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Abstract. The development of crack models capable of simulating the discrete nature of frac-
ture is of interest to many different areas of research. For example, the structural analysis 
innovative designs now made possible by new ultra-high performance concrete mixtures 
would certainly benefit from such improved predictive capabilities. Currently, there are nu-
merous numerical approaches available in the literature, for instance based on nodal or ele-
ment enrichment techniques, or even on remeshing strategies. Typically, the validation of 
such approaches was achieved using benchmark tests that contained few cracks and where 
the overall displacements were compared until failure. Having this into account, this paper 
describes a detailed validation of a discrete crack model based on embedded discontinuities 
for predicting the behaviour of lightweight aggregate concrete. The model itself includes the 
rigid body movements associated with the opening of cracks and relies on a robust non-
iterative algorithm to overcome convergence difficulties typically found with numerous cracks 
and material non-linearities. Validation was achieved using experimental data from tests per-
formed on lightweight concrete beams (LWAC) under flexural load, where displacements, 
curvatures and cracks width were properly monitored. This data include, not only overall 
displacements, but also the complex crack patterns produced during the tests. The model was 
shown to predict well the overall crack patterns and openings, and was used to perform ex-
trapolations on crack widths for different reinforcement ratios. 
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1 INTRODUCTION 
There are many situations where the accurate prediction of the fractured behaviour of a 

structure requires models with the capability of simulating discrete cracks. This is true when-
ever the interaction between cracks and other structural features – e.g. reinforcement or 
strengthening materials – is critical to identify premature failures and to characterise the struc-
tural behaviour under serviceability conditions. Currently, there are many different approach-
es available in the literature, which can simulate material separation. Most approaches are 
based on nodal [1-4] or element enrichment techniques [5-11], or even on remeshing strate-
gies [12-14]. These approaches were typically validated using benchmark tests with few 
cracks and by comparing overall displacements. Starting from this observation, this paper de-
scribes a validation study concerning a discrete crack model for embedding discontinuities 
and that can be efficiently used for predicting the behaviour of lightweight aggregate concrete 
(LWAC). The reason underlying the choice of LWAC is related to the fact of this cementi-
tious material being relatively new in the field of civil engineering and currently facing many 
new applications. As example, it can be mentioned the strengthening of existing structures 
and the new structures being built with reduced overall gravity load, which impacts directly 
the design of the structural members and, indirectly, because of the decreased magnitude of 
seismic actions [15-17].  

Until recently, most research in the field of LWAC was focused on the material behaviour 
from an experimental perspective [18-22], lacking numerical models that can be efficiently 
used for predicting the structural behaviour. Simultaneously, existing standards still need 
proper validation, in which case a robust numerical model will be needed to support further 
studies. Developed within this context, the model presented in this paper assumes the opening 
of the cracks to occur as if it were a rigid body movement and relies on a robust non-iterative 
algorithm to overcome potential convergence difficulties found in the presence of numerous 
cracks and material non-linearities. In the following sections, the model is described in detail 
and validated using experimental data from tests performed on light-weight concrete beams 
under flexural loads, focusing the overall displacements and the complex crack patterns pro-
duced during the tests.  

2 DISCRETE CRACK APPROACH 

2.1 Variational framework 

The variational principle for a body Ω  containing a surface of discontinuity,  Γd , splitting 

it into two subdomains, Ω−  and Ω+ , and subjected to quasi-static body forces  b  and stresses 

 t  distributed over the external boundary,  Γ t , is given by [23]: 

 
     

(∇sδu)
Ω\Γd
∫ :σ (ε)dΩ+ δ

Γd
∫ u ⋅ t

+dΓ = δ
Ω\Γd
∫ u ⋅bdΩ+ δ

Γt
∫ u ⋅ tdΓ , (0) 

where σ  is the stress tensor and  t+  is the stress at the crack, 
  u   is the opening of the crack, 

and  u  is the total displacement field.  
The total displacement can be considered to be the sum of two contributions, the regular 

displacement field,   û , and the enhanced displacement field,   u , according to which:  

 
    
δu =δû+HΓd

δ u , (0) 

where 
 
HΓd

 is the standard Heaviside function, with value ‘1’ on Ω+  (and ‘0’ otherwise).  
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For small displacements:  

 
    
