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Abstract. In this contribution, a homogenized beam finite element of double symmetric cross-
section made of a Functionally Graded Material (FGM) is presented, which can be used for
static, modal and buckling analysis of single beams and beam structures with three
directional variation of material properties. The material properties in a real beam can vary
continuously in longitudinal direction while the variation with respect the transversal and
lateral directions is assumed to be symmetric in a continuous or discontinuous manner. The
shear force deformation effect and the effect of inertia and rotary inertia are taken into
account. Additionally, the longitudinally varying Winkler elastic foundation and the effect of
axial force are included by the finite element equations as well. Homogenization of spatially
varying material properties to effective quantities with a longitudinal variation is done by the
extended mixture rules and multilayer method (MLM). For the homogenized beam the 12x12
finite element effective matrix, consisting of the linearized stiffness and consistent mass
inertia terms, is established. Numerical experiments are made concerning static, modal and
buckling analyses of single FGM beam and beam structures to show the accuracy and
effectiveness of the proposed FGM beam finite element.
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1 INTRODUCTION

Important classes of structural components, where FGM is used, are beams and beam
structures. FGM beams play an important role not only in classical structural applications, but
we can find many applications in thermal, electric-thermal or electric-thermal-structural
systems (e.g. micro-electro-mechanical systems (MEMS) as sensors and actuators and other
mechatronic devices). In all these applications, using new materials like FGM can greatly
improve the efficiency of the systems. FGM is built as a mixture of two or more constituents
whose particles have almost the similar form and dimensions (powder, plasma particles, etc.).
The continuous or multilayered variation of macroscopic material properties can be caused by
varying the volume fraction of the constituents or by varying the constituent's material
properties (e.g. by a non-homogeneous temperature field). In the literature a huge amount of
papers can be found which deal with modeling and simulation of static and dynamic problems
of FGM beams.

The latest results of theoretical research on statics and vibration and loss of stability of
FGM and composite beams are presented for example in the articles [1-13].The first
significant feature of the references [1-8] (and also of those published in the previous period)
is that variation of material properties is considered only in one direction, usually along the
beam thickness, and exceptionally in the longitudinal direction of the beam. The second
feature of these works is that they are analyzed only a simple planar beams with rectangular
cross-section. The third feature of most of these works is that their fundamental equations are
based on the equations of plane stress state in a continuum with varying material properties
which are simplified for the solution of the beams. In [9-12], general formulations for non-
uniform shear warping are presented and an advanced 20x 20 stiffness matrix and the
corresponding nodal load vector of a member of arbitrary composite cross section is
developed, taking shear lag effects into account due to both flexure and torsion. In [13], a
static analysis of three-dimensional FGM beams by hierarchical modeling and a collocation
meshless solution method is presented.

With regard to our work in the past period in the field, we presented in [14-16] a solution
of free vibration of a single 2D FGM beam with continuous planar polynomial variation of
material properties (in axial and transversal direction) by a fourth-order differential equation
of second order beam theory. The focus of these publications is laid on a new concept for
expanding the second order bending beam theory considering the shear deformation according
to Timoshenko beam theory. There, the shear deformation effect in FGM beams with planar
continuous variations of material properties is originally included by means of the average
shear correction factor that has been obtained by an integration of the shear correction
function [17]. A continuous polynomial variation of the effective elastic modulus and the
mass density is considered by continuous polynomial planar variation of both the volume
fraction and material properties of the FGM constituents. The choice of a polynomial
gradation of material properties enables an easier integration of the derived differential
equation and allows to model practically realizable variations of material properties. The
effect of consistent inertia and rotary inertia, and the effect of axial forces are taken into
account as well.

As mentioned above, many time published papers registered e.g. in the Web of Science
database, deal with static and dynamic and buckling analysis of the FGM single planar beam
with transverse variation of material properties only. Less attention is paid on both the
longitudinal and lateral variations of material properties. The authors failed in finding more
papers which deal with analysis of single beams or spatial beam structures made of FGM with
spatial variation of material properties (in three directions).



Justin Murin, Mehdi Aminbaghai, Juraj Hrabovsky, VIadimir Kuti$, Juraj Paulech, Stephan Kugler

The proposed contribution is a continuation of our previous papers [14-18]. The derivation
of the FGM beam finite element equations suitable for static, modal and buckling analyses of
single beams or spatial beam structures made of spatially varying FGM (in longitudinal and
transversal and lateral direction) is presented. From the differential equations of axial, flexural
and torsional deformation of the FGM beam with longitudinally varying material properties
the transfer relations and following the local and global finite beam element matrices are
established. Effects of axial and shear forces are included as well as the longitudinally varying
Winkler elastic foundation and inertia loads. Homogenization of the spatially varying material
properties in the real FGM beam and calculation of their effective values are done by
extended mixture rules and by the multilayer method (MLM) [18,25]. This method can also
be used in the homogenization of multilayer beams with symmetrically discontinuous
(multilayered) variation of material properties in transversal and lateral direction. In the modal
and buckling analysis an eigenvalue problem is solved. Numerical experiments are performed
to calculate the elastostatic and modal response and the critical buckling force of chosen FGM
beams and beam structures with rectangular and hollow cross-sections with spatial variations
of material properties. The solution results are discussed and compared to those obtained by
means of very fine 3D — solid and beam finite element meshes of the software ANSYS
Workbench [34].

The novel aspects of the current paper are:

e extension of the MLM to homogenization of the spatially (polynomial) varying
material properties (continuously in longitudinal and symmetrically in transversal
and lateral direction (continuously or multilayered)) for calculation of the effective
longitudinally varying elasticity modules for axial and flexural and torsional
loading, and the competent effective mass-densities;

e extension of the second order beam theory and the uniform torsion theory on static,
modal and buckling analysis of FGM beams with spatial variation of material
properties (in three directions);

e including the effects of the shear and axial forces, as well as the longitudinally
varying Winkler elastic foundations;

e derivation of the transfer relations for the 3D straight FGM beam (with
homogenized longitudinal variation of the effective material properties) of doubly
symmetric cross-section;

e establishing of the 12x12 effective finite element matrix of the 3D FGM beam
(with homogenized longitudinal variation of the effective material properties)
consisting of the linear and linearized geometric stiffness and consistent mass
inertia terms;

e performing of the numerical experiments concerning the static and modal and
buckling analysis of the FGM beams and beam structures with spatially varying
material properties.

