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Abstract. Often, Lagrange’s formalism based on the Lagrangian is the preferred way in order
to derive equations of motion for a mechanical system. Therefore, the first step is the formula-
tion of the total kinetic and total potential energy. In this formalism, holonomic constraints can
be taken into account by using the Lagrange multiplier method, and external and dissipative
forces can be included variationally consistently by means of the Lagrange-D’Alembert princi-
ple. In this way, we are directly arrive at a weak formulation of the equations of motion without
using a strong form and integration by parts. The variational time integration method is now
based on the discretization of the action functional and the discrete variational calculus. This
method leads to time stepping schemes called variational integrators.
In this paper, we show that variational integrators based on higher-order shape functions and
quadrature rules leads to a higher-order time approximation, which preserve the total linear
and total angular momentum of the mechanical system. A further topic of the paper is a new im-
plementation of the Lagrange multiplier method for holonomic constraints in the higher-order
variational integrator, in order to compute bearing forces by means of Lagrange multipliers.
Usually, variational integrators show an excellent long time behavior and bind the total energy
error per time step, but are not able to preserve the total energy exactly. Therefore, we introduce
a discrete gradient of the total potential energy in the variational integrator to preserve the total
energy. We show different discrete gradients with different results for numerical stability. We
can show that these time stepping schemes preserve the total linear momentum, total angular
momentum as well as the total energy for every time step size.
As numerical examples, we show motions of three-dimensional continua, which are discretized
in space by the finite element method. We start with a free flying hyper-elastic rotor to show
the preservation of total linear and total angular momentum in combination with higher-order
accuracy in time. In the second example, we consider a hyper-elastic beam and apply the La-
grange multiplier method in order to calculate the bearing forces at fixed nodes. In the last
example, the energy conservation is shown for different discrete gradients.
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1 INTRODUCTION

This paper shows the application of a variational formulation in time to create an energy-
conserving variational integrator of higher order accuracy for finite element models. A three-
dimensional body will be discretized with linear finite elements in space. We also apply DIRICH-
LET boundaries and show how these can be included in the variational principle. For this, we
use LAGRANGE multiplier with a special NEWTON-COTÊS approximation. The calculation of
the bearing forces will be described, which is needed for the calculation of the balance of total
angular momentum. A standard variational integrator is total linear and total angular momen-
tum conserving, however does not preserve the total energy of a discrete conservative system.
But, the introduction of the enhanced derivative or gradient, respectively, in Reference [1] in the
variational integrator leads to a variational based time integration algorithm, which preserves
the discrete balance of total energy.

First of all, the introduction of the enhanced gradient is consistent with the LAGRANGE-
D’ALEMBERT principle and therefore generates an extended variational integrator. This knowl-
edge can be derived from the generalization of the discrete derivative or gradient, respectively,
in Reference [8] to higher order schemes [1]. For higher order schemes, the discrete gradient
of the total energy is always split into two terms of a sum. The first term is a conservative
part, which arises in a variational integrator from the discretized Lagrangian of the dynamical
system. The second term as extension of the conservative part can be considered as a special
non-conservative extension of the dynamical system. The special feature of this term is, that
it does not lead to a physically based energy dissipation or a physically based external work,
but rather to an algorithmic energy conservation in the discrete variational system and to a zero
term in the continuous variational system. In Reference [1] is also shown, that both parts can
be derived from a separate constraint variational problem, which can be concatenated with the
variational formulation of the dynamical system.

Another interesting point of view is to recognize in the second term of the enhanced gradient
an energy error controller. In Reference [11], there is described a so-called affine Hamiltonian
control system with an extended Hamiltonian

H(q,p,u) = H0(q,p)−
ncon∑
j=1

Hj(q,p)uj (1)

which depends only linearly or affine on the control variables uj , j = 1, . . . , ncon. The function
H0 is called the internal Hamiltonian of the dynamical system, and the functions Hj are called
coupling Hamiltonians. Accordingly, the natural outputs yj , j = 1, . . . , ncon of the Hamiltonian
system are given by

yj =
∂H

∂uj
(2)

Taking into account Hamilton’s principle, we arrive in the continuous setting at the affine Hamil-
tonian control system

q̇ =
∂H0

∂p
−

ncon∑
j=1

∂Hj

∂p
uj (3)

ṗ = −∂H0

∂q
+

ncon∑
j=1

∂Hj

∂q
uj (4)
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Figure 1: Discrete gradient as energy error controller of a time integrator

with the corresponding total energy balance

dH0

dt
=

ncon∑
j=1

ẏj uj (5)

Hence, in the continuous setting the input variables have to vanish for total energy conservation,
but in the discrete setting the sum balance the energy error of the time integrator. Comparing this
Hamiltonian formulation with that in Reference [1], it is obvious that the control inputs uj are
the components of the second term of the enhanced gradient, following from a costoptimized
constraint optimization problem and leading to an energy consistent algorithmic closed loop
control problem.

Consequently, the enhanced gradient as higher order accurate discrete gradient can be seen
at least in two ways as a consistent extension of a variational based time integrator. In this work,
the first method of using the LAGRANGE-D’ALEMBERT principle is shown in a continuous as
well as discrete setting.

2 FINITE ELEMENT APPROXIMATION

We choose a standard spatial finite element discretization for the solid continuum. First we
define a model in the reference configuration B0 at time t = 0. The deformed model is denoted
by the configurations Bt for t > 0. The postion vector in configuration B0 is described by
the vector X ∈ Rn. For the configuration Bt, the new position vector depends on time t with
x(t) ∈ Rn. The index n means the number of degrees of freedom for the three-dimensional
discretized continuum.