∇sδu =∇sδû+HΓd

∇sδ u( )+δΓd
u ⊗ n+( )

s
, (0) 

where 
 
HΓd

 is the Dirac’s delta function along the surface of discontinuity and  n+  the vector 

orthogonal to the discontinuity and pointing inwards Ω+ .  
If the opening of the discontinuity is transmitted as if it were a rigid body motion, then 
   ∇

sδ u = 0 . By replacing Eqs. (2) and (3) in Eq. (1), and by taking   δ u = 0  and then   δû = 0 , the 
following governing equations is derived: 

 

     

(∇sδ û)
Ω\Γd
∫ :σ (ε̂)dΩ = δ

Ω\Γd
∫ û ⋅bdΩ+ δ

Γt
∫ û ⋅ tdΓ

δ
Γd
∫ u ⋅ t

+dΓ = δ
Ω+∫ u ⋅bdΩ+ δ

Γ
t+
∫ u ⋅ tdΓ

. (0) 

2.2 Discretisation 
Assuming that the body is discretised into a set of finite elements, the displacement field 

within each element containing a crack is interpolated by: 

 

     

ue = Ne â+HΓd

e Mw
ek we( )  in Ωe \Γd

e

u 
e
=Mw

e we = Nw
e we  at Γd

e
, (0) 

where   N
e

 
is a matrix with the shape functions of the element,   â

 
 are the nodal degrees of 

freedom associated with    û
e ,   w

e

 
are the degrees of freedom for the opening of the crack at 

both extremities,   Nw
e  contains linear interpolation functions and matrix   Mw

e

 
is defined as: 
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where   (x1,x2 )  are the coordinates of any point inside the element,   (x1
i ,x2

i )  are the coordinates 

of the first tip of the discontinuity,  ld
e  and  α e  are, respectively, the length and angle of the 

discontinuity.   Mw
ek  is obtained by calculating Eq. (6) at each regular node of the finite ele-

ment and stacking the result into rows. 
Following standard finite element procedures, the previous equations can be used to discretise 
Eq. (4) into the following system:  
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where    Kââ
e  is the stiffness of a regular finite element,   K d

e  is the stiffness of the discontinuity, 

   
Kaw

e = Kââ
e HΓd

e Mw
ek ,   K wa

e = Kaw
eT , and 

   
K ww

e = HΓd

e Mw
ek( )T

Kââ
e HΓd

e Mw
ek . Finally,   K p

e  assures appropri-

ate shear jump transmission along the discontinuity (more details in [11, 24]).   
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2.3 Crack propagation and solution procedure 
The Rankine criterion is used to identify the onset of cracking, with new cracks being in-

troduced through the centre of the cracked element. In the case of crack propagation, the new 
crack segment is inserted from the crack tip after evaluating the stress field using a procedure 
that smooths the stress within an average support length of two or three times the typical ele-
ment size (see [3]). The discontinuity always crosses the entire finite element, with the new 
degrees of freedom being treated as global unknowns.  

The overall system of equations is solved using the Non-Iterative Energy Based Method 
(NIEM) [25]. According to this method, an incremental analysis is performed until reaching 
critical bifurcation points. In this situation, a transition to a total approach is performed such 
that damage is enforced according to information retrieved during the analysis. An energy cri-
terion follows the path leading to the highest dissipation of energy. A comprehensive discus-
sion about this algorithm is found in [25, 26]. 

3 EXPERIMENTAL TESTS 

The structural scheme adopted for the experimental tests is shown in Figure 1. A total of 
four beams were grouped into two sets – designated by 1T and 3T – according to the longitu-
dinal tensile reinforcement ratios, respectively 1.12% and 2.96%. These ratios were selected 
to mobilise two limit failure responses: one more ductile and corresponding to an under-
reinforced failure mode, and the other more brittle and corresponding to an over-reinforced 
failure mode (see Figure 2).  

	   	  
(a)	   (b)	  

Figure 1: (a) Loading and measurement apparatus; (b) structural scheme (dimensions in ‘mm’). 

	   	  
(a)	   (b)	  

Figure 2: Failure mode of specimens: (a) 1T; and (b) 3T. 

The steel reinforcement adopted for each beam is shown in the following table.  
 