2 FINITE ELEMENT EQUATIONS OF THE 3D FGM BEAM

Let us consider a straight beam element of doubly symmetric cross-section — Figure 1. The
degrees of freedom at node i are: the displacements ui, vi, wi in the local directions x, y, z, and

the cross-sectional area rotations about the x, y, z directions - ¢, ;,¢,;,®,;. The degrees of

freedom at the node j are denoted in a similar manner. The internal forces at node i are: the
axial force Ni, the transversal forces R ; andR, ;, the bending moments M ; and, the torsion

Z,i?

moment M.
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Figure 1: The local internal variables, static and inertia and loads for transfer matrix and finite element methods.

Furthermore, N, =nx(x)denotes the axial force distribution, G, =qz(x) and q, = qy(x) are
the transversal and lateral force distributions, m, =m,(x), m, =m,(x) and m, =m,(X) are the
distributed moments, g, = pA= u, = 1, = pdenote the mass distribution, ,l_ly =pl, ,;Z =pl,
and ,l_le = pl, refer to the distributions of mass moments of inertia, ,0=pr (X)Epf is the

homogenized effective mass density distribution, A is the cross-sectional area, 1, and |, are

y

the second moments of area, |,=1,+1, denotes the polar moment of area,

k, =k, (x), k, =k, (x), k, =k,(x), ky =ky(x), k. =k:(x) are the elastic foundation modules
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(the torsional elastic foundation is not considered), and @ is the circular frequency. The
effective homogenized and longitudinally varying stiffness reads as follows: EA= ELNH(X)A is

the axial stiffness ( EM(X)=E™ is the effective elastic modulus for axial loading),
El, =E"" (x)l
elastic modulus for bending about axis y), EI, = E"*"(x)I. is the flexural stiffness in axis z,
(E"™"(x)=E"is the effective elastic modulus for bending about axis z), GAy =G/} (x)k:"A
is the reduced shear stiffness in y-direction (ny(x)z G/, is the effective shear modulus and

is the flexural stiffness about the y-axis (E.”"(x)=E™" is the effective

y L

k;m is the average shear correction factor in y-direction), GA, =Gﬁz(x)kj‘“A is the reduced

shear stiffness in z — direction (G(x)=G" is the effective shear modulus and ki"is the
average shear correction factor in z - direction), G,"*" (x)lT is the effective torsional stiffness,

GEA*H(X)zGE"XH is the torsional elastic modulus and I, is the torsion constant — I, = It for

the circular and ring cross-section). The derivatives with respect to x of the relevant variable
is denoted with an apostrophe “ '~ throughout the article.

The differential equations for axial, transversal, lateral and torsional deformation and their
solution are established according the Figure 1: Definition according the Transfer Matrix
Method. The finite element equations of the 3D FGM beam are established from the transfer
matrix relations according Figure 1: Definition according the Finite Element Method.

2.1 Axial deformation

Equation (1) results from the axial deformation problem of the FGM beam, including the
specific case of harmonic oscillations (U =u(x) is the axial displacement distribution, U’ =u'(x)

is its first derivative and U” =u"(x) is its second derivative):
N'=n, +(k, - ze?)u, (1)

N
EA’

By combination of (1) and (2) we get the differential equation with non-constant polynomial
coefficients

u

()

MU + 17U +170,U =1, 3
with n,, = EA, 1, = E'A, 1, = ua’ —k, , and E=E(x). The polynomial distributed axial

Pn
force is: n,=>"n X =n X" +n x" +n,x*+..+n, x", where n,, are the values of the
k=0

k-th derivative of the axial force n at the beam node i. For the modal analysis of axial

vibration the right hand side of (3) vanishes.
The solution of (3) can be expressed by the polynomial transfer functions

5<N :54\1 (X) (k €(0,p,+2)) for axial loading [19, 20]:
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Here, U;is the axial displacement and U; is the value of first derivative of u(x) at node i.

If the u’(x) and u; are replaced with the constitutive equation of the FGM beam (2), we get

_ b P
U(X) A1,1 = bON A1,2 :ﬁ u A1,3 = kzz(;nx,kbkﬂN
_ EA _ M N + P, _ ] (5)
Az,1 = EAb;, Az,z :ab{N I Az,s = EAZ nx,kbli+2N
i k=0

where E, is the initial value of the homogenized elastic modulus E™ (x) at node i.

By setting X =L in (5), the dependence of the nodal variables at node j on the nodal variables
at node i are obtained. By appropriated mathematical operations and by considering the
altered orientation of the local internal variables in FEM formulation (see Fig. 1), the local
finite element equation for the axial loading (including the particular case of axial harmonic

vibrations) are obtained (with N, = —N.):

NI B11:i B17:—L Flzk
N _ TA, ’ A, U; A,
N; | ALA A, |y, " ALA, | (6)
j B, = 1_# B77:—’2 j F = - 372
= A, A A, A, s

It can be easy shown that the matrix B is symmetric. The terms of the matrix Band the loads
vector F are calculated numerically using MATHEMATICA [21]. Their indices are
deliberately numbered in order to indicate the position of the components in the local matrix
and loads vector of the 3D beam finite element, which is established later.

2.2 Flexural deformation about the y and z axis

The differential equation of 4™ order with non-constant coefficients of the homogenized FGM
beam flexural transversal deformation (including the particular case of flexural harmonic
vibrations) in the x-z plane (Figure 1) has the form [15]:

774_WVV”” + 773W\N'" + 772WW” + 771WW + 770WW =1y (X) (7)

with polynomial loads acting in the x-z plane

maxs pqz pqz pqz pmy pmy
k k— k- k k-
anz(X): anxz,sXS :zqz,kx +quz,kx 1+zk(k_1)qz,kx 2_i_zmy,kx +zkmy,kx 1’
s=0 k=0 k=1 k=2 k=0 k=1

(8)
where: 7., . are the values of the k-th derivative of load polynomial (8) at the beam node i
(s is the maximum degree of the polynomial); q,, are the values of the k-th derivative of the
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polynomial transversal force Q, :qz(x), and m,, are the values of the k-th derivative of the
polynomial moment m =m,_ (x)at the beam node i ( p,and p,, is the maximum degree of
the polynomials).For the modal analysis of flexural vibration the right hand side of (7)
vanishes. Again,W:\N(X) refers to the deflection curve in the x—z plane. The derivation of
the non-constant coefficients 7,, to 7,, and appropriated parameters of the differential

equation (7) from the main coupled equations (9) and (10) of the 2"! order beam theory
(including the inertia forces, shear and axial force) using the relation between the transversal
and shear force (11) is described in [15, 17].