X ∈ Rn in B0 and x(t) ∈ Rn in Bt (6)

With an application of the isoparametric concept [3], we define a function ϕ. This makes it
possible to calculate the actual postion from the reference configuration and the actual time t.
The actual position depends on a linear mapping

x(t) = ϕ(X, t). (7)

The position vectors are approximated in space with linear LAGRANGE-polynomials NA on the
reference element with coordination vector ξ. This finite element is also known as C3D8 cube.

Xe,h =
ns∑
A=1

NA(ξ)Xe,A (8)
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xe,h =
ns∑
A=1

NA(ξ)qe,A (9)

The deformation gradient is defined by the derivative of the function ϕ with respect to X,

F(X, t) = ∇Xϕ(X, t) (10)

with

Fe =
ns∑
A=1

qe,A ⊗
(

(Je)−T · ∂N
A(ξ)

∂ξ

)
. (11)

and

Je =
ns∑
A=1

Xe,A ⊗ ∂NA(ξ)

∂ξ
(12)

The deformation gradient F provides a relationship between tangent vectors in the reference
and actual configuration of a continuum. For the description of the deformation measurement
we choose the right-CAUCHY-GREEN tensor

C = FTF (13)

The third invariant of F can also be defined in C as

I3(F) =
√

det(C). (14)

We also define the derivative of the tensor C with respect to q as the linearized strain operator

Be,A = 2
∂Ce

∂qe
= 2∇XN

A ⊗ FeT . (15)

2.1 MATERIAL FORMULATION

The used material model is described by the following free energy function see also [5] and
[10].

ψ =
µ

2
[tr(C)− ndim − 2 ln(I3(C))] + ψvol (16)

ψvol =
λ

2

[
ln(I3(C))2 + (I3(C)− 1)2

]
(17)

The constants λ and µ are called LAMÉ-parameters. In the three-dimensional case, ndim is set
to three. This matrial model, in combination with the formulation of the right-CAUCHY-GREEN

tensor, allows us to decribe large deformations for the physical model.

3 THE LAGRANGIAN

The LAGRANGE function, defined by the kinetic energy T kin and potential energy V int, is
given by

L = T kin − V int (18)
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As potential energy V int,e, we define the integral over free energy function ψe for every element
and the gravity with respect to the reference configuration B0. The kinetic energy T kin,e for one
element depends on the mass matrix Me and the velocity q̇e.

V int,e =

∫
Be

0

ρ0ψ
e(Ce(qe)) + ρ0g

e · qedV (19)

T kin =
1

2

∫
Be

0

ρ0q̇ · q̇ (20)

T kin,e =
1

2
q̇e ·Me · q̇e (21)

The gravitational vector ge is defined by ge = g[0,− ey,0]T with g as the gravitational constant.

3.1 APPROXIMATION IN TIME

The postion vector q and velocity vector q̇ are discretized in the following way:

qh =

np∑
i=0

Mi(α)q i
np

qd =

np∑
i=0

M
′

i (α)q i
np

i = 0 . . . np (22)

np is the number of polynomial degree and M represents the LAGRANGE polynomials in the
interval from zero to one. For this approximation, we need specific quadrature points αj, j =
1, . . . , nq. In this paper, we only use GAUSSIAN quadrature points and LAGRANGE polynomials
with equidistant points in the interval from zero to one. Note that, it is also possible to choose
other quadrature points or other shape functions in time. The approximated velocity vector q̇ is
defined by the derivative of the position vector with respect to the time t. This derivative will
be replaced by a derivative of M(α) with respect to α.

q̇(t) =

np∑
i=0

dM(α(t))

dt
q i

np
=

np∑
i=0

1

hn

∂M(α)

∂α
q i

np
=

np∑
i=0

1

hn
M
′

i (α)q i
np

=
1

hn
qd (23)

3.2 THE DISCRETE STATE SPACE DEFINITION

We divide one time interval with the size hn into different micro time steps. The number
of micro time steps depends on the polynomial degree of approximation in time. This will be
applied to the position vector q̄k+1 and the LAGRANGE-multiplier vector λ̄k+1.

q̄k+1 =

[
qk,qk+ 1

np
,qk+ 2

np
, . . . ,q

k+
np−1

np
,qk+1

]T

(24)

λ̄k+1 =

[
λk,λk+ 1

np
,λk+ 2

np
, . . . ,λ

k+
np−1

np
,λk+1

]T

The total number of all state variables is summarized in q̄tot and λ̄tot. The number of all macro
time steps is equal to nt.

q̄tot =

[
q0+ 0

np
,q0+ 1

np
,q0+ 2

np
, . . . ,q

0+
np−1

np
,q1+ 0

np
, . . . ,q

nt−1+
np−1

np
,qnt

]T

(25)

λ̄
tot

=

[
λ0+ 0

np
,λ0+ 1

np
,λ0+ 2

np
, . . . ,λ

0+
np−1

np
,λ1+ 0

np
, . . . ,λ

nt−1+
np−1

np
,λnt

]T

The continuous LAGRANGIAN will be approximated with discretized variables, see below.
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3.3 THE DISCRETE LAGRANGIAN

L̃d =

tk+1∫
tk

1

2
q̇h ·M · q̇hdt−

tk+1∫
tk

∫
B0

ρ0ψ(C(qh)) + ρ0g · qhdV dt−
tk+1∫
tk

λ ·Φ (q) dt (26)

First we define a discrete functional Ld,k+1 without the LAGRANGE multiplier vector λ.