Specimen	   As	  
(cm2)	  

Effective	  
depth	  
(cm)	  

A’s	  
(cm2)	  

Asw/s	  	  
(cm2/m)	  

near	  supports	   middle	  span	  

1T	   3.14	  	   23.4	   0.57	  	  
0.47	   

0.47	   1.34	  

3T	   8.04	   22.6	   0.57	  	  
0.47	   

0.47	   1.34	  

Table 1: Steel reinforcement for each tested beam. 
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All beams were produced using LWAC with an average density of 1870 kg/m3, compres-
sive and tensile strengths of 57 MPa and 4 MPa, respectively, and a Young’s modulus of 
25.5 GPa [27, 28]. The longitudinal and transverse reinforcement consisted of hot rolled and 
ribbed S500NR-SD class bars, with an average yield stress of 545 and an average tensile 
strength of 645 MPa [29]. Each beam was instrumented using traditional measurement devic-
es to monitor load and the vertical displacements at the three points shown in Figure 1(a). The 
crack openings were measured for one beam during the test [30-32]. 

Figure 3 shows the load vs. displacement curves for all tested specimens and a representa-
tion of all stages monitored. In this chart, the displacements were measured at the mid-span. 
As a general remark, four phases can be identified in the overall structural response of the 
beams. The first or initial phase corresponds to the uncracked stage and is characterised by the 
highest value in terms of flexural stiffness. This phase finishes at the onset of cracking and the 
second phase then progresses until the steel reinforcement starts to yield. After this, the third 
phase is characterised by a significant reduction of flexural stiffness, which ends at the point 
of maximum load. The fourth and last phase depends on the ductility of the specimen and is 
the post-peak softening response. This last stage can be quite insignificant in the case of the 
beams with the highest longitudinal reinforcement ratio.   

 

Figure 3: Load vs. mid-span displacement curves and monitored stages. 

4 NUMERICAL MODELLING AND VALIDATION 
The beams described in the previous section were simulated under plane stress conditions. 

The concrete was modelled using bilinear elements, whereas linear truss elements were used 
for steel reinforcements (see Figure 4). In what regards constitutive models, the reinforce-
ments were connected to the concrete elements using interface elements equipped with the 
Model Code 2010 bond model [33]. The concrete elements were assumed to be linear elastic 
and perfectly plastic under compression, whereas the discrete crack approach model described 
in Section 2 was used for the elements where the tensile strength of the material was reached. 
All embedded cracks followed a mode-I traction separation law with exponential softening 
and fracture energy equal to 0.10 N/mm.  

The numerical model is explored and validated in this section in its ability to simulate 
crack opening and patterns, and the overall behaviour, namely displacements and curvatures.  

 
Figure 4: Finite element mesh. 
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4.1 Displacements and curvatures 
The load vs. displacement curves obtained with all numerical models are shown in Fig-

ure 5. Comparison between numerical and experimental data shows that the numerical model 
can predict the overall behaviour for the first three phases. Regarding the post-peak branch, 
however, there is an inherent inability to predict any of the softening found in the beams with 
the highest reinforcement ratio. This limitation can be explained by the plastic constitutive 
model used for concrete crushing, which cannot simulate the real behaviour beyond that. As 
expected, the transverse steel reinforcement ratio has nearly no impact on both experimental 
and numerical results (see Table 1 and Figure 5) since no shear cracks developed. 

	   	  
(a)	   (b)	  

Figure 5: Load vs. vertical mid-span displacement for the: (a) lowest; and (b) highest transverse steel reinforce-
ment ratios. 

Table 2 summarises the main features and measures extracted for the models with highest 
transverse reinforcement ratio. Comparison between numerical and experimental results, 
shows the good agreement not only in overall displacements, but also in what regards crack-
ing and yielding loads, maximum load, as well as in the curvature at mid-span (see also Fig-
ure 6). 
 

	   Specimen	  1T	   Specimen	  3T	  
	   Exp.	   Num.	   Exp.	   Num.	  
Cracking	  load	  (kN)	   12.0	   13.7	   15.7	   15.3	  
Yielding	  load	  (kN)	   68.0	   66.1	   157.9	   155.3	  
Max.	  load	  Fmax	  (kN)	   73.4	   75.3	   166.6	   160.6	  

Mid-‐span	  
vertical	  
disp.	  (mm)	  

0.6	  Fmax	   8.4	   8.0	   12.2	   12.2	  

0.7	  Fmax	   10.2	   10.6	   14.0	   14.2	  

0.8	  Fmax	   11.8	   11.7	   16.9	   16.3	  

Curvature	  	  
(x10-‐3m-‐1)	  

0.6	  Fmax	   9.4	   8.4	   12.4	   14.4	  

0.7	  Fmax	   11.2	   13.4	   14.3	   16.2	  

0.8	  Fmax	   12.8	   14.6	   17.2	   19.0	  

Table 2: Summary of the most relevant measures retrieved from numerical and experimental data. 