R! =—q, + k,w— uafw M) =Q, +m, +u,a’p, 9)
M . _ B
¢ =——L=M, =—El g W=g,+ Q —Q, =GAW -~GAsp, (10)
El GA:
Q =k, +N"W+R, (11)

Here, Q, is the shear force and N" =N is the resultant axial force of the 2" order beam
theory (it has a system character and has to be known). In our case, EEEE"VH is the
homogenized elastic modulus for bending about y and G =G_ is the shear modulus in z-
direction. Further, ¢, = goy(x)denotes the angle of cross-section rotation about they-axis.

If the variation of the beam parameters is polynomial, the solution of the differential
equation (7) based on the transfer functions [20] can be written as,

["maxs 7
z Ny ,sbs+4w
s=0
W(X) bOW blw b2W b3w Wi rrixs b,
! ! ! ! ! ! 77 XZ +4W
W(X) — bOW blw b2W b3w . Wi + s=0 basT (12)
w(x) | |bf, bi b, b || w ”? b '
Wm ( X) bg‘rN blrr‘rN bzn\rN b?:r‘rN Wim por 77L>(Z S S+H4wW
maxs
z 77sz ,sbs+4w
L s=0 i
There, b, ,b’ , b” and b” with (je(0,3)),and b_,. ,b’ ., , b’, andb”, are the solution
jw jw jw jw J S+4W ! Ns+4w S+4W S+4W

functions (so called the transfer functions for bending) of the differential equation (7). The
dependence of thew =w/(x), W’ =w’(x) and W"=w"(x) on the ¢, = ¢,(x), M, =M, (x) and

R, =R, (X) is described in [648], from which the transfer matrix expression is obtained

w(Xx) Ar An As Al W As
»,(X) _ A, A, Az A, | Pyi N A .
MO AL Az As Al My [ As
R,(x) A A A AL LR, As

The kinematical and kinetic variables at node | are denoted by index i in (12). The terms A in
(12) are established semi analytically using MATHEMATICA [21].

(13)
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By setting Xx=L in (13) the dependence of the nodal variables at node j on the nodal
variables at node i are obtained. Then, using appropriate mathematical operations and by
considering the altered orientation of the local internal variables in FEM formulation (see Fig.
1), the local finite element equations for the deflection (in particular case for the flexural free

vibration) about the y-axis read (with R,; =-R,;, M, =-M,;, @,,=—¢, and ¢, , =—¢, , ),

ﬁz i B3 3 B3 6 Ba 9 B3 12 W, F3
M vi | _ Bs 2 Bs 5 Bs 8 Bs 1| (ﬁy i + Fs (1 4)
Rz J B9 3 B9 6 B9 9 B9 12 Wi F9
M v.i B11,2 B11,5 B11,8 B11,11 ay,j F11

Indices in matrix Band Fare deliberately numbered to indicate the position of members of the
components in the local matrix of 3D beam finite element, which is shown later. The terms of

matrix Band F have to be evaluated numerically. It can be easy shown that the matrix B is
symmetric.

The differential equation of 4" order with non-constant coefficients for the homogenized
FGM beam flexural deformation (including the particular case of lateral flexural harmonic
vibrations) in the x-y plane (Figure 1), can be derived similarly to the previous case:

774VV”” + 773vvm + 772vV” + nlvvl + 770VV = 77ny (X) ! (15)

with polynomial loads acting in the x-y plane

maxs

pqz pqz pqz Pm Pm
k k— k- k K—
My (X) = D 1y X5 = D0y X+ D K, X+ > K(k=1)g,, X2+ m, X+ > km,
s=0 k=0 k=1 k=2 k=0 k=1

(16)
where: 77, are the values of the k-th derivative of load polynomial (16) at the beam node i
(s is the maximum degree of the polynomial); q,, are the values of the k-th derivative of the

polynomial transversal force Q, =qy(x) and m,, are the values of the k-th derivative of the

polynomial moment m, =m, (x) at the beam node i ( p,, and p,, is the maximum degree of
the polynomials). ). For the modal analysis of flexural vibration the right hand side of (15)
vanishes.

Again,v=v(x) is the deflection curve in x—y plane. Its derivatives with respect to x are

denoted by an apostrophe.
By appropriated mathematical operations (similarly to the previous case) the local finite
element equations for the flexural lateral deflection (in x-y plane) are obtained,

ﬁy i Bz 2 Bz 6 Bz 8 Bz 12 Vi Fz
M i | _ B() 2 B() 6 B() 8 Be 12 | @z,i n Fg (17)
Ry,J BS 2 BS 6 BS 8 BB,lZ v i Fg
M z,j Blz,z B12,6 Blz,s B12,12 (Zz,j F12

It can be easy shown that the matrix B is symmetric.
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2.3 Uniform torsional deformation

The differential equations of uniform torsion of a beam are formulated according the Figure 1
and have a form,

M, =m —p'flpa)zgox, (18)
M

=X 19

@, Gl (19)

Here, ¢, = ¢, (x)is the angle of twist about x - axis and ¢/ = ¢! (x)is its first derivative.

By a combination of equations (18) and (19) and after some mathematical manipulations
the differential equation for uniform torsion (including the particular case of torsional
harmonic vibrations) has been obtained

Nor @y + g @+ 1r @, =M, (20)

with non-constant parameters 7; =Gl , 7, =G/l , 7% = 1,@” and G=GM™" . Further,

@ = (p;'(x) is the second derivative of the angle of twist. The polynomial distributed axial

Pn
force is: m, =>"m, X =m, X’ +m X" +m,,x* +..+m, x"~, where m , are the values of
k=0

the k-th derivative of the distributed torsional moment m, at the beam node i. For the modal

analysis of axial vibration the right hand side of (3) vanishes. According to [19], the solution
of the differential equation (20) reads:

Prmx

¢x(x) — 60T _1T . ¢x,i + ;mx*bkﬂ-r (21)
¢;(X) B(;T 51,T ¢>Z| - .