Ld,k+1(q̄k+1) = hn

nq∑
m=1

wmL(qk+1, q̇k+1) (27)

The reason is, we want to fulfill constraints at the micro time steps and not at the quadrature
points. Therefore we apply a NEWTON-COTÊS quadrature for the constraint terms. The ap-
plication of the NEWTON-COTÊS quadrature, with an equidistant choice of quadrature points,
decouples the following equations and defines the LAGRANGE multiplier at the micro time
steps.

L̃d,k+1(q̄k+1, λ̄k+1) = Ld,k+1(q̄k+1)− hn
nq∑
i=0

wcMc,i(αc)λ̃k+ i
np
·Φ
(
qk+ i

np

)
(28)

The shape functions in time for the NEWTON-COTÊS quadrature are always one for the quadra-
ture points and zero for all other shape functions.

nq∑
i=0

wcMc,i(αc)λ̃k+ i
np

=

nq∑
i=0

wcλ̃k+ i
np

(29)

We also define a new LAGRANGE multiplier vector λk+ i
np

which includes the weight from the
quadrature.

L̃d,k+1(q̄k+1, λ̄k+1) = Ld,k+1(q̄k+1)− hn
nq∑
i=0

λk+ i
np
·Φ
(
qk+ i

np

)
(30)

We build the discrete action sum Sd as a sum over all time steps.

δSd = δ

nt−1∑
k=0

L̃d,k+1 (31)

=
∂

∂q̄tot

(
nt−1∑
k=0

L̃d,k+1

)
· δq̄tot +

∂

∂λ̄
tot

(
nt−1∑
k=0

L̃d,k+1

)
· δλ̄tot

The first variation with respect to q̄tot gives us:

∂

∂q̄tot

(
nt−1∑
k=0

L̃d,k+1

)
· δq̄tot (32)

=
nt−1∑
k=0

[
D1L̃d,k+1 · δqk +

np−1∑
i=1

(
D1+iL̃d,k+1 · δqk+ i

np

)
+ D1+npL̃d,k+1 · δqk+1

]

=
nt−1∑
k=0

np−1∑
i=1

(
D1+iL̃d,k+1 · δqk+ i

np

)
+

nt−1∑
k=1

(
D1L̃d,k+1 + D1+npL̃d,k

)
· δqk

+ D1L̃d,1 · δq0 + D1+npL̃d,nt · δqnt
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By definition, δq0 = δqnt = 0 are always zero. We also define the derivative D1+iL̃d,k+1 in the
following way:

D1+iL̃d,k+1 =
∂L̃d,k+1

∂qk+ i
np

with i ∈ {0, . . . np} (33)

We collect the terms for similar variations and get:

0 = D1+npL̃d,k + D1L̃d,k+1 (34)

0 = D1+iL̃d,k+1 ∀ i = 1, . . . , np − 1 (35)

In the same way, we define the vector of linear momentum. The vector of linear momentum
only exists at every macro time step.

p̄tot = [p0,p1,p2, . . . ,pnt−1,pnt ]
T (36)

The discrete EULER-LAGRANGE equations are invariant up to rigid body motions. Therefore,
we can reformulate the EULER-LAGRANGE equations in the so called position-momentum form
[7].

pk = D1+npL̃d,k = −D1L̃d,k+1 (37)

−pk = D1L̃d,k+1 (38)

pk+1 = D1+npL̃d,k+1 (39)

The variation with respect to λ̄tot gives:

∂

∂λ̄
tot

(
nt−1∑
k=0

L̃d,k+1

)
· δλ̄tot

= −
nt−1∑
k=0

hn

np∑
i=0

Φ
(
qk+ i

np

)
· δλ̄k+ i

np
(40)

As a result, the constraints have to be fulfilled at every micro time step.

Φ
(
qk+ i

np

)∣∣∣np−1

i=0
= 0 (41)

In order to guarantee the symplecticity construction for our time step scheme, the following
condition has to be implemented to fulfill the constraints on velocity level at the last micro time
step in every macro time step [2], [7].

dΦ (qk+1)

dt
= Ψ (qk+1,pk+1) = 0 (42)

With the equations below we get the discrete EULER-LAGRANGE equations in the position-
momentum form. In these equations we first calculate implicitly the unknown values of the
postion vector for every micro time step and the unknown LAGRANGE multiplier in Equa-
tion (43). In the ”update” step we calculate also implicitly the unknown LAGRANGE multiplier
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and the linear momentum vector at the end of the micro time step, Equation (44) [6], [9].

−pk =
∂Ld,k+1

∂qk
− hn

(
∂Φ(qk)

∂qk

)T

· λk (43)

0 =
∂Ld,k+1

∂qk+ i
np

− hn

∂Φ
(
qk+ i

np

)
∂qk+ i

np


T

· λk+ i
np

∣∣∣∣∣∣∣
np−1

i=1

0 = Φ(qk+ i
np

)
∣∣∣np−1

i=1

pk+1 =
∂Ld,k+1

∂qk+1

− hn
(
∂Φ(qk+1)

∂qk+1

)T

· λk+1 (44)

0 = Ψ (qk+1,pk+1)

The derivative of the discrete LAGRANGE function with respect to q for every element can be
written as

∂Ld,k+1

∂q̄ek+1

=

nq∑
i=1

wi

∂

(
1

2
qde(αi) ·Me · qde(αi)

)
∂q̄ek+1

(45)

−
nq∑
i=1

wi

∂

∫
Be

0

[
ρ0ψ

e
(
C̃e(qhe(αi))

)
+ ρ0g

e · qhe
]

dV


∂q̄ek+1

.

