
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

BUILDING A MORE EFFICIENT LAGRANGE-REMAP SCHEME
THANKS TO PERFORMANCE MODELING

Thibault GASC1,2,3, Florian De VUYST2,
Mathieu PEYBERNES4, Raphaël PONCET5 and Renaud MOTTE3

1Maison de la Simulation USR 3441
CEA Saclay, F-91191 Gif-sur-Yvette

e-mail: thibault.gasc@cea.fr

2 CMLA, ENS Cachan, CNRS, Université Paris-Saclay,
94235 Cachan, France

e-mail: devuyst@cmla.ens-cachan.fr

3CEA DAM DIF
F-91297 Arpajon

4 CEA, DEN, DM2S, STMF
CEA Saclay, F-91191 Gif-sur-Yvette

e-mail: mathieu.peybernes@cea.fr

5 CGG
27 Avenue Carnot, F-91300 Massy
e-mail: raphael.poncet@cgg.com

Keywords: Performance Modeling, Co-design, Lagrange-Remap, Roofline model, Execution
Cache Memory Model

Abstract. This paper is a practical example of co-design between numerical analysis and
high performance computing, applied to compressible fluid mechanics. We consider a legacy
numerical method, based on a Lagrange-Remap solver for the compressible Euler equations,
use tools from analytical performance modeling to quantitatively understand its behavior on
recent multicore CPUs, and extract its computational bottlenecks. This analysis inspires us to
propose a new numerical method, called Lagrange-Flux. Experimental results show that this
new method yields an algorithm that is more computationally efficient, and at the same time
retains the good numerical properties of the original Lagrange-Remap solver.

1

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

1 Introduction

This paper is motivated by the adaptation and modification of a legacy numerical method
arising in compressible fluid mechanics — the Lagrange-Remap solver —, in order to devise an
alternative algorithm that is numerically equivalent, but more computationally efficient on cur-
rent typical computing hardware: multicore CPUs. This kind of solver is used to approximate
the compressible Euler equations, and is of particular interest for industrial applications involv-
ing complex compressible flows. It is for instance used in numerical simulation of plasma,
high-speed flows of elastoplastic materials, and multi-material flows [1].

Computational efficiency of a given piece of code on a given hardware can be readily eval-
uated by measuring the runtime of this code. It is then straightforward to evaluate relative
performance of two algorithms solving the same problem by comparing their results on the
same benchmark, for both numerical quality and runtime. However, the validity of these results
become tied to the particular hardware used for the tests. It is a problem, since in general, com-
puting hardware evolves much more quickly other time than numerical methods (especially in
the case of algorithms used in legacy industrial codes).

Hence, we propose to use a more future-proof, quantitative and general methodology to as-
sess algorithm computational efficiency: we use a theoretical performance model to predict
algorithm performance. This model depends on the algorithm itself, and on a simplified hard-
ware description using a few parameters (typically less than 10). Hence, similarly to the sci-
entific method applied to physics or engineering, if our performance model is rich enough to
adequately capture the behaviour of our algorithm, it can be used not only for quantitative pre-
diction, but also for precise qualitative understanding. In a previous work [2], we established
that the so-called ECM model [3] has the capability to accurately predict Lagrange-Remap
solver performance on multicore CPUs.

The main contribution of this paper is to show how performance modeling using the ECM
model leads us to extract the computational bottlenecks of the Lagrange-Remap algorithm, link
them to properties of the numerical method, and naturally propose the Lagrange-Flux algorithm
(originally introduced in [4] from a numerical analysis point view) as an alternative. Superior
computational performance of this new algorithm — from both a scalability and absolute per-
formance point of view — is then inferred from theoretical analysis, and verified by numerical
experiments. Up to our knowledge, this is the first published work in computational fluid dy-
namics using analytical performance models as a quantitative methodology for carrying out
co-design between numerical analysis and high performance computing.

This paper is organized as follows: in section 2, we detail the analytical performance models
used in this study for predicting and understanding algorithm runtimes. In section 3, we briefly
recall the formulation of the legacy Lagrange-Remap solver, sum up the results of its perfor-
mance analysis carried out in our previous work [2], and deduce its performance bottlenecks.
In section 4 we briefly introduce the Lagrange-Flux solver, conduct its performance analysis,
theoretically show its computational advantages over the Lagrange-Remap solver, and verify
the better performance and scalability of this new algorithm. Finally we discuss the interest of
our methodology and some perspectives brought by this work in section 5.