R
Z mx,k bk+2T
k=0

In equation (21), the EkT and BQT , (k €(0,p,, +2>), are the transfer functions for torsion and

their first derivatives, respectively and represent the solution functions of the differential
equation (20). The transfer functions depend on the longitudinal variation of the torsional
shear modulus, the natural frequency, the polar moment of inertia, the torsion constant and the
consistent mass density. They are calculated in a similar way as is shown in the previous
loading cases. By inserting (18) and (19) into (21) and after some mathematical manipulations
the transfer matrix relations (22) for the particular case of uniform torsion harmonic free
vibration are obtained,

b, b & =
2% (X) bOT Gl; b, A1x3 - kzz(; mX,kbk+2T
i M, " - (22)
M (X) ' GI — . Pk
X GITb(;T T bllT Xl

Az,3 = GI Z mx,kbll+2T
k=0

i'T

By setting x = L in (22) a dependence of the state variables at point j on the state variables at
initial point i for modal analysis reads
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[ N I:E ]x—
|:¢x,j }: I:bOT ]X:L (13Ti|T_L
Mx,' — Gl —

e [ ], GJ_IT[b;T
L il

LL_'{

gox,i j|
+
Ile,i

P _
z mx,k bk+2T
k=0

Py

R
GI z mx,k bk+2T
k=0

x=L

(23)

x=L

By simple mathematical manipulations we get the local finite element equation for uniform
torsion (with M, =-M,,):

= _h
M 1 [B,., B .. A
X, :{ 44 4,10 :||: X :|+ 2 . (24)
M X,] BlO,4 BlO,lO ¢x,j F _ A1,3 AZ,Z
N 10 — Az,3 TN
A,
The transfer constants [EkT_X:L and [@T ]X:L,(k e(O,me+2>), can be calculated with a

simple numerical algorithm [20] which we programmed using software[21]. The variables G,
and G; correspond to the values of the homogenized torsional shear modulus at point iandj. It

can be easy shown that the matrix B is symmetric. The case of non-uniform torsion will be
considered in our future work.

2.4 Local FGM beam finite element equation

The local equation of the FGM finite beam element is obtained by superposition of the
equations for axial, flexural, lateral and torsional deformation, and it reads,

'N, ] [B, O 0o 0o O O B, 0 0 0 0 0 u F,
R,: B, 0 0 0 B, 0 B, 0 0 0 B,|| Vv F,
R, B, 0 B, 0 0O 0 B, O B, 0 W, F,
M,; B,, O o 0 0 B, O 0 Py F,
M, S B, 0 0 0 B, 0O B, O ?,; F,
M zZi _ Y B6 6 0 B6 8 0 0 BG 12 . az J + I:6
N, M B, 0 0 0 0 0 U F,
R, M Byy O 0 0 By, ||V, F,
R, E By, 0 By, O w, F,
M, ; T Bow O 0 2| | Fo
M Y.J R Bll,ll 0 ay,j Fll
_Mz,j_ L Y B12,12_ _az,j_ _F12_

(25)

The local finite element matrix B in (25) consists formally of the linear stiffness matrix K. and
the linearized geometric stiffness matrix Kn (containing the terms with second order axial
force N that has to be known or has to be evaluated by a linear elastic-static calculation) and
the consistent mass matrix M:

[B]=[K, + K, —o’M]. (26)
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The terms Band F correspond to the previously derived terms of the local beam element
matrices and load vectors in (6), (14), (17) and (24). In the modal analysis of a single straight
beam the global finite element matrix coincides with the local matrix. For a general case, the
global matrix of the beam and the beam structure are established in the usual finite element
method way. In the modal and buckling analysis the eigenvalue problem is solved. In modal
analysis, for given or calculated axial forces N" and defined geometrical parameters and
homogenized material properties and the global boundary conditions, the circular frequency
o is increased until the determinant of the global beam structure matrix tends to zero. This
circular frequency is the natural circular frequency from which the natural frequency
(eigenfrequency) can be calculated. In buckling analysis, the circular frequency o is set to

zero, and the second order beam theory axial force N" is increased until the determinant of
the global beam structure matrix tends to zero. Then, the axial force represents the buckling
force N .Further, the mode or buckling shapes can be calculated by the transfer relations (5),

(13), and (22). In static analysis, the circular frequency o is set to zero and the load vector
hast be established. The global and local displacements and rotations at the nodes are
calculated from those the local internal forces and moments in the homogenized beam
elements cross-sections are evaluated. After that the normal and shear stress is calculated in
the beam cross sections with real distribution of material properties. The solution approach we
have implemented into the software MATHEMATICA [21] by which the numerical
calculations presented in the chapter 4 were done.

3 HOMOGENIZATION OF IN THREE DIRECTIONS VARYING MATERIAL
PROPERTIES

One important goal of mechanics of heterogeneous materials is to derive their effective

properties from the knowledge of the constitutive laws and complex micro-structural behavior
of their components. Microscopic modeling expresses the relation between the characteristics
of the components and the average (effective) properties of composites. In the case of FGM it
is the relation between the characteristics of the components and the effective properties of
FGM.
The methods based on homogenization theories (e.g. the mixture rules [22,23]; self-consistent
methods [24]) have been designed and successfully applied to determine the effective material
properties of heterogeneous materials from the corresponding material behavior of the
constituents (and of the interfaces between them) and from the geometrical arrangement of the
phases. In this context, the microstructure of the material under consideration is basically
taken into account by a representative volume element (RVE).

Mixture rules are one of the methods for micromechanical modeling of heterogeneous
materials. Extended mixture rules [25] are based on the assumption that the constituents
volume fractions, formally denoted as fibers — f and matrix — m (the notation is very often
used in the literature also for the FGM constituents, although this material is point wise
isotropic and the reinforcing constituents are not of several forms and dimensions) vary

continuously as polynomial functions, v,(x,y,z) and V,(x,y,z) . The condition
vf(x, y,z)+vm(x, y,z)=1 has to be fulfilled. The appropriated material property distribution
in the real FGM beam (Figure 2a) then reads

P(X Y, 2) =V, (X, Y,2) Py (X, Y, 2) 4V (X, Y,2) P (X, Y, 2). (27)
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Here, pf(x, y,z)and pm(x, Y, Z) are the spatial distribution of material properties of the FGM

constituents. The extended mixture rule (27) can be analogically used for FGM made of more
than two constituents. The assumption of a polynomial variation of the constituent’s volume
fractions and material properties enables an easier establishing of the main field equations and
allows the modeling of many common realizable variations.

In the research studies and in practical applications, the one directional variation of the FGM
properties is mostly considered. For the FGM beams and shells the transversal variation
(continuously or discontinuously, symmetrically or asymmetrically) has been mainly
considered. There, an exponential law for variation of the constituents volume fractions
through the beam's height is often presented, e.g. in [26-28] and in references therein. The
homogenization of such variations is relatively simple. If the material properties vary only
with respect to the longitudinal direction, the homogenization is frequently not needed since
there are the FGM beam and link finite elements established that consider such variations in a
very accurate and effective way [29-31]. The more complicated case is, when the material
properties vary in three directions - namely in transversal, lateral and longitudinal directions
of the FGM beam.

In this contribution, the homogenization techniques of spatially varying (continuously or
discontinuously and symmetrically in transversal and lateral direction, and continuously in
longitudinal direction) material properties of FGM beams of selected doubly-symmetric
cross-sections are presented. The expressions are proposed for the evaluation of effective
elastic modules for axial loading and for transversal and lateral bending complemented with
the shear modules for transversal and lateral shear and uniform torsion and for themass
density by the extended mixture rules (EMR) and the multilayer method (MLM).