4 CONSERVATION PROPERTIES

Every variational integrator conserves the balance of total linear momentum and the balance
of total angular momentum. Without any constrains and no gravitational force, it is easy to
calculate these conservation properties, but we want to show how these properties can be calcu-
lated and show that they are preserved, and hence constraints and a gravity force are included
in the simulation.

4.1 BALANCE OF TOTAL LINEAR MOMENTUM

In the case without a DIRICHLET boundary, the conservation of the balance of total linear
momentum in the x, y, z-direction can be calculated by the sum over all nnodes nodes:

nnodes∑
i=1

[
pj,ik+1 − pj,ik

]
︸ ︷︷ ︸

Pi+1−Pi

= 0 ∀j = [x, y, z] (46)

In the case with boundary nodes, the conservation of the balance of total linear momentum in
the x, y, z-direction can be calculated by the sum over all nnodes nodes and the sum over the
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LAGRANGE multiplier vector:

nnodes∑
i=1

[
pj,ik+1 − pj,ik

]
+ hn

nnodes∑
i=1

np∑
m=0

λj,ik+ m
np

= 0 ∀j = [x, y, z] (47)

nnodes∑
i=1

[
pj,ik+1 − pj,ik

]
︸ ︷︷ ︸

Pi+1−Pi

+hn

nnodes∑
i=1

np∑
m=0

wcMc,m(αc)λ̃j,ik+ m
np︸ ︷︷ ︸

F̄ ext

= 0 ∀j = [x, y, z] (48)

4.2 BALANCE OF TOTAL ANGULAR MOMENTUM

Without a DIRICHLET boundary and external forces, the conservation of the balance of total
angular momentum can be easily calculated by

nnodes∑
i=1

[
qik+1

× pik+1
− qik × pik

]
︸ ︷︷ ︸

Li+1−Li

= 0 (49)

In the case of DIRICHLET boundary conditions, the bearing forces at the boundary nodes have
to be calculated. Also the gravity force has to be included in the calculation to show the conser-
vation of the balance of the balance of total angular momentum.

nnodes∑
i=1

[
qik+1

× pik+1
− qik × pik

]
︸ ︷︷ ︸

Li+1−Li

+

nnodes∑
i=1

[
np∑
m=0

Mm(α)qi,mk+ m
np
× Fext,h

ik+ m
np

]
︸ ︷︷ ︸

M̄ ext

= 0 (50)

Then the approximated external forces Fext,h
ik+ m

np
only depends on the gravitational force Fg, and

the external forces are equal to the gravity force.

Fext,h
ik+ m

np
= Fg (51)

In the case with boundary nodes the bearing forces at the boundary nodes have to be calculated.
Therefore, we introduce a force Fλ which is theoretically approximated at the GAUSSIAN points
in time and the force Fλc. Now we project Fλc onto Fλ with the following relation.

M̄gwgMgFλ = M̄cwcMcFλc (52)

M̄gwg
(
Mn

gF
n
λ + M1

gF
1
λ

)
= M̄cwcMcFλc (53)

M̄gwgM
n
gF

n
λ = M̄cwcMcFλc − M̄gwgM

1
gF

1
λ (54)

Fn
λ =

(
M̄gwgM

n
g

)−1

M̄c wcMcFλc︸ ︷︷ ︸
λ̃F

−M̄gwgM
1
gF

1
λ

 (55)

Fn
λ =

(
M̄gwgM

n
g

)−1
[
M̄cλ̃F − M̄gwgM

1
gF

1
λ

]
(56)

M̄g and M̄c are trial functions for a GAUSSIAN and NEWTON-COTÊS quadrature. Mg and Mc

are also shape functions for a GAUSSIAN and NEWTON-COTÊS quadrature at all quadrature
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points and the corresponding quadrature weights wg and wc. Fn
λ represents the unknown vector

of the forces in one macro time step.
Furthermore, a non-diagonal mass matrix is used and presented in the time step scheme, because
it is essential to calculate the terms from nondiagonal entries in the mass matrix multiplied with
the approximated velocity. We subtract the linear momentum values pbc

kin from the calculated
LAGRANGE multiplier vector λ.

hnλ̃F = hnλ− pbc
kin (57)

λ̃F = λ− pbc
kin

hn
(58)

pnd
kin = M · q̇ =

nq∑
i=1

M ′(αi)wi
[M− diag(M)] · qd(αi)

hn
(59)

For the calculation of the force vector λ̃F only the values at boundary nodes pbc
kin are needed.

pbc
kin = pnd

kin

∣∣
boundary (60)

λ̃F = λ− pbc
kin

hn
= λ− Fbc

kin (61)

Now we use Equation (56) and calculate for every macro time step the unknown forces at the
nodes Fn

λ for every micro time step.
The calculated forces can now be used for the calculation of balance of the total angular mo-
mentum in Equation (50). We now define Fext,h

ik+ m
np

as

Fext,h
ik+ m

np
= Fg +

np∑
m=0

wMm(α)Fλ,ik+ m
np

(62)

Hence, it is possible to show the conservation of the balance of total angular momentum in the
x, y, z-direction for a system with homolonic constraints.

4.3 THE DISCRETE GRADIENT

We start analogous to [1] with two functionals F e and Ge.

