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Abstract. We extend a thermodynamically consistent finite strain micro-sphere framework elab-
orated by Carol et al. towards the modelling of phase-transformations to allow for the simula-
tion of polycrystalline solids such as, e.g., shape memory alloys and shape memory polymers
undergoing large deformations. The considered phase-transformation mechanism is based on
statistical physics and allows the consideration of an arbitrary number of solid material phases.
The specifically constructed, non-quadratic Helmholtz free energy functions considered in ev-
ery micro-plane of the micro-sphere framework are extendedto include individual Bain-type
transformation strains for each of the phases. The total strains acting in each material phase
are multiplicatively decomposed into elastic strains and transformation strains.
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1 INTRODUCTION

The physical mechanisms and effects accompanied by phase-transformations in solids
present a large potential for industrial applications. Forexample, NiTi-based shape memory
alloys (SMA) are used in medical applications [1], aerospace technology [2] and other indus-
trial fields, cf., e.g., [3, 4].

During tensile deformation of such material—after exceeding the purely elastic regime of
the, e.g. austenitic, parent phase—the onset of phase-transformations is accompanied by a
plateau-type stress-strain relation, finally followed by asharp rise in the specimen stress. The
latter indicates the completion of the transformation process, resulting again in an elastic be-
haviour of the now completely transformed material. Considering a polycrystalline material at
the meso-scale, however, it is important to note that an initially purely austenitic crystal will
not transform to100% martensite. Unfavourably oriented grains within the polycrystalline
arrangement might not transform at all—furthermore, experimental observations suggest that
even favourably oriented grains usually only transform to acertain extent as elaborated in,
e.g., [5].

This so-called grain locking effect within a crystal is related to the sequential transformation
behaviour of individual grains. In other words, the initialonset of transformation in the most
favourably oriented grain is accompanied by a change of the elastic stress state in its surround-
ing area, i.e. in its neighboured grains. This change of stress state can hinder transformation in
a neighboured grain, especially if a formerly favourable stress state within a particular neigh-
bouring grain turns into an unfavourable stress state.

Taking into account complex interactions at the micro-scale—such as specific microstructure
arrangements and twin formations—leads to reliable micromechanical material models, such as
the ones presented in, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14]. However, a possible disadvantage
of such precise modelling approaches might be the high computational costs that usually ac-
company the detailed capturing of microstructural material effects. On the other hand, purely
phenomenological models facilitate the solution of complex macroscopic initial boundary value
problems (IBVPs) via finite element simulations. Typical phenomenological approaches such
as the ones presented in [15, 16, 17], are usually derived within thermodynamical frameworks.
Besides the application of the first and second law of thermodynamics, generalised irreversible
forces and fluxes, cf. [18] amongst others, are considered inview of a consistent derivation of
evolution equations for the inelastic constitutive variables. For the application of phenomeno-
logical models in view of efficient macro-scale simulations, the underlying specific modelling
parameters need to be fitted to experimentally observed material behaviour for different, rep-
resentative loading paths [19, 20, 21]. Such phase-transformation models are usually based
on classic plasticity-type approaches regarding the onsetof the transformation process. While
early models were formulated in a one-dimensional setting with restriction to states of tensile
stress [22], more sophisticated frameworks are established in, e.g., [16, 15, 23]. Constitutive
frameworks that focus on the simulation of single crystals are provided in [24, 25, 26] amongst
others.

Another class of thermodynamical models makes use of statistical considerations, capturing
transformation probabilities that are derived based on statistical physics. In this context, energy
barriers related to the Gibbs potentials of the individual phases need to be determined for the
computation of the desired transformation probabilities [27, 28]. Such models have recently
been implemented in small strain affine and non-affine micro-sphere frameworks, [29, 30]
and [31, 32], respectively. The goal of this contribution isto provide an ansatz for a finite

2



R. Ostwald, T. Bartel, and A. Menzel

strain micro-sphere phase-transformation model based on statistical physics, where we use a
thermodynamically consistent microsphere framework established in [33] as a basis. For the
sake of conceptual clarity, we restrict the subsequent formulation to two phases—one austenitic
parent phase and a single martensite variant.

2 MICRO-PLANE CONSTITUTIVE FORMULATION

This section presents a finite strain generalisation of previous phase-transformation models
by the authors, cf. [29, 30]. To this end, we consider a finite strain micro-plane constitutive
formulation for Neo-Hookean-type elasticity introduced in [33] as a basis, which is extended
towards phase-transformations. The micro-plane constitutive relation for phase-transformations
is then embedded into a corresponding micro-sphere framework in view of the solution of three-
dimensional initial boundary value problems.

2.1 DEFINITION OF VOLUME FRACTIONS

The volume fractionξαN associated to a particular phaseα ∈ {A,M}, where A represents
austenite and M represents martensite, associated to the micro-plane with orientationN is de-
fined as

ξαN := lim
vN→0

(
vαN
vN

)
(1)

and must at any time obey the restrictions

ξαN ∈ [0, 1] ⊂ R ,
∑

α

ξαN = 1 ,
∑

α

ξ̇αN = 0 , (2)

as both the austenite and the martensite phase are assumed topossess identical time-independent
referential mass densitiesρα = ρ0 = const.