Let us consider a two node straight beam element with predominantly rectangular cross-
sectional area A (Figure 2). The composite material of this beam arises from mixing two
constituents. The continuous polynomial spatial variation of the elastic modules and mass
density can be caused by continuous polynomial spatial variation of both the volume fractions

(v,(x,y,z) and V,,(x,y,2) ) and the material properties ( p,(x,y,z) and p,(X,Y,z)) of the
FGM constituents.

In our case the elastic modulus E(x, Y, Z), the Poisson ratio v(x, y,Z), and mass density
p(x,y,2) are calculated by expression (27). The FGM shear modulus is calculated by
expression:

Sly.2)= 2(15(1)/(&1;,) 2) 29

If the Poisson’s ratio of the constituents is approximately of the same value and the
constituents volume fraction variation is not strong, then the FGM shear modulus can by
calculated using a simplification

Glx, y,z):E(X'Ty’Z), (29)

where & is an average value of the function &(x, y,z)=2(1+v(x, Y, z))

1)1
§_E L (K(J;)g(x, y,z)dAjdx. (30)
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Figure 2: FGM beam with rectangular cross-section.

Homogenization of the spatially varying material properties (the reference volume is the
volume of the whole beam) is done in two steps. In the first step, the real beam (Figure 2a) is
transformed into a multilayer beam (Figure 2b). Homogenized material properties of the
layers are calculated with the EMR [30]. Competent homogenized layer k at position x has a
constant volume fractions and the material properties of the constituents in the y and z
direction. They are calculated as an average value from their values at the boundaries of the
respective layer. Polynomial variation of these parameters appears with respect to the
longitudinal direction of the layer. Sufficient accuracy of the proposed substitution of the
continuous transversal and lateral variation of material properties by the layer-wise constant
distribution of material properties is reached if the division to layers is fine enough. In the
second step, the effective longitudinal material properties of the homogenized beam are
derived using the MLM. These homogenized material properties are constant through the
beam’s height and depth but they vary continuously along the longitudinal beam axis.
Accordingly, the beam finite element equations are established for the homogenized beam
(Figure 2¢) in order to calculate the primary effective beam unknowns (the displacements,
temperatures, electric potential, eigenfrequency, buckling force, etc...). The secondary
variables, for example the mechanical stress, have to be calculated from the internal local
forces and moments on the real beam [29].

The homogenized elastic modules for tension-compression - E;*"(x), bending about axis y -
E.""(x), bending about axis z - E"*"(x), shear in y direction - ny(X), shear in z direction -
G (x), torsion G}"*'(x), and the homogenized mass density for axial loading o, (x) and
torsion p[”*” (X) can be calculated using the following expressions:
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DE(0A > e, S E (.,

L e e L e S

D 20NN o XS

G ()= ey Cel)=E e (32)
Zn:Gk (X)IT,k ipk (X)Ak Zn: Pk (X)| 0.k

G ()= A= )= (39

Here, Ak denotes the cross-sections area, Ex(x)is the elastic modulus, lyk and Ik are the second
moments of area, Gk(X) is the shear modulus, Ik is the torsion constant and p, (x) is the mass
density, Ipk is the polar moment of area of the kth layer. The exact expressions for
homogenization of spatial varying (continuously or discontinuously and symmetrically in
transversal and lateral direction, and continuously in longitudinal direction) material
properties for the FGM beams depend on the form of the cross-section. For rectangular
hollow cross-sections we present the corresponding expressions in the following chapters.

3.1 Hollow cross-section

A straight beam of hollow cross-sectional area A=hbh —b h (Figure 3) is made of a FGM
whose properties vary in the y and z direction continuously and symmetrically according the
main inertial planes, x—y and x—z, and continuously in longitudinal beam direction x .

3 3 3 3
Further, 1, = LU and 1, = ﬂ—ﬁare the second moments of area, 1, =1, +1,
12 12 12 12

is the polar moment of area, A/ =k§mA and A =k’ A refer to the reduced cross-sectional

areas — by the average shear correction factors kjm and k™ [17,32,75], and
2 2
I; = 2(211 ::) (El:z) is the torsion constant. Here, sand t refer to the thicknesses of the
T S
S t

cross-section walls.
For the homogenization of spatially varying material properties the hollow cross-sectional

area is divided into n hollow parts, where t, =(hl—hn)/2n is the flange thickness and
s, = (b, —b,)/2n is the web thickness (Figure 3), respectively. The hollow area of the kth part
(ke@ n)is: A =2t (b —s,(2k —1))+2s, (h —t (2k —1)). The second moments of area of

the kth part are: 1, =(b—s(2k—2))h —t,(2k—2))' /12— (b, — 2ks h—2kt )’ /12
1, = (b —s,(2k—2)F(h, —t,(2k - 2))/12— (b, — 2ks, J'(h, — 2Kt )/12 .The polar moment of
area of kth partis 1,, =1, +1,,.
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Figure 3: A straight FGM beam of hollow cross-section.

According to (27) and (28) the real material properties are: E(x, y,z) IS the elastic modulus,
V(X Y,z) is the Poisson’s ratio, G(x,y,z)=E(x,y,2)/(21+V(x,y,z))) is the shear modulus
and p(x, y,z) is the mass density: (x e<0,L>ye<th /2,+h/2>ze<th [2,£h /2 >).

The effective homogenized material properties, like the elastic modules, are calculated under
assumption, that the relevant stiffness of the homogenized beam is equal to the stiffness of the

real beam virtually divided on the hollow parts. Thus, we get the effective elastic modulus for
axial loading

E, (X)A,
E" (X):lT’ (34)

n-1

with E, (x)=[E(x, y,2)}y=» and the effective elastic modules for bending about the y and z

axis,

k zEk(X)Iz,k
= B )= (35)

y z
The effective elastic modulus for uniform torsion reads,
> G ()l

Gl (x)= (36)

IT
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with G, (x)=[G(x, y,z)l~s . The torsion constant of the kth hollow part (k &(L n)) can be
evaluated as
2(b, — s, (2k ~1)f (h, —t, (2k ~ 1))

= : 37

s, 2k=1) (=, (k1) 7
tk Sk
The effective shear modulus in y direction is given by,
o 2KAG(A

GLy (X):MT ) (38)

with the average shear correction factors: kjm for whole rectangular cross-section and kj”l‘( for

kth part.
The shear modulus in z direction then reads,
] Z k;kGi (X)Ak
G™h(x)=*2 , 39
LZ( ) kzsmA ( )

with the average shear correction factors: k" for whole rectangular cross-section and kf”; for
kth part.