F e(DGWe(α)) =
1

2

1∫
0

∥∥DGWe(α)−DWe(α)
∥∥2

dα (63)

Ge(DGWe(α)) =We(1)−We(0)−
1∫

0

DGWe(α):
∂C

∂α
dα (64)

We choose the functional Ge as a constraint for every element with a LAGRANGE multiplier γe.
The new functionalHe should only depend on DGWe(α) and γe

He(DGWe(α), γe) = F e(DGWe(α)) + γeGe(DGWe(α)) (65)
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The variation ofHe with respect to DGWe(α) gives us the first equation

∂He

∂DGWe(α)
=

1∫
0

[(
DGWe(α)−DWe(α)

)− γe∂C(α)

∂α

]
dαδDGWe(α) = 0 (66)

0 =
(
DGWe(α)−DWe(α)

)− γe∂C(α)

∂α
(67)

DGWe(α) = DWe(α) + γe
∂C(α)

∂α
(68)

The variation ofHe with respect to γe gives us the second equation

∂He

∂γe
=

We(1)−We(0)−
1∫

0

DGWe(α):
∂C(α)

∂α
dα

 δγe = 0 (69)

0 = We(1)−We(0)−
1∫

0

DGWe(α):
∂C(α)

∂α
dα (70)

Now we replace the DGWe(α) term in the Equation (70) with DGWe(α) from Equation (68).

DGWe(α) = DWe(α) + γe
∂C(α)

∂α
(71)

We(1)−We(0) =

1∫
0

DWe(α):
∂C(α)

∂α
dα + γe

1∫
0

∂C(α)

∂α
:
∂C(α)

∂α
dα (72)

Rearranging the equation with respect to γe and replacing it in Equation (68) we obtain

γe =

We(1)−We(0)−
1∫

0

DWe(α):
∂C(α)

∂α
dα

1∫
0

∂C(α)

∂α
:
∂C(α)

∂α
dα

(73)

DGWe(α) = DWe(α) +

We(1)−We(0)−
1∫

0

DWe(α):
∂C(α)

∂α
dα

1∫
0

∂C(α)

∂α
:
∂C(α)

∂α
dα

∂C(α)

∂α
(74)

Until now, the approximation of C(α) and DWe(α) are not fixed. So we take a look at which
kind of possiblities we have to choose an approximation. To fulfill the balance of energy in
every time step, we define integral over one time step as

1∫
0

dWe(α)

dα
dα =

1∫
0

S̃(α):
1

2

∂C(α)

∂α
dα =

1∫
0

S̃(α):
1

2

∂C(α)

∂qh

∂qh

∂α
dα = We(1)−We(0). (75)

11
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To fulfill Equation (75), a special S̃(α) is needed. We define S̃(α) ≡ 2DGWe(α) and test the
relation.

We(1)−We(0) =

1∫
0

S̃(α):
1

2

∂C(α)

∂α
dα (76)

=

1∫
0

DWe(α):
∂C(α)

∂α
dα

+

We(1)−We(0)−
1∫

0

DWe(α):
∂C(α)

∂α
dα

1∫
0

∂C(α)

∂α
:
∂C(α)

∂α
dα

1∫
0

∂C(α)

∂α
:
∂C(α)

∂α
dα

We(1)−We(0) = We(1)−We(0)

It is possible to choose a different approximation of C and also fulfill Equation (75).

1∫
0

DWe(α):
∂Ca

∂α
dα +

We(1)−We(0)−
1∫

0

DWe(α):
∂Ca

∂α
dα

1∫
0

∂Cb

∂α
:
∂Ca

∂α
dα

1∫
0

∂Cb

∂α
:
∂Ca

∂α
dα (77)

One possible case is:

Ca ≡ C(qh) (78)
Cb = Ca and DWe(α) = DWe(Ca)

One other case is:

Ca ≡ C(qh) (79)
Cb = Ch 6= Ca and DWe(α) = DWe(Cb)

This special choice of Ca and Cb is also known as assumed strain formulation [1].

4.4 ENERGY CONSERVING

A variational integrator only bind the energy error in every time step, but not under the
NEWTON tolerance. We implement a discrete gradient to correct energy error [8], [1]. The
variational integrator loses its symplecticity, but the absolute value of the energy error in every
time step is bounded by the NEWTON tolerance. Splitting Equation (74) in two parts allows
us to put one part in potential energy and the other part can be introduced by the LAGRANGE-

12
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D’ALEMBERT principle.∫
Be

0

∂ρ0ψ
e
(
Che

)
∂q̄ek+1

dV =

∫
Be

0

Se
(
Che

)
: Be

(
qhe(α)

)
dV (80)

=

∫
Be

0

2DWe(C
he): Be

(
qhe(α)

)
dV

The second part will be placed in the LAGRANGE-D’ALEMBERT principle.

KDG (C(α)) = 2

We(1)−We(0)−
1∫

0

DWe(α):
∂C(α)

∂α
dα

1∫
0

∂C(α)

∂α
:
∂C(α)

∂α
dα

∂C(α)

∂α
(81)

The virtual work can be written as

δWd,k+1(q̄ek+1) = −hn
nq∑
i=1

wiKDG(Che): Be
(
qhe(αi)

)
δqhe(αi) (82)

= −
nq∑
i=0

ΓDG
k+ i

np

(
Che,qhe

)
δqe

k+ i
np

The new time step scheme leads to

−pk =
∂Ld,k+1

∂qk
− hn

(
∂Φ(qk)

∂qk

)T

· λk + ΓDG
k

(
Che,qhe

)
(83)

0 =
∂Ld,k+1

∂qk+ i
np

− hn

∂Φ
(
qk+ i

np

)
∂qk+ i

np


T

· λk+ i
np

+ ΓDG
k+ i

np

(
Che,qhe

)∣∣∣∣∣∣∣
np−1

i=1

0 = Φ(qk+ i
np

)
∣∣∣np

i=1

pk+1 =
∂Ld,k+1

∂qk+1

− hn
(
∂Φ(qk+1)

∂qk+1

)T

· λk+1 + ΓDG
k+1

(
Che,qhe

)
(84)

0 = Ψ (qk+1,pk+1)

With respect to Equation (77), we define the time step scheme with the following approximation
of the right CAUCHY-GREEN tensor as VDG1:

Che ≡ Ce
(
qhe
)

and DWe

(
Che

)
= DWe

(
Ce
(
qhe
))

(85)

This approximation of the right CAUCHY-GREEN tensor in the time step scheme will be named
as VDG2:

Che ≡
nq∑
i=0

Mi(α)Ce
i (qi) and DWe

(
Che

)
= DWe (Ce

i ) (86)

The difference with respect to the energy error and the stability will be shown for the numerical
examples.