2 Performance modeling

2.1 Introduction

Performance modeling aims at quantitatively predicting and understanding code performance
— in terms of runtime — using simple analytical models for both the algorithm itself, and the

2

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

hardware on which the algorithm is executed. Because of the complexity of recent computing
hardware, it is not a simple task.

Indeed, let us consider the simplest performance model one could think of for predicting a
given algorithm runtime on a given machine: count the number of arithmetic operations (such
as additions, multiplications or divisions) the algorithm performs, and compare it with the max-
imum — or peak — number of operations the hardware can execute per unit of time (which
can be readily obtained using information from hardware vendor specification sheets, e.g. fre-
quency and peak number of arithmetic instructions per hardware cycle). In most of the case, it
will yield a very inaccurate number, for several reasons:

• the algorithm runtime is determined not only by the arithmetic operations it performs,
but also the rate at which it can fetch data to/from memory. The bottlenecks of most
algorithms on recent hardware correspond to the latter case (we talk of memory bound
algorithms, compared to compute bound algorithms whose performance is bounded by
the rate at which the hardware can process arithmetic instructions).

• the memory subsystem of any recent architecture is complex: it consists in several hier-
archical layers of memory, such as caches for CPUs, with various capacities and band-
widths.

• all arithmetic instructions are not equal performance wise: for instance, divisions and
square roots typically have a throughput at least one order of magnitude lower than addi-
tions or multiplications.

• last, but not least, any recent piece of hardware has several layers of parallelism. For
instance, common multicore CPUs such as the one considered in this paper have three
levels of parallelism: they consist in several cores, each core having single instruction
multiple data — SIMD — vectorized units (such as AVX for recent Intel CPUs). Finally,
each core has several pipelines executing instructions in parallel (this is called instruction
level parallelism — ILP). Moreover, this parallelism is tied to the memory subsystem: for
instance, some memory layers (usually the L1 and L2 caches) are private to CPU cores,
but some (usually the L3 cache and the DRAM) are shared between all cores.

This underlying hardware complexity implies that precisely predicting and understanding the
performance of even deceptively simple algorithms such as the Schönauer Vector Triad A =
B + C ∗D (where A, B, C and D are arrays) on a typical multicore CPU is not trivial [3].

However, some successful analytical performance models have been recently popularized
in order to assess algorithmic performance on recent hardware. The most known model is the
so-called Roofline model ([5]), which has been initially proposed as a conceptual qualitative
model characterizing the behavior of an algorithm as compute-bound (CB) or memory-bound
(MB).

2.2 The Roofline model

In the following, we consider elementary algorithms called kernels, acting on floating point
data. Hence, we use the billion floating point operations per second (GFlop/s) metric for report-
ing Roofline performance, as is commonly done. The advantage of this metric is that it is easy
to directly compare algorithm performance with peak CPU arithmetic throughput which is also

3

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

given in GFlop/s, and thus get an insight on kernel efficiency on a given machine. The Roofline
model approximates the performance of an algorithm with the following single formula:

P = min(Pmax(Ppeak),AI ∗Bmax), (1)

where Ppeak is the machine peak arithmetic throughput (in GFlop/s), Pmax is the kernel max-
imum arithmetic throughput (in GFlop/s), AI is the kernel arithmetic intensity (in Flop/Byte),
and Bmax is the maximum machine bandwidth (in GByte/s). Parameter AI only depends on
the algorithm (and can be readily obtained by counting the ratio between the number of arith-
metic instructions and transferred data), whereas parameter Ppeak only depends on the machine.
Several choices are possible for parameter Bmax and for the function Pmax(Ppeak). The basic
version of Roofline takes for Bmax the peak CPU bandwidth provided by the vendor, and de-
termine Pmax(Ppeak) by manually counting algorithm arithmetic instructions. However, this
yields an overly optimistic model which is rarely quantitatively accurate. Hence, we use a
refined version of the Roofline model (sometimes called Roofline with ceilings), where Bmax

is chosen to be the effective bandwidth of the full CPU system measured using a STREAM
benchmark [6]. Moreover, Pmax(Ppeak) is determined using static analysis, using the Intel
IACA tool [7] in throughput mode (thus ignoring any latency effects). In particular, the obtained
maximum arithmetic throughput takes into account the heterogeneous throughput of arithmetic
instructions, and their concurrent scheduling on the core pipelines. In this refined version of the
model, the function Pmax(Ppeak) is part of the model. We must emphasize that it does not come
from execution of the kernel, but from static inspection of the binary by Intel IACA.