4.2 Crack propagation  

This section focuses in particular the surface crack pattern and crack openings. In terms of 
overall pattern, Figure 7 shows a comparison between numerical and experimental data for 
the lowest longitudinal reinforcement ratio. This specimen was selected for illustration pur-
poses since it is the one showing the most visible cracks (in terms of its number and exten-
sion). To support this analysis, the region of interest is represented inside a dashed box in 
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Figure 7 (a), which can be directly compared with the monitored area shown in Figure 7 (b). 
Although real crack patterns can be quite random, the main features are well captured by the 
numerical model. For example, the model predicts well both spacing and number of active 
cracks. This is certainly related with the interaction between longitudinal reinforcement and 
cracks, as well as the relative slip between reinforcements and concrete. It should also be 
highlighted that the numerical model also predicts the horizontal cracks associated with con-
crete crushing (see Figure 7).  

 

 

Figure 6: Comparison between displacements and curvatures. 

 

	   	  
(a)	   (b)	  

Figure 7: (a) Failure mode and crack pattern for beam 1T: (a) numerical; and (b) experimental results. 

Figure 8 shows the sum of the opening of all the cracks located inside the monitored area 
at the level of the longitudinal reinforcement, for both types of beams and for the different 
stages identified in Figure 3. As a general remark, it can be mentioned that the crack openings 
are in good agreement with the experimental results, regardless of the amount of steel rein-
forcement and the failure mechanisms being quite different between models. As expected, the 
crack openings for the beam with higher longitudinal reinforcement ratio are significantly 
smaller (see also Figure 2). 

5 EXTRAPOLATIONS BASED ON THE NUMERICAL MODEL 

This section presents a study on the role of the longitudinal reinforcement ratio for LWAC 
beams. Models 1T and 3T are now re-analysed with models 0.5T, 2T and 5T, respectively 
having a reinforcement ratios of 0.58%, 2.06% and 4.63%. Models 0.5T and 5T are close to 
the minimum and maximum tensile reinforcement ratios allowed by the Eurocode 2 [34]. The 
objective is to assess the design code in what regards crack openings for LWAC under flexur-
al loads. Figure 9(a) shows the load vs. vertical displacements for all numerical models and 
the impact different longitudinal reinforcement ratios have on the overall response.    
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Figure 8: Comparison between experimental and numerical crack openings for both beams with the highest 
transverse reinforcement ratio. 

The characteristic crack width can be defined as the crack opening corresponding to the  
95% percentile value of the distribution. Since the numerical model has a discrete representa-
tion of cracks, a statistical model can be directly applied to quantify the characteristic opening 
at the level of the tensile reinforcements [35]. Figure 9(b) shows the characteristic opening 
obtained with the numerical models and the estimate from Eurocode 2 [34], the latter below 
the expected values for all the range of tested reinforcements. Although further studies are 
still needed, this could mean that the Eurocode 2 [3434] is not conservative for predicting 
characteristic crack openings in LWAC beams under flexural loads. 

 

	   	  
(a)	   (b)	  

Figure 9: (a) Load vs. vertical mid-span displacement for all models; (b) Comparison between characteristic 
crack widths for 0.6 Fmax. 

6 CONCLUSIONS  

This study validated a numerical model based on the embedment of strong discontinuities 
for the simulation of LWAC beams. The model relies on the assumption that the opening of 
the cracks occurs as if it were a rigid body motion, which simplifies the derived equations and 
implementation procedure. The model was shown to compare well with experimental data of 
LWAC beams. The numerical results are in good agreement, not only concerning displace-
ments and curvatures, but also regarding the cracking and yielding loads, and maximum load. 
In addition, the crack pattern obtained from the simulations captures the main features ob-
served in the laboratory, including the number and spacing of active cracks, as well as the 
overall opening of the cracks. This highlights the capability of the model to properly simulate 
the fracture and its interaction with the steel reinforcement, and the slip between reinforce-
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ments and concrete. It was also shown that for the tested range of reinforcements, Eurocode 2 
might underestimate the characteristic crack openings for LWAC beams under flexure. This 
conclusion, however, will need further studies.  
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