13
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5 NUMERICAL EXAMPLES

First we show the convergence for a higher order accuracy in position and linear momentum
for a free flying rotor. In the next numerical example we also proof the balance of linear mo-
mentum, the balance of angular momentum and the balance of energy for the free flying rotor
and the vibration of a cantilever beam.

5.1 CONVERGENCE STUDY FOR THE FREE FLYING HYPERELASTIC ROTOR

The convergence was calculated for a simulation time t = 1 s. After this time, the values
of position and linear momentum vectors were used as qend and pend. The reference solution
for qref and pref for every polynomial degree np was calculated with the smallest time step size
hn ≈ 5 · 10−4. A convergence study is preformed with the following simulation parameters:

nel 560 ndof 3156 · np

hn 2−1,...,−9 s Tend 1 s
np 1, . . . , 4 ρ0 8.93
ρ0λ 66.25 ρ0µ 650
ε 1 · 10−8 r0 [0, 0, 0.3]T

ω [1, 0, 1]T v [10, 0, 15]T

Table 1: Simulation parameters for the convergence study

The free flying rotor in the reference configuartion is printed in the Figure 2. The motion is
subject to a gravitational force field g, and initiated by an initial translational velocity field v
and an intial angular velocity field ω with the corresponding position vector r0.
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Figure 2: Reference configuration for the free flying hyperelastic rotor for the time t = 0 s
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As error criterion, the relative error in position and linear momentum is defined using the
EUCLIDIAN norm. Theoretically, convergence order for position vector and linear momentum
vector should be identical; in fact, they are almost identical in dependence of the stiffness of the
material. The theoretical values were reached until np = 3. For np = 4, the theoretical values
are not obtained, but we assume that with more calculation points it would be possible to show
the theoretical convergence order.
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Figure 3: Convergence in position without discrete
gradient
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Figure 4: Convergence in linear momentum without
discrete gradient
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Figure 5: Convergence in position with VDG2
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Figure 6: Convergence in linear momentum with
VDG2
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5.2 FREE FLYING HYPERELASTIC ROTOR

In the Figure 7 the reference configuration of the free flying rotor is shown with a finer mesh.
In this example the rotor gets an initial linear velocity v and an initial angular velocity ω around
the point r0. The simulation parameters can be found in the Table 2. The printed total CPU-time

nel 18639 ndof 74136 · np = 222408
hn 0.02 s Tend 4 s
np 3 ρ0 8.93
ρ0λ 66.25 · 103 ρ0µ 65 · 105

ε 1 · 10−7 r0 [0, 0, 0.3]T

ω [1, 0, 1]T v [10, 0, 15]T

VI without discrete gradient
tcpu 14790 s tsolver 11660 s

VDG2
tcpu 17660 s tsolver 12380 s

Table 2: Simulation parameters for the free flying rotor

and SOLVER-time in the table both are measured for a parallelization of the element calculation
in CUDA. For a large number of degrees of freedom ndof resulting from the polynomial degree
np for the selected approximation, the CPU-time tcpu more and more depends on the SOLVER-
time tsolver.
The overhead for a calculation with a higher order approximation and the effort of using a
discrete gradient in the element routine can be compensated by a parallelization of the element
routine with CUDA.
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Figure 7: Reference configuration for the free flying hyperelastic rotor for the time t = 0 s
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The Figures 8-11 show the parabolic free fly of the rotor in the gravitational field for different
time points. The color bar at the right-hand side of each figure marks the VON MISES stress at
the spatial nodes.
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Figure 8: Actual configuration for the free flying hy-
perelastic rotor for the time t = 1 s
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Figure 9: Actual configuration for the free flying hy-
perelastic rotor for the time t = 2 s
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Figure 10: Actual configuration for the free flying hy-
perelastic rotor for the time t = 3 s
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Figure 11: Actual configuration for the free flying hy-
perelastic rotor for the time t = 4 s
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For this simulation, we calculated the balance of total linear momentum, the balance of total
angular momentum, and the balance of total energy for a higher order variational integrator
without using a discrete gradient. All balances were also divided by the NEWTON criterion ε,
see Table 2. The balances of total linear momentum and balance of total angular momentum
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Figure 12: Balance of total linear momentum without
discrete gradient for free flying rotor with np = 2
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Figure 13: Balance of total linear momentum without
discrete gradient for free flying rotor with np = 3
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Figure 14: Balance of total angular momentum with-
out discrete gradient for free flying rotor with np = 2
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Figure 15: Balance of total angular momentum with-
out discrete gradient for free flying rotor with np = 3
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Figure 16: Balance of total energy without discrete
gradient for free flying rotor with np = 2
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Figure 17: Balance of total energy without discrete
gradient for free flying rotor with np = 3

are met, but not the balance of total energy. The balance of the total angular momentum is
calculated under influence of the gravitational force, see Equation (50).
The same kind of calculations are preformed with the discrete gradient for the time step scheme
VDG2. The balance of total linear momentum and balance of total angular momentum are also
met.
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Figure 18: Balance of total linear momentum with
VDG2 for free flying rotor with np = 2
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Figure 19: Balance of total linear momentum with
VDG2 for free flying rotor with np = 3
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Figure 20: Balance of total angular momentum with
VDG2 for free flying rotor with np = 2
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Figure 21: Balance of total angular momentum with
VDG2 for free flying rotor with np = 3
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Figure 22: Balance of total energy with VDG2 for
free flying rotor with np = 2
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Figure 23: Balance of total energy with VDG2 for
free flying rotor with np = 3