This Roofline has a simple interpretation: it is an optimistic model that simply expresses the
fact that, for a kernel to be executed, data has to be fetched to/from memory, which corresponds
to the AI ∗Bmax term, and kernel computations have to be performed, which corresponds to
the Pmax(Ppeak) term. Hence, kernel performance is necessary less than the minimum of these
two terms. Roofline assumes that kernel performance can be approximated by this asymptotic
value.

This model has enjoyed wide success [5], nevertheless it has some limitations. First, it does
not accurately model caches. The consequence is that single core performance is not quantita-
tively accurate for memory-bound kernels (it is too optimistic). Hence, in particular, multicore
scalability can not be inferred from this model [3, 8]. Moreover, the GFlop/s metric which
is generally used with Roofline models has some drawbacks from a practical methodological
point of view. First, it is not directly correlated with a meaningful performance metric for al-
gorithm developers (who are generally interested in the number of loop iterations done per unit
of time). Moreover, in some cases, the Flop/s hardware counters on recent multi-core CPUs
— such as the Sandy Bridge processor — are known to be unreliable. The ECM — Execution
Cache Memory — model has been recently introduced to overcome these drawbacks.

2.3 The ECM model

The ECM model ([3], [8]) is a refinement of the Roofline model for multicore CPUs that still
neglects any latency effects, but takes into account the cache hierarchy. It uses the cycles per
cacheline worth of data (cy/CL) performance metric. A cacheline worth of data corresponds, in
a loop-based algorithm, to the number of loop elements that fit in a cacheline (64 Bytes in most
modern CPU architectures, such as the one we used in this paper). For instance, for algorithms
using double precision — corresponding to 8 byte storage —, a cacheline worth of data is 8
elements for scalar non-vectorized code, but 2 elements for AVX vectorized code (because AVX

4

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

registers are 4-Byte wide). This metric is interesting because, on the one hand, it is directly
correlated with the number of loop iterations per unit of time, and on the other hand, it is a
reliable metric that can be measured on any CPU (because it can be derived directly from CPU
runtime), and does not depend on hardware counters.

As in [3], [8], [9], we assume that STORE and floating point arithmetic instructions are over-
lapped with the data transfers between different levels of the memory system, whereas LOAD

operations do not overlap. The data transfers between the L1 and L2 caches, and between the
L2 and L3 caches, depends on the architecture and are given in table 1. The data transfer trans-
fer rateBL3→mem (in cy/CL) between the L3 cache and memory subsystem depends on the CPU
frequency f (in GCycles/s) and the sustainable bandwidth Bmax (in GBytes/sec), and is given
by the following formula:

BL3→mem =
64f

Bmax

. (2)

In practice, ECM model delivers a prediction of the number of CPU cycles required to execute
a certain number of iterations of a given loop on a single core. Then, the prediction time TECM

is given by TECM = max(TOL, TnOL +Tdata) ([3], [8]), where Tdata is the transfer time through
the memory hierarchy (L1 upwards), TnOL the time taken by the load instructions (we assume
that these instructions can not overlap with any memory transfer) and TOL the time for all other
instructions (store and arithmetic instructions). As for the refined Roofline model, the times
TOL and TnOL are determined using Intel IACA. For data in memory, the time Tdata is given
by Tdata = TL1L2 + TL2L3 + TL3Mem, where TL1L2, TL2L3 and TL3Mem are respectively the
transfer times between L1 and L2, L2 and L3 and L3 and memory. Transfer times for streaming
loads and stores can be computed readily using micro architecture knowledge (see table 1 for
the parameters used in this study). We refer to [9], [2] for the estimation of performance for
stencil-like access patterns.