. . . NH . M,H .
The effective mass density for tension - p; (X) and torsion p_ " (X) is

an_;,pk (X)A, A 3]

prx)=tt—— P ()= (40)

p

with o, (X):[p(x, y,z)]zy;vkk It should be noted, that the effective mass density for tension has
been taken also for the lateral and transversal bending.

4 NUMERICAL INVESTIGATIONS

4.1 Example 1: FGM beam structure - hollow cross-section

The FGM beam structure with a constant rectangular hollow cross-section is considered
(Figure 4), which consists of two parts — Beaml and Beam2. Its geometry is given
byh1 =0.005 m, hn=0.00375m, b:= 0.01m, bn= 0.0075 m and L=0.1m. The angle

between the beams is@=150°. The cross-sectional area is A=2.1875x10" m?, the second
moments of area are | = 7.12077x10 ' m* and |  =2.8483k10° ' m?, the polar moment of

areais |, =1 +1, =356038x10"""m*and the torsion constant is I; =1.6748x10"m*.
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77>y, l’l” ]’l1

Figure 4: FGM beam structure in global (X, y, z) coordinate system.

The material of the beam consists of two components: Aluminum AlI6061-TO — denoted
with index m and Titanium carbide TiC — denoted with index f. The material properties of the
components are assumed to be constant and their values are: Aluminum AlI6061-TO - the

elasticity modulus E,, =69.0 GPa, the mass density p,, =2700 kgm=, the Poisson’s ratio
v,, = 0.33; Titanium carbide TiC — the elasticity modulus E, = 480.0 GPa, the mass density
o, =4920 kgm3, the Poisson’s ratio v, =0.20.

The TiC volume fraction varies in the local y' and z' direction linearly and symmetrically
according to the X' =y and x —z' planes: [Vf(y',zy)]y‘:ihnﬂ:o, [vf(y’,Z’)]y-:ihl/zzl - the
7' =%b,/2 7' =%b, /2

inner edges of the cross-sectional area are made of pure Al6061-TO —and the outer cross-
section edges are made of pure TiC. Constant effective material properties are considered in

the local x' — direction of both beams. Using EMR and MLM the effective elastic modulus
(in [GPa]) for axial loading E*"', for bending about axis y’ - E,""" and about axis z' - E":"

the shear moduli Gﬁy and G, , the torsional shear modulus G"*" , and the mass density

pLNH [kgm3] for tension and pﬁ”*” [kgm3] for torsion have been calculated by equations (34 -
40). The influence of the number of divisions n to the layers on the homogenized material
properties [32, 33] is shown in Table 1. The average shear correction factors kjm and kX" for

n=20 layers are k;" =0.4712 and k;" =0.2910 [32, 33]. For homogeneous hollow cross-

section, following shear correction factors are obtained: k,=0.5081 and k, =0.3291
(calculated e.g. with ANSY'S [34], for rectangular hollow beam-section).

e | e Jepreert ofeer | et | |
2 281.839 296.151 112.716 120.614 | 3849.643 | 3926.946

5 283.894 302.229 113.901 124.066 | 3860.743 | 3959.777
10 284.188 303.098 114.071 124.561 | 3862.328 | 3964.469
15 284.242 303.259 114.102 124.653 | 3862.222 | 3965.339
20 284.261 303.315 114.113 124.685 | 3862.725 | 3965.643

Table 1: Influence of the number of division n to the layers on the homogenized material properties.
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Modal analysis

The FGM beam structure, clamped at the node i and j, is studied by modal analysis. The effect
of axial force is not considered by this example. The first six eigenfrequencies f [Hz] are given
in Table 2 using the new FGM beam finite element (NFE) and homogenized material
properties for n = 20. Only two of our proposed FGM finite element are used — one for each
part. For comparison purposes, the same problem is solved using a very fine mesh — 21600 of
SOLID186 elements of the FEM program ANSYS [34]. The average relative difference A[%]
between eigenfrequencies calculated by our method (NFE) and the ANSYS solution is
evaluated.

NFE NFE A[%] A[%]
eigenfrequencies f [Hz] | without with ANSYS without with

shear shear shear shear
1%t | flexural — xz plane 2392.0 2361.1 2343.6 2.07 0.75
2" | flexural — xy plane 3859.1 3765.4 3798.8 1.65 0.82
3 | flexural — xy plane | 4444.0 4384.0 4341.1 2.37 0.99
4" | flexural — xz plane | 7391.0 7123.3 7182.5 2.96 0.77
50 | flexural — xy plane | 9147.1 9027.1 8928.4 2.57 1.23
6" torsional 10051.1 10013.4 9896.8 1.56 1.18

Table 2: Eigenfrequencies of the FGM beam structure.

A comparison of 1%,2"and 3 eigenforms of the FGM beam structure evaluated by the new
FGM beam finite element and FEM program ANSY'S is shown in Figures 5 - 7.

I: Modal

Total Deformation

Type: Total Deformation
Frequency. 2343,6 Hz
Unit mm

22.2. 20161518

— undeformed model
— NFE
== ANSYS

423,09 Max
376,08
329,07
282,06
235,05
188,04
141,03
94,019
47,01

0 Min

Figure 5: The 1%eigenform of the FGM beam structure displayed by the ANSYS postprocessor and comparison
of NFE and ANSYS.

I: Modal

Total Deforration 2
Type: Total Deformation
Frequency. 37988 Hz
Unit: mm

22.2.2016 1521 — undeformed model

— NFE
== ANSYS

364,69 Max
32417

28365 -

243,13

20251

162,08 \

12156 B . s
81,042

40,527 .

0Min X

Figure 6: The 2"%igenform of the FGM beam structure displayed by the ANSY'S postprocessor and comparison
of NFE and ANSYS.
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k Modal

Total Deformation 3
Type: Total Deformation
Frequency 4341,1 Hz
Unit: mm
22220161526 — undeformed model
— NFE

= ANSYS

341,9 Max
30391

265,92 S

me g —,

G N

75,978

i ..

Figure 7: The 3 eigenforms of the FGM beam structure displayed by the ANSY'S postprocessor and comparison
of NFE and ANSYS.

Elasto-static analysis

The FGM beam structure, clamped at the node i and j, loaded by the vertical
force F, =100 N in the global negative y direction and the torsion moment M,, =100 Nm

about global x-axis at point k, is studied by elasto-static analysis. The effects of axial forces is
not considered by this example. The displacements according the global coordinate system at
the point k are given in Table 3 using the new FGM beam finite element (NFE) and
homogenized material properties for n = 20. Only two of the herein proposed new FGM finite
elements were used — one for each part. For comparison purposes, the same problem is solved
using a very fine mesh — 21600 of SOLID186 elements of the FEM program ANSY'S [34].
The average relative difference A[%] between displacements calculated by our method and
the ANSY'S solution is evaluated.