Importanted are the Figures 22-23 showing the balances of the total energy for VDG2 time
step scheme. The absolute value of the error in the balance of total energy for every time step is
below the chosen NEWTON criterion ε. Hence, the VDG2 time step scheme preserves the total
energy over the total simulation time. Another interesting point is the balance of total angular
momentum for VDG2 with np = 2 Figure 20, here a no peaks over the NEWTON criterion arise.
This simulation was calculated with the same parameters like the simulation in Figure 14, but
the discrete gradient shows a better fulfillment of the balance of total angular momentum.
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5.3 VIBRATION OF HYPERELASTIC CANTILEVER BEAM

The second numerical example is a vibration of a hyperelastic cantilever beam. We used the
rotor once more, but now we fixed the degrees of freedom nq,fix in all directions in the hub of the
rotor, see Figure 24. Under influence of the gravitational force, every blade of the rotor starts to
swing around the static equilibrium position.

nel 18639 ndof 74136 · np = 222408
hn 0.025 s Tend 4 s
np 3 ρ0 8.93
ρ0λ 16.25 · 104 ρ0µ 15 · 106

ε 1 · 10−7 nq,fix 360 · np = 1080
VI without discrete gradient

tcpu 14560 s tsolver 11620 s
VDG2

tcpu 17850 s tsolver 12730 s

Table 3: Simulation parameters for the vibration of the hyperelastic cantilever beam
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Figure 24: Reference configuration for the hyperelastic cantilever beam for the time t = 0 s
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The Figures 25-30 show the vibration around the static idle position for every blade of the
rotor. With the fixed hub, every blade shows the same vibration behavior as the cantilever beam
in four directions due to the symmetry. At the time t = 1.925 s, the blades reach the maximum
elongation. After t = 3.775 s, the vibration of the rotor is again in the initial state.
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Figure 25: Actual configuration for the hyperelastic
cantilever beam for the time t = 0.625 s
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Figure 26: Actual configuration for the hyperelastic
cantilever beam for the time t = 1.25 s
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Figure 27: Actual configuration for the hyperelastic
cantilever beam for the time t = 1.925 s
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Figure 28: Actual configuration for the hyperelastic
cantilever beam for the time t = 3.25 s
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Figure 29: Actual configuration for the hyperelastic
cantilever beam for the time t = 4.25 s
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Figure 30: Actual configuration for the hyperelastic
cantilever beam for the time t = 5 s
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The balance of total linear momentum is for the variational integrator without a discrete
gradient and with the VDG2 preserved. The same behavior is calculated for the balance of
total angular momentum. For the calculation of the balance of total linear momentum we use
Equation (48) and for the balance of total angular momentum we use once more Equation (50).
However, before this we have to calculate the bearing forces with respect to Equation (62). The
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Figure 31: Balance of total linear momentum with
VDG2 for hyperelastic cantilever beam with np = 3
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Figure 32: Balance of total angular momentum with
VDG2 for hyperelastic cantilever beam with np = 3
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Figure 33: Angular momentum with VDG2 for hy-
perelastic cantilever beam with np = 3
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Figure 34: energy with VDG2 for hyperelastic can-
tilever beam with np = 3
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Figure 35: Balance of total energy without discrete
gradient for hyperelastic cantilever beam with np = 3
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Figure 36: Balance of total energy with VDG2 for
hyperelastic cantilever beam with np = 3

total angular momentum with the momentum term L̃ is printed in Figure 33. The values of
the different energies over the simulation time are shown in Figure 34. Again, the variational
integrator without a discrete gradient cannot preserve the balance of total energy, but the VDG2
is able to do it. In Figure 36 the complete balance is met for every time step, but not in the first
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time step. Here the simulation starts in the first time step with a very small change in values for
the strains. Therefore, for the time step scheme VDG2 it is difficult to handle elements which
are nearly undeformed. This means that the NEWTON criterion will not be reached. This brings
a little error in the balance of total energy for the first time step. For all the other time steps the
balance of total energy is preserved.

5.4 VIBRATION OF HYPERELASTIC CANTILEVER BEAM WITH VDG1

The last numerical example is also the vibration of a cantilever beam. It is almost the same
simulation as before, but now we want to use VDG1 time step scheme. We change the number
of elements nel to a smaller number and set a smaller time step size hn = 0.01 s, see Table 4.

nel 560 ndof 3156 · np = 9468
hn 0.01 s Tend 5 s
np 3 ρ0 8.93
ρ0λ 16.25 · 104 ρ0µ 15 · 106

ε 1 · 10−7 nq,fix 72 · np = 216

Table 4: Simulation parameters for the vibration of the hyperelastic cantilever beam with VDG1

The reference configuartion is shown in the Figure 37. The single blades of the rotor also
swing around their static equilibrium positions, but the vibration do not reach large values be-
cause the smaller number of elements makes the material more stiff.
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Figure 37: Reference configuration for the hyperelastic cantilever beam with VDG1 for the time t = 0 s