3 Identifying the legacy Lagrange-Remap solver computational bottlenecks using per-
formance modeling

In this section, we first recall the main findings of the performance analysis we carried out
for the Lagrange-Remap algorithm in [2]. We then use these results to identify the bottlenecks
of this algorithm.

3.1 Description of the legacy Lagrange-Remap solver

We consider a cartesian Lagrange-Remap solver with the following features:

• discrete thermodynamic variables (mass, internal energy, pressure) are cell-centered vari-
ables;

• discrete velocity are node-base variables (this helps for physics coupling, and mesh dis-
tortion management);

• the lagrangian step is performed using a 2nd order in time integration scheme of leap-frog
type;

• the remap step is performed using an alternating direction strategy;

• second order in space accuracy is obtained thanks to a MUSCL-type reconstruction during
the remap step;

5

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

• for shock capturing and entropy consistency, pseudo-viscosity is used.

This solver has been described in [1, 10, 11]. Its implementation is organized as follows: at the
start of each time step, the mass (or density), the energy (or pressure) and the velocity fields are
known. The lagrangian step is performed to obtain intermediate updated lagrangian fields of
these variables. Then to go back to the fixed cartesian grid, a remap step is performed in each
direction. Each step consists of several kernels. Other secondary variables are also introduced.
Figure 1 is a dataflow diagram for the idealized Lagrange-Remap solver studied in [2] that
shows dependencies between kernels and data for the lagrangian step and the remap step in one
direction. Part of the complexity of these graphs are due to the use of staggered variables, as we
explain in section 3.2.

Pressure prediction

Pressure correction

Update velocity

Energy Mass Velocity

Predicted velocity Lagrangian ValocityLagrangian energy

Predicted pressure

Lagrangian energy Mass Lagrangian velocity

Out mass Out velocityOut energy

Predicted velocity

Lagrangian quantity update

Lag density Volume flux

Cell centered gradients

Energ gradient Density gradient

MUSCL fluxes

Energy flux Mass Flux

Cell-centered remap

Node centered gradient

Velocity gradient

Velocity Remap

Figure 1: Dataflow diagrams of the lagrange (left) and remap (right parts of the algorithm. Kernels are represented
in blue, input data in light green, output data in dark green, and temporary data in khaki green. Courtesy of [2]

3.2 Performance modeling of the Lagrange-Remap solver

The main result of paper [2] is that the performance of all individual kernels of our solver
can be theoretically predicted with single digit accuracy on multicore CPUs, if the ECM model
is used. The reported mean and median errors between model prediction and measurement
lie between 3% and 8%. Tests have been conducted using Haswell and SandyBridge micro-
architecture, for input data in L3 cache and main memory, and for scalar, vectorized, and mul-
tithreaded & vectorized versions of each kernel.

This validates the relevance of the ECM model for finely assessing performance of the
Lagrange-Remap solver algorithm (and by extension, of most explicit solvers for fluid me-
chanics on cartesian meshes). Moreover, a closer look at the results allows us to identify three
performance bottlenecks, and, more importantly, to link them with numerical properties of the
numerical method:

1. using staggered variables;

2. using an alternate direction strategy for the remap;

3. taking into account geometry of the lagrangian mesh.

Staggered variables Most kernels are stencil type kernels. This means output data at a
given grid location is obtained from input data at this location and its nearest neighbours. In

6

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

the Lagrange+Remap solver, staggered variables are used (see figure 2). Hence, most kernels
alternate reading and writing data between the primal cell-centered grid, and the dual node-
centered grid. For this reason, successive kernels can not be easily merged. Thus, we have
multiple small kernels in which arithmetical intensity is low, and data reuse is limited. As a
consequence, most kernels are memory-bound, which yields suboptimal performance and low
scalability.

•
ρi,j

Pi,j

•
~ui− 1

2 ,j+
1
2 •

~ui+ 1
2 ,j+

1
2

•
~ui+ 1

2 ,j−
1
2•

~ui− 1
2 ,j−

1
2

Figure 2: Variable positions for the legacy staggered Lagrange-Remap solver. Pressure and density are stored at
cell centers, velocity is stored at node centers.