NFE NFE A[%] A[%]
Displacements | without . without with
with shear | ANSYS

[mm], [rad] shear . shear shear

: correction . )

correction correction | correction

vV, -0.01135 | -0.01137 | -0.01140 0.39 0.27

W, -2.56285 | -2.56285 | -2.58651 0.91 0.91

P 0.19804 0.19804 0.20030 1.13 1.13

Table 3: Global displacements at point k.

The total deformation of the FGM beam structure is shown in Figure 8.

D: Static Structural
Total Deformation

Type: Total Deformation
Unit: mm

Tirne: 1

22.B.2015 827

3,279 Max
30448
28106
25763
2,34
21079
18737
16395
1,4053
11711
0,93685
0,70264
0,46843 g

0,23421
0 Min Y
z

Figure 8: Total deformation of the FGM beam structure.

As can be seen in Table 4, a very good agreement of our results is obtained.
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4.2 Example 2: FGM beam - spatial variation of material properties

The cantilever FGM beam on varying horizontal and vertical Winkler foundation is
considered (as shown in Figure 9). Its rectangular cross-section is constant with height
h = 0.005 m and width b = 0.01 m. The length of the beam is L = 0.1 m.

L ~
z ;7 i n
ko) '
y ky(x)

Figure 9: Clamped beam on elastic foundation with spatially varying material properties.

y

The beam is made of a mixture of two components: Aluminum AI6061-TO and Titanium
Carbide TiC, their constant constituent’s material properties are given in Case I|. The
Aluminum volume fraction, in this case, varies linearly and symmetrically according to the

x—y and x—z planes: At node i is [vﬁ(y,z)Jyfg:l, [vﬁ(y,z)JnyI/zzzo and then vary

continuous linearly in the longitudinal direction to the constant value at node j (v, =1).
Using EMR and MLM with n = 20 layers the effective elastic modulus for axial loading
EM", for bending about axis y - E™" and about axis z - E"*", shear modules G} and G},

torsional shear modulus G, and mass density " for tension and " for torsion are
evaluated as:

E"" =342109-2731095x GPa;
E"" = EM" =396.429-3274.293x GPa;

L

G, =GJ1 =138581-1129418& GPa;
G =162233-1362936x GPa;
ot =417519-147519x kgm'?;
o = 4468.34-1768343x kgm,

Modal analysis

The FGM cantilever beam, clamped at the node i, and resting on varying Winkler elastic
foundation ky(x)=5000-30000x+60000x?> kN/m? and k:(x)=5000-1000x+6000x? kN/m? is

studied by modal analysis. The average shear correction factors in y'— direction kf,’"=5/6 and

in z — direction k;™ =5/6are used [35]. The first nine eigenfrequencies f [Hz] are evaluated as

shown in Table 4. It is use only one of our proposed finite element. The effect of axial force
was not considered in this example. The same problem is solved using a very fine mesh —
32000 of SOLID186 elements of the FEM program ANSYS [34]. The results of ANSYS as
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well as the results of the NFE are presented in Table 4. The average relative difference A[%]
between eigenfrequencies calculated by our method and the ANSY'S solution is evaluated.

NFE ANSYS NFE ANSYS
eigenfrequencies f [Hz] | without without | A[%] with with A[%]
foundation | foundation foundation | foundation
15t | flexural - axisy 838.9 844.9 0.71 1356.1 1365.3 0.67
2" | flexural - axis z 1660.0 1674.4 0.86 1896.3 1911.3 0.78
3 | flexural - axisy 4329.5 4301.7 0.65 4433.4 4413.5 0.45
4™ | flexural - axis z 8288.5 8228.8 0.73 8332.2 8275.1 0.69
5t | flexural - axisy | 11046.0 10920.0 1.15 11125.8 10961.0 1.50
6" torsional 11182.0 10926.0 2.34 11048.0 10969.0 0.72
7t | flexural - axis z 20023.0 19907.0 0.58 20051.0 19925.0 0.63
8" | flexural - axisy | 20379.0 20312.0 0.33 20397.1 20333.0 0.32
ot axial 22212.6 22213.0 | 0.01 | 222127 22213.0 | 0.01

Table 4: Eigenfrequencies of the FGM beam with and without elastic foundation.

Again, a very good agreement of our results compared to ANSY'S is indicated in Table 4. For
instance, the 1%, 6™ and 9" mode of the FGM beam structure displayed by ANSYS is shown
in Figure 10.

12098 Max
11509
10070
A3

Figure 10: The 1% and 6™ and 9" eigenforms of the beam
(with Winkler elastic foundations).

Buckling and elastic-static analysis

The FGM cantilever beam, clamped at the node i, has been studied by buckling and elastic-
static analysis. All the calculations were done with our 3D FGM beam finite element (NFE)
which we have implemented into the code MATHEMATICA [21]. Additionally, the effect of
axial force was considered. It has to be pointed out that the entire structure is discretized using
only one herein proposed finite element.

The critical buckling force calculated by our 3D FGM beam finite element is

Ny, =7.171 kN and calculated by ANSYS (with 50 of BEAM188 elements) is

N, =7.081kN. The first buckling form is shown in Figure 11. In the elasto-static analysis
the axial force N" = N have been chosen as a part of the critical buckling force N, .
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y
)—’ — undeformed model
. ©  — NFE
- ANSYS

Figure 11: The first buckling form.

In the elastic-static analysis, the cantilever FGM beam resting on varying vertical Winkler
elastic foundation k, = 5000—30000x +600000x* kKN/m? is loaded by forces F,=F, =50N

and F, =—2kN at node j (Figure 12). The average shear correction factors in y' — direction

k," =5/6 and in z' - direction k;" =5/6are used [35]. The displacements at node j are

evaluated using the only one new FGM beam finite element (NFE). The same problem is
solved using a very fine mesh — 23015 of SOLID186 elements of the FEM program ANSYS
[34]. The results of ANSYS as well as the results of the NFE are presented in Table 5. The
average relative difference A[%] between displacements calculated by our method and the
ANSYS solution is evaluated.

s . 9
/2511,.-[‘/_ s z,W
/'/ W
S A%
F. /') F:
/‘/. |F1
Figure 12: Loaded FGM beam.