This behavior can also be seen in the Figures 38-41 that show the vibration of the rotor for
different time steps. The smaller values in the VON MISES stress can also be seen in the color
bar at the right-hand side of every figure.
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Figure 38: Actual configuration for the hyperelastic
cantilever beam with VDG1 for the time t = 1.45 s
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Figure 39: Actual configuration for the hyperelastic
cantilever beam with VDG1 for the time t = 2.3 s
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Figure 40: Actual configuration for the hyperelastic
cantilever beam with VDG1 for the time t = 3.8 s
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Figure 41: Actual configuration for the hyperelastic
cantilever beam with VDG1 for the time t = 5.0 s
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Figure 42: Balance of total linear momentum with
VDG1 for hyperelastic cantilever beam with np = 3
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Figure 43: Balance of total angular momentum with
VDG1 for hyperelastic cantilever beam with np = 3

For these simulation parameters, the balance of total linear momentum and the balance of
total angular momentum is met for every time step.
The Figures 44-45 show the different energies and the balance of the total total energy. Almost
all values in the balance of total energy are preserved for all time steps. There is only a small
number of peaks in which the balance is not met. This behavior can only be shown in the case
of a very good choice of simulation parameters because the VDG1 method is numerically very
instable, compare [4]. The simulation starts with normal results but, sometimes the NEWTON

method cannot find a solution that fulfills the NEWTON criterion for the residual. In this case,
the simulation finishes the time step with incorrect values. If this happened too often within the
simulation, the entire simulation would diverge.
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Figure 44: Energy with VDG1 for hyperelastic can-
tilever beam with np = 3
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Figure 45: Balance of total energy with VDG1 for
hyperelastic cantilever beam with np = 3

6 CONCLUSION

We have shown how a variational integrator of higher order accuracy can be consistently for-
mulated for a hyperelastic continuum, and that this integrator meets the balance of total linear
momentum and total angular momentum. The order of accuracy in position and momentum
reaches the theoretical values if using the GAUSSIAN quadrature rule for the approximation of
the position vector.
The inclusion of a LAGRANGE multiplier vector is also possible in the variational principle.
The application of the NEWTON-COTÊS quadrature allows to decouple the equations in the
position-momentum form. We have also shown how the bearing forces can be calculated from
the LAGRANGE multiplier vector for the fixed nodes.
The split of the discrete gradient into two terms one in the LAGRANGIAN and one in a D’ALEMBERT

term makes it also possible to create an integrator which meets the balance of total energy for ev-
ery time step in the simulation. It is true that the integrator loses the symplecticity, but achieves
the importanted total energy conservation for continuum problems.
However, it should be noted that an approximation of the right CAUCHY-GREEN tensor C with
the position vector q is numerically instable, see VDG1. But, with an assumed strain approxi-
mation in the discrete gradient, the instabilities can be solved.
Further, the ongoing development of the computer hardware opens new possiblities for numer-
ical simulations, like the parallelization of element routines on graphic cards with CUDA. That
can save a lot of CPU time and makes time step schemes with better physical properties more
attractive for further application.
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A SHAPE FUNCTIONS IN TIME

The following matricies are time shape functions for the GAUSSIAN quadrature Mg and for
the NEWTON-COTÊS quadrature Mc. M̄g and M̄c are the shape functions one polynomial
degree lower but with same quadrature points. wg and wc are the weights of the quadrature rule
and αg and αc are the quadrature points.

Mc =


Mc1,1 Mc1,2 . . .Mc1,nc+1

Mc2,1 Mc2,2 . . .Mc2,nc+1
...

...
...

Mcnc+1,1 Mcnc+1,2 . . .Mcnc+1,nc+1

 M̄c =


M̄c1,1 M̄c1,2 . . . M̄c1,nc+1

M̄c2,1 M̄c2,2 . . . M̄c2,nc+1
...

...
...

M̄cnc,1 M̄cnc,2 . . . M̄cnc,nc+1



Mg =


Mg1,1

Mg1,2
. . .Mg1,nq+1

Mg2,1
Mg2,2

. . .Mg2,nq+1
...

...
...

Mgnq,1
Mgnq,2

. . .Mgnq,nq+1

 M̄g =


M̄g1,1

M̄g1,2
. . . M̄g1,nq

M̄g2,1
M̄g2,2

. . . M̄g2,nq
...

...
...

M̄gnq,1
M̄gnq,2

. . . M̄gnq,nq



M1
g =


Mg1,1

Mg2,1
...

Mgnq,1

 Mn
g =


Mg1,2

. . .Mg1,nq+1

Mg2,2
. . .Mg2,nq+1

...
...

Mgnq,2
. . .Mgnq,nq+1



wc =


wc1 0 . . . 0
0 wc2 . . . 0
...

...
...

0 0 . . . wcnq+1

 wg =


wg1 0 . . . 0
0 wg2 . . . 0
...

...
...

0 0 . . . wgnq


np = 1

Mc =

[
1 0
0 1

]
M̄c =

[
1 1

]
Mg =

[
0.5 0.5

]
M̄g =

[
1
]

wg =
[
1
]

wc =

[
0.5 0
0 0.5

]
αg =

[
0.5
]

αc =
[
0 1

]
np = 2

Mc =

1 0 0
0 1 0
0 0 1

 M̄c =

[
1 0.5 0
0 0.5 1

]

Mg ≈
[

0.4553 0.6666 −0.1220
−0.1220 0.6666 0.4553

]
M̄g ≈

[
0.7887 0.2113
0.2113 0.7887

]

wg =
[
0.5 0.5

]
wc ≈

0.1666 0 0
0 0.6666 0
0 0 0.1666


αg ≈

[
0.2113 0.7887

]
αc =

[
0 0.5 1

]
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