Alternate directions Using an alternate direction strategy for the remap step, e.g. a succes-
sion of 1D remap steps, introduces an extra intermediaty states, which adds stress on memory
transfers compared to a true multidimensional remap step, which is already the bottleneck of
most of our kernels [2]. Since memory bandwidth is shared among multiple cores, it also lowers
multi-core scalability.

Lagrangian geometry Since the mesh is moving, lengths of the edges of the mesh are
changing. Thus it is not possible to pre-compute useful geometrical data and this can lead to
costly computations. The most significant example in the numerical scheme is the computation
of gradients during the remap step. Indeed computing qi−qi−1

xi−xi−1
is more expensive if we cannot

precompute once and for all 1
xi−xi−1

because it is not constant. If it was, we could save the result
and perform a multiplication instead of a division, which is typically an order of magnitude
faster.

4 The Lagrange-Flux solver

4.1 Lagrange-Flux numerical scheme

The detailed construction of the Lagrange-Flux algorithm is given in [4]. Hereafter, we give
key ideas of its construction and provide a schematic description. From the numerical prop-
erties of the original Lagrange-Remap solver and the conclusions of its performance analysis
presented in section 3, we extract the following desirable properties constraining the design of
the Lagrange-Flux solver:

1. A lagrangian solver is used (for multi-material flows or physics coupling);

2. A cell centered description is used rather than a staggered one, this will allow kernel
fusion optimization and reduce data communication;

7

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

3. A direct multidimensional remap strategy is used rather than alternating direction strategy,
this should also reduce data communications;

4. The method can be extended to second order accuracy in space and time, matching the
accuracy of the legacy Lagrange-Remap solver;

5. Complex geometry related computations should be limited;

6. 3D extension of the solver should remain simple.

Let us now briefly describe the proposed scheme. We consider the compressible Euler equations
for two-dimensional problems. Denoting ρ, u = (ui)i, i ∈ {1, 2}, p andE the density, velocity,
pressure and specific total energy respectively, the mass, momentum and energy conservation
equations can be written in the compact following form:

∂tU` +∇ · (uU`) +∇ · π` = 0, ` = 1, . . . , 4, (3)

where U = (ρ, (ρui)i, ρE), π1 = ~0, π2 = (p, 0)T , π3 = (0, p)T and π4 = pu. For the sake
of simplicity, we will close this system using a perfect gas equation of state p = (γ − 1)ρ(E −
1
2
|u|2), γ ∈ (1, 3].

We first split the usually considered 2 steps Lagrange-Remap scheme in 3 steps. The la-
grange step is taken identical, the remap step is split in a backward lagrangian motion followed
by a forward advection step described in the eulerian frame.

This leads to the following scheme:

(U`)
n+1
K = (U`)

n
K − ∆tn

|K|
∑

A⊂∂K

|A|

(
|An+ 1

2
,L|

|A|
(π`)

n+ 1
2
,L

A · νn+ 1
2
,L

A

)

− ∆tn

|K|
∑

A⊂∂K

|A|
(

(U`)
n+ 1

2
,?

A (v
n+ 1

2
A · νA)

)
. (4)

whereK is the cell area,A an edge of the cells, νA the unit normal vector of the edgeA pointing
outwards, ·L superscript denotes elements of the lagrangian mesh, ·n+ 1

2 superscript denotes
elements at time tn+ 1

2 used for targeted second order in time accuracy, and v
n+ 1

2
A denotes the

velocity of the grid used in the lagrangian step.
From this intermediate numerical scheme scheme we would like to suppress the geometrical

computation of lagrangian geometry. By making ∆t go to zero, (t > 0), we have An+∆t/2,L →
A, (π`)

n+∆t/2,L → π`, vn+∆t/2 → u, (U`)
? → U`; we obtain a partial discretization in space

of the conservation laws which can be seen as a method of lines:

d(U`)K
dt

= − 1

|K|
∑

A⊂∂K
|A| ((π`)A · νA)−

1

|K|
∑

A⊂∂K
|A| (U`)A (uA · νA). (5)

This can be also be written as a finite volume method:

dUK

dt
= − 1

|K|
∑

A⊂∂K

|A| ΦA,

with a numerical flux ΦA whose components are

(Φ`)A = (U`)A (uA · νA) + (π`)A · νA. (6)