Displacements at node j NFE ANSYS NFE ANSYS
P (], [rad] 1 with with without | without
! foundation | foundation | foundation | foundation
u; -0.02445 | -0.02507 | -0.02445 0.02507
V; 0.24641 0.24933 0.74414 0.75348
W; 0.14452 0.14791 0.14452 0.14791
?Pyi -0.00247 | -0.00256 | -0.00247 -0.00256
?y 0.00503 0.00527 0.1304 0.01321

Table 5: Displacements at hode j with and without elastic foundation.

The comparison of the vertical beam deflection curve with and without elastic foundation is

shown in Figure 13.
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Figure 13: Vertical beam deflection curve with and without elastic foundation.

The bending moments about the y and z — axis for case without elastic foundation are shown
in Figures 14 and 15, respectively. The Figures 16 and 17 show the transversal force in y and

z — axis. The comparison of the bending moments My(x=0), MZ(X=O) and transversal
forces R,(x=L), R,(x=L) for the case Fx=-2kN calculated by our approach and by
ANSYS are compared in Table 6.

M, [Nm]
—
A1t e B
—
2t . 1
—
3 e 1
—
47 e NFE 1
— — ANSYS
-5 E \/\/\ L Il L L Il L L Il L L Il L L Il ]
0.00 0.02 0.04 0.06 0.08 0.10

x [m]

Figure 14: Bending moment about the y — axis (without elastic foundation).

M, [Nm]
6" ]
5¢ e :
4¢ T ]
3 e :
R ]
oL B o o o R

0.00 0.02 0.04 0.06 0.08 0.10

1 x [m]

Figure 15: Bending moment about the z — axis (without elastic foundation).
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Ry, [Nm]

5

70 ¢

65 -

60 o NFE

55t — ANSYS

sobeC o dx[m]
0.00 0.02 0.04 0.06 0.08 0.10

Figure 16: Transversal force in y — axis (without elastic foundation).

R [Nm]

55

54

53}

52f
i e NFE

St — ANSYS  °

50 E L L L L L L L L L L L L L L L L L L L 4 X [m]
0.00 0.02 0.04 0.06 0.08 0.10

Figure 17: Transversal force in z — axis (without elastic foundation).

NFE ANSYS

Fx=-2 kN|Fx = 2 kn| A1
M,(x=0) [Nm] | -52182 | -5.2416 | 0.45
M,(x=0) [Nm] | 6.4691 | 6.4404 | 0.45

x=L) [N] | 54.9472 | 55.0873 | 0.25
x=L)[N] | 76.2088 | 76.2251 | 0.02

Table 6: Bending moments and transversal forces.

y

(
i

R
R

In Figure 18, the resultant normal stress, caused by axial, transversal and lateral forces, in the
clamped cross-section is shown that was calculated by our approach [18] extended here for
variation of material properties in three directions.
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Figure 18: Resultant normal stress o (X, Y, z) [MPa] at position x = 0 calculated by our approach [18].

In Figure 19, the resultant normal stress, caused by axial, transversal and lateral forces, in the
clamped cross-section is shown that was calculated by ANSYS (using a very fine mesh —
23015 of SOLID186). As can be seen, a very good agreement of both solution method has
been obtained at all marked points excluding the corners. As is well known, the solutions with
3D solid finite elements produce in the sharp corners incorrect stress first of all by the very
fine meshes. In the nearby points of the sharp corners is the match of the results very good
(see the details in Figure 19). More detailed description of the stress calculation for the FGM
beam with spatial variation of material properties will be given in our newly prepared paper.

Normal Stress
Type: Normal Stress({ Axis)
Unit: MPa
Coordinate Systemn
Time: 1

26, 2. 2016 8:03

283,32 Max
221,05
170,78
e
| 582
L1 19686
I ppes
-110,57
-166,84
223,12
— 279,39
-335,66
-391,93
-443,2
-504,47 Min

Figure 19: Normal stress o (X, Y, z) [MPa] at position x = 0 calculated by ANSYS (SOLID186)

5 CONCLUSION

On base of the transfer relations for the 3D straight FGM beam of doubly symmetric cross-
section with longitudinal polynomial variation of the effective material properties, the
effective matrix of the 3D beam finite element for static, modal and buckling analysis of the
FGM single beams and beam structures is established in this contribution. Symmetrically
transversal and lateral, and continuously longitudinal variation of material properties is
considered in the real beam. Homogenization of the spatially varying material properties in
the real FGM beam and the calculation of effective parameters of the homogenized beam are
done by the extended mixture rules and the multilayer method (MLM). Effects of the varying
planar Winkler elastic foundations and the shear force deformation (by means of the average
shear correction factors) and the consistent mass and mass moment of inertia distribution are
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taken into account. The effect of axial force is included for the flexural deformations as well
that allows performing of analysis within the 2nd order beam theory. All the derived
equations were programmed through the software MATHEMATICA [21] and the numerical
calculations were carried out. In modal and buckling analysis, the eigenvalue problem is
solved. In buckling analysis, the circular frequency @ is set to zero and axial force N is
increased the determinant of the global matrix of the beam structure tends to zero. This axial
force corresponds to the critical buckling force. In modal analysis, for given internal axial
forces N in the competent beams and geometrical parameters and material and boundary
conditions, the circular frequency w is increased until the determinant of the global matrix of
the beam structure tends to zero. This circular frequency corresponds to the natural circular
frequency from which the natural frequency (eigenfrequency) is calculated. In linearized
elastostatic analysis (according the second order beam theory), the internal axial forces have
to be evaluated that input in the linearized geometric stiffness matrix. By the linear beam
theory only linear stiffness matrix is established. The load vector is established and the local
and global displacements and internal forces are calculated. After that, as usually, the
secondary variables like eigen- and buckling- forms, and the stress are calculated. The main
issue of numerical investigations is the modal, buckling and elastostatic analysis of FGM
beam structures (single beams and spatial beam structures) with spatial variation of material
properties. By selected numerical examples the effect of axial and shear forces is evaluated.
The results carried out by our approach are compared with results obtained using very fine
beam and continuum meshes in the FEM program ANSYS [34]. An excellent agreement of
our solution results is obtained, which confirms respectable accuracy and effectiveness of our
approach.

The main advantage of the new beam finite element is that the individual beams of the beam
structure with spatial variation of material properties (continuous or layered but symmetrically
in transversal and lateral direction, and continuous polynomial in longitudinal direction) can
be modeled with only one beam finite element, because the variation of the material
properties is relatively accurately included into the finite element matrix. Another advantage
is that the beam finite element can be very effectively used also for the modeling of spatial
beam structures.

Disadvantage of this approach is that by more complicated variation of material properties
some problems arise by the transfer constants calculation. This problem can be solved by the
dividing of the definition domain of the transfer functions [20]. Another problems comparing
to continuum approach can arise by the beams with complex cross-sectional area.
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