure 15: Bending moment about the z – axis (without elastic foundation). 
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Figure 16: Transversal force in y – axis (without elastic foundation). 

 
Figure 17: Transversal force in z – axis (without elastic foundation). 

 

 
NFE 

Fx = -2 kN
ANSYS 

Fx = -2 kN
 [%] 

 0xM y  [Nm] -5.2182 -5.2416 0.45 

 0xMz  [Nm] 6.4691 6.4404 0.45 

 LxRy   [N] 54.9472 55.0873 0.25 

 LxRz   [N] 76.2088 76.2251 0.02 

Table 6: Bending moments and transversal forces. 

In Figure 18, the resultant normal stress, caused by axial, transversal and lateral forces, in the 
clamped cross-section is shown that was calculated by our approach [18] extended here for 
variation of material properties in three directions. 
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Figure 18: Resultant normal stress ),,( zyx [MPa] at position x = 0 calculated by our approach [18]. 

In Figure 19, the resultant normal stress, caused by axial, transversal and lateral forces, in the 
clamped cross-section is shown that was calculated by ANSYS (using a very fine mesh – 
23015 of SOLID186). As can be seen, a very good agreement of both solution method has 
been obtained at all marked points excluding the corners. As is well known, the solutions with 
3D solid finite elements produce in the sharp corners incorrect stress first of all by the very 
fine meshes. In the nearby points of the sharp corners is the match of the results very good 
(see the details in Figure 19). More detailed description of the stress calculation for the FGM 
beam with spatial variation of material properties will be given in our newly prepared paper. 

 
Figure 19: Normal stress ),,( zyx [MPa] at position x = 0 calculated by ANSYS (SOLID186) 

 

5 CONCLUSION 

On base of the transfer relations for the 3D straight FGM beam of doubly symmetric cross-
section with longitudinal polynomial variation of the effective material properties, the 
effective matrix of the 3D beam finite element for static, modal and buckling analysis of the 
FGM single beams and beam structures is established in this contribution. Symmetrically 
transversal and lateral, and continuously longitudinal variation of material properties is 
considered in the real beam. Homogenization of the spatially varying material properties in 
the real FGM beam and the calculation of effective parameters of the homogenized beam are 
done by the extended mixture rules and the multilayer method (MLM). Effects of the varying 
planar Winkler elastic foundations and the shear force deformation (by means of the average 
shear correction factors) and the consistent mass and mass moment of inertia distribution are 
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taken into account. The effect of axial force is included for the flexural deformations as well 
that allows performing of analysis within the 2nd order beam theory. All the derived 
equations were programmed through the software MATHEMATICA [21] and the numerical 
calculations were carried out. In modal and buckling analysis, the eigenvalue problem is 
solved. In buckling analysis, the circular frequency   is set to zero and axial force N is 
increased the determinant of the global matrix of the beam structure tends to zero. This axial 
force corresponds to the critical buckling force.  In modal analysis, for given internal axial 
forces N in the competent beams and geometrical parameters and material and boundary 
conditions, the circular frequency   is increased until the determinant of the global matrix of 
the beam structure tends to zero. This circular frequency corresponds to the natural circular 
frequency from which the natural frequency (eigenfrequency) is calculated. In linearized 
elastostatic analysis (according the second order beam theory), the internal axial forces have 
to be evaluated that input in the linearized geometric stiffness matrix. By the linear beam 
theory only linear stiffness matrix is established. The load vector is established and the local 
and global displacements and internal forces are calculated. After that, as usually, the 
secondary variables like eigen- and buckling- forms, and the stress are calculated. The main 
issue of numerical investigations is the modal, buckling and elastostatic analysis of FGM 
beam structures (single beams and spatial beam structures) with spatial variation of material 
properties. By selected numerical examples the effect of axial and shear forces is evaluated. 
The results carried out by our approach are compared with results obtained using very fine 
beam and continuum meshes in the FEM program ANSYS [34]. An excellent agreement of 
our solution results is obtained, which confirms respectable accuracy and effectiveness of our 
approach.  
The main advantage of the new beam finite element is that the individual beams of the beam 
structure with spatial variation of material properties (continuous or layered but symmetrically 
in transversal and lateral direction, and continuous polynomial in longitudinal direction) can 
be modeled with only one beam finite element, because the variation of the material 
properties is relatively accurately included into the finite element matrix.  Another advantage 
is that the beam finite element can be very effectively used also for the modeling of spatial 
beam structures. 
Disadvantage of this approach is that by more complicated variation of material properties 
some problems arise by the transfer constants calculation. This problem can be solved by the 
dividing of the definition domain of the transfer functions [20]. Another problems comparing 
to continuum approach can arise by the beams with complex cross-sectional area.  
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