8

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

In (5), pressure fluxes (p`)A and interface velocities uA are computed from an approximate
Riemann solver in lagrangian coordinates (for example the lagrangian HLL solver, see [12]).
Then, the interface states (U`)A are computed from a upwind process according to the sign of
the normal velocity (uA · νA). Higher-order accuracy in space can be achieved using a standard
MUSCL reconstruction with a slope limiting process. In this semi-discrete formalism, there
is no time discretization, thus all kernel act on the eulerian mesh and fluxes are defined at the
edges the eulerian cells. To achieve second-order accuracy in time, one can apply any second-
order time advance scheme. The second-order Heun scheme for example leads to the following
algorithm:

1. Compute the time step ∆tn subject to the CFL stability condition;

2. Predictor step:

(a) Reconstruct higher order interpolation from the discrete valuesUn
K (MUSCL + slope

limitation): compute a discrete gradient for each cell K ;

(b) Compute interface velocities un
A and pressure fluxes πn

A using a lagrangian approx-
imate Riemann solver;

(c) Select the upwind edge values (U`)
n
A according to the sign of (un

A · νA) ;

(d) Compute the numerical flux Φn
A as defined in (6);

(e) Compute the first order predicted states U?,n+1
K :

U?,n+1
K = Un

K −
∆tn

|K|
∑

A⊂∂K

|A| Φn
A;

3. Corrector step:

(a) Repeat steps (2a-2d) to compute the numerical flux Φ?,n+1
A from the predicted state

U?,n+1
K ;

(e) Compute the second-order accurate states Un+1
K at time tn+1:

Un+1
K = Un

K −
∆tn

|K|
∑

A⊂∂K

|A| Φn
A + Φ?,n+1

A

2
.

This numerical scheme fullfills the design specifications presented at the beginning of this
section. It has been validated using several test cases. We present the results of such a test in
figure 3: numerical quality of the method is assessed by comparing it to the original Lagrange-
Remap solver on a triple point type computation.

4.2 Implementation details of the Lagrange-Flux solver

The implementation of the Lagrange-Flux solver is quite simple compared to the legacy
Lagrange-Remap solver. Excluding the computation of the time step common to both solvers,
we first derive a naive implementation by simply following the algorithm description given at
the end of the previous section. At this point, we start optimizing the code. Since the Lagrange-
Flux solver uses collocated cell-centered variables, we are able to merge multiple small kernels
into bigger ones. In the most simple case, instead of doing computations for kernel K1, writing
data to memory, reloading it immediately after, and doing the computations for kernel K2, we

9

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

Figure 3: Comparison of the Lagrange-Remap solver and the Lagrange-Flux solver on a triple point test case. In
this two-dimensional Riemann problem, we check that the shock wave and the vortex are correctly captured. Den-
sity maps at time t = 3.5s are presented for the legacy Lagrange-Remap solver (upper part) and the Lagrange-Flux
solver (lower part) on a 560×240 mesh. One can notice that both solvers capture the same physical phenomenons.

10

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

load the data once and do the computations for both kernels K1 and K2. This mechanically
increases arithmetic intensity. In more complex cases, there is a compromise to be made: if the
result of a given kernel K is reused by N other kernels, merging can be done, at the cost of
doing kernel K computations N times. In this case, merging is beneficial only when the time
needed for extra computation is shorter that the time saved from increased memory reuse. For
the Lagrange Flux algorithm, it turns out that merging aggressively is the best option.

At the end of the optimization process, we are left with only two large kernels which are
almost identical: one for the prediction step, and one for the correction step (see figure 5). In
these kernels, density, velocity and energy are updated at the same time using the same stencil
(see figure 4). Comparing figures 5 and 1, we can expect that the Lagrange-Flux solver is less
memory-bound than the original Lagrange-Remap solver. The following section confirms that
this is indeed the case.

•
(U`)i,j =

(ρ, ρu, ρE)i,j
•

(U`)i−1,j
•

(U`)i,j+1
•

(U`)i−2,j
•

(U`)i+2,j

•
(U`)i,j+1

•
(U`)i,j+2

•
(U`)i,j−1

•
(U`)i,j−2

Figure 4: Stencil of the Lagrange-Flux kernels. The target updated cell is in dark orange, the full neighborhood is
in lighter orange. All variables (density, energy and velocities) are loaded from the same stencil. Computations for
their update are performed in the same time and many common intermediary results can be reused without being
stored in the main memory.

4.3 Performance analysis and measurements

In this section, we prove that the ECM model has predictive capabilities for both the full
Lagrange-Remap solver, and its Lagrange-Flux alternative. The machine used for the following
tests is a dual socket octo-core SandyBridge processor (see 1).

First, in table 2, we present a comparison between model prediction and measurements on a
single core, without vectorization. We observe quantitative agreement for both solvers. A closer
look at the Lagrange-Flux performance model output shows that the divide port is the bottle-

11

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

Density Velocity Pressure

Velocity PressureDensity

 Pred. density

PredictionLagrangeFlux()

Pred. velocity Pred. pressure

CorrectionLagrangeFlux()

Figure 5: Dataflow diagrams of the Lagrange-Flux solver. Kernels are represented in blue, input data in light green,
output data in dark green, and temporary data in khaki green

Table 1: Characteristics of the CPU hardware used.

Micro Architecture Intel SandyBridge
Model E5-2670
Number of cores 2x8
Clock (GHz) 2.6
Peak Flops DP (GFlop/s) (full socket) 168
Cache sizes: L1 8x32kB

L2 8x256kB
L3 20MB

Theoretical Bandwidth (GBytes/s) 51.2
Measured triad Bandwidth Bmax (GBytes/s) 38.4
L1↔ L2 bandwidth (cy/CL) 2
L2↔ L3 bandwidth (cy/CL) 2

12

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

Table 2: Comparison between single core non-vectorized ECM prediction and measurements for the intel Sandy-
Bridge architecture. Performance is expressed in cycle per cache line worth of data (cy/CL), and kernel type can be
CB — Compute-Bound — or MB — Memory-Bound. The analytical ECM model gives an accurate performance
prediction.

Kernel name type prediction measure error
Full Lagrange-Remap MB 10697 cy/CL 10092 cy/CL 6%
Prediction Lagrange-Flux CB 5712 cy/CL 5548 cy/CL 2.8%
Correction Lagrange-Flux CB 5712 cy/CL 5690 cy/CL 0.3%

Table 3: Speed up on single core Intel SandyBridge with AVX for both Lagrange-Flux kernels. Even if the kernels
are compute bound, speedup is not perfect, because the bottleneck is the DIV port throughput.

Kernel name type predicted measured
Prediction Lagrange-Flux CB 2.0 1.9
Correction Lagrange-Flux CB 2.0 1.9

neck for both kernels, making them compute-bound. Note that in this case, the Roofline and
ECM models are equivalent, and give the same prediction. With AVX SIMD vectorization, the
bottleneck remains the divide port. The consequence is that the ECM model predict a speedup
of 2 with respect to the baseline scalar version: on the one hand, elements are processed 4 by
4 thanks to AVX, but on the other hand, the divide port throughput is only doubled. Since the
Lagrange-Flux is compute-bound, our performance model also predicts perfect scalability (e.g.
x16 speedup) for multithreaded execution. It is close to the observed speedup (x13.3).

Finally, in order to compare absolute performance and scalability of Lagrange-Flux and
Lagrange-Remap solvers, we report in 4.3 a measured runtime comparison for the same test
case. The results confirm what our performance model is able to predict: the Lagrange-Flux
solver has superior absolute performance. It is interesting to note that this is achieved by trading
single core unvectorized performance (which is worse than the corresponding Lagrange-Remap
solver) for much better scalability.

5 Conclusions

In this paper, we have proposed a practical and quantitative way of modifying a fluid me-
chanics solver, the Lagrange-Remap algorithm, for better performance on multicore CPUs. The
resulting algorithm, the Lagrange-Flux solver, has comparable numerical quality, but better
runtime, and is more compact (two kernels instead of a dozen). The main tools used in our

Scheme 1 core 1 core AVX 16 cores AVX scalability
Lagrange-Flux 1.9 3.9 52.0 27.1
Lagrange-Remap 2.4 3.7 36.5 14.6

Table 4: Performance comparison between the reference Lagrange-Remap solver and the Lagrange-Flux solver in
millions of cell updates per second (MCUPs) on SandyBridge. Different machine configurations are presented.
Scalability (last column) is computed as the speed up of the multi-threaded vectorized version compared to the
baseline purely sequential version. Tests are performed for fine meshes, such that kernel data lies in DRAM
memory. The Lagrange-Flux solver exhibits superior scalability, because it has — by design — better arithmetic
intensity.

13

Thibault GASC, Florian De VUYST, Mathieu PEYBERNES, Raphaël PONCET and Renaud MOTTE

methodology are analytical performance models, allowing us to quantitatively assess and quali-
tatively precisely understand algorithmic performance. They explain the main reason behind the
superior performance of our new solver: it is a compute-bound algorithm, whereas the original
is memory-bound.

We believe that our methodology is quite general, and can be extended to other computational
physics algorithms, for fluid mechanics but also for other domains of application. An other
interesting perspective is to extend the use of performance models to many-core architectures
such as graphical processing units (GPUs), or the Intel Many Integrated Core (MIC).

References

[1] David J Benson. “Computational methods in Lagrangian and Eulerian hydrocodes”. Com-
puter methods in Applied mechanics and Engineering 99.2 (1992), pp. 235–394.

[2] Raphael Poncet, Mathieu Peybernes, Thibault Gasc, and Florian De Vuyst. Performance
modeling of a compressible hydrodynamics solver on multicore CPUs. accepted at ParCo2015
conference, Edinburgh, Scotland, UK 1-4 sept. 2015. 2015.

[3] Jan Treibig and Georg Hager. “Introducing a Performance Model for Bandwidth-Limited
Loop Kernels”. Parallel Processing and Applied Mathematics. Ed. by Roman Wyrzykowski,
Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski. Vol. 6067. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 615–624.

[4] Florian De Vuyst, Thibault Gasc, Renaud Motte, Mathieu Peybernes, and Raphael Pon-
cet. Lagrange-flux schemes: reformulating second-order accurate Lagrange-remap schemes
for better node-based HPC performance. Proccedings of the SimRace2015 conference
in OGST. 2016.

[5] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: An Insightful Vi-
sual Performance Model for Multicore Architectures”. Commun. ACM 52.4 (Apr. 2009),
pp. 65–76.

[6] JD McCalpin. “STREAM: Sustainable memory bandwidth in high performance comput-
ers”. Technical Report, University of Virginia (continuously updated).

[7] Intel architecture code analyzer. Available: http://software.intel.com/en-us/articles/intel-
architecture-code-analyzer/.

[8] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. “Exploring perfor-
mance and power properties of modern multi-core chips via simple machine models”.
Concurrency and Computation: Practice and Experience 28.2 (2016), pp. 189–210.

[9] Holger Stengel, Jan Treibig, Georg Hager, and Gerhard Wellein. “Quantifying Perfor-
mance Bottlenecks of Stencil Computations Using the Execution-Cache-Memory Model”.
Proceedings of the 29th ACM on International Conference on Supercomputing. ICS ’15.
Newport Beach, California, USA: ACM, 2015, pp. 207–216.

[10] Mark L Wilkins. “Use of artificial viscosity in multidimensional fluid dynamic calcula-
tions”. Journal of computational physics 36.3 (1980), pp. 281–303.

[11] Paul Woodward and Phillip Colella. “The numerical simulation of two-dimensional fluid
flow with strong shocks”. Journal of computational physics 54.1 (1984), pp. 115–173.

[12] Eleuterio F Toro. Riemann solvers and numerical methods for fluid dynamics: a practical
introduction. Third edition. Springer-Verlag, 2009.

14

	Introduction
	Performance modeling
	Introduction
	The Roofline model
	The ECM model

	Identifying the legacy Lagrange-Remap solver computational bottlenecks using performance modeling
	Description of the legacy Lagrange-Remap solver
	Performance modeling of the Lagrange-Remap solver

	The Lagrange-Flux solver
	Lagrange-Flux numerical scheme
	Implementation details of the Lagrange-Flux solver
	Performance analysis and measurements

	Conclusions