2.2 MICRO-PLANE STRAIN MEASURE

Generally speaking, different micro-plane strain measures can be considered within a micro-
sphere framework. However, in view of capturing a macroscopic Neo-Hookean type material
response for the individual phases—and in line with [33]—werestrict the formulation to a
certain normal strain measure. Specifically, we characterise the normal strain acting on the
micro-plane as

λN = ||F ·N || =
√
N ·C ·N (3)

with F representing the deformation gradient andC = F t · F being the right Cauchy-Green
deformation tensor. Note that the restriction to this strain measure induces a macroscopic Pois-
son’s ratio ofνP = 0.25.

2.3 MULTIPLICATIVE MICRO-STRAIN DECOMPOSITION

For the consideration of Bain-type transformation strainsassociated to the martensite phase,
the total micro-plane strain measure (3) is multiplicatively decomposed into an elastic strain
contributionλαN and a transformation related contributionλαtr via

λN = λαN λ
α
tr , (4)

so that the elastic strain contributionλαN that enters the free energy potentials of the respective
material phaseα takes the form

λαN = λN [λαtr]
−1 (5)
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with the total strain measureλN defined in (3) and with an individual material constantλαtr for
both austenite and martensite.

2.4 MICRO-PLANE HELMHOLTZ FREE ENERGY POTENTIALS

For each phaseα situated within a micro-plane with orientationN we consider a micro-plane
Helmholtz free energyψα

N = ψ̂α
N (λN) of the form

ψ̂α
N(λN) = Eα

[[
λN [λαtr]

−1]2

2
+

[
λN [λαtr]

−1]−3

3
− 5

6

]
, (6)

with Eα denoting the scalar-valued micro-plane elasticity coefficent of phaseα, λαtr being the
corresponding transformation strain, andλN representing the micro-plane strain measure de-
fined in (3). Note that this format of the Helmholtz free energy represents a natural extension of
the energy term proposed in [33] towards the consideration of transformation strainsλαtr within
the individual phasesα. For the transformation strain in the austenitic parent phase we have
λAtr = [λAtr]

−1 = 1, thus for austenite the Helmholtz free energy potential (6)simplifies to

ψ̂A
N (λN) = EA

[
λ2N
2

+
λ−3
N

3
− 5

6

]
, (7)

which is directly related to the format proposed in [33] for the compressible extension of a
micro-sphere model with vanishing initial microstresses.

Accordingly, the material micro-plane stressSα
N = Ŝα(λN) corresponding to each phaseα

takes the form

Ŝα
N (λN) =

∂ψ̂α
N (λN)

∂λN
(8)

= Eα [λαtr]
−1

[[
λN [λαtr]

−1]−
[
λN [λαtr]

−1]−4
]
. (9)

The overall Helmholtz free energyΨN = Ψ̂N(λN) of the considered multi-phase mixture
associated to the micro-plane with spatial orientationN is obtained from the contributions of
the respective constituents, i.e.

Ψ̂N(λN) =
∑

α

ξαN ψ̂
α
N(λN) (10)

=
∑

α

ξαN Eα

[[
λN [λαtr]

−1]2

2
+

[
λN [λαtr]

−1]−3

3
− 5

6

]
, (11)

whereξαN is the volume fraction of phaseα as defined in (1). The resulting overall material
micro-plane stress measureSN = ŜN (λN) of the mixture follows from the combination of (8)
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and (10), namely

ŜN(λN) =
∂Ψ̂N (λN)

∂λN
(12)

=
∂

∂λN

[
∑

α

ξαN ψ̂
α
N(λN)

]
(13)

=
∑

α

∂

∂λN

[
ξαN ψ̂

α
N(λN)

]
(14)

=
∑

α

ξαN
∂ψ̂α

N (λN)

∂λN
(15)

=
∑

α

ξαN Ŝ
α
N(λN) (16)

=
∑

α

ξαN Eα [λαtr]
−1

[[
λN [λαtr]

−1]−
[
λN [λαtr]

−1]−4
]
. (17)

2.5 MICRO-PLANE GIBBS FREE ENERGY POTENTIALS

The individual micro-plane Helmholtz free energy potentials ψN specified in Section 2.4,
cf. (6), are transformed to a Gibbs potentialgαN = ĝαN(λ

∗

N) using a Legendre transformation.
Note thatλ∗N corresponds to a parametrisation of the micro-plane strainspace, whereasλN re-
flects the actual, physical micro-plane strain that the considered material mixture is subjected to.
With the considered micro-plane strain measureλN as the functional variable of the Helmholtz
free energy of phaseα, the Legendre transformation of the latter energy is accomplished by
means of

ĝαN(λ
∗

N) = ψ̂α
N (λ

∗

N)− λ∗N
∂ψ̂α(λN)

∂λN

∣∣∣∣∣
λN

(18)

= ψ̂α
N (λ

∗

N)− λ∗N Ŝα
N(λN )

∣∣∣
λN

(19)

= ψ̂α
N (λ

∗

N)− λ∗N S
α
N , (20)

where use has been made of (8). Note that the partial derivative in (18) reflects the material
stress contribution corresponding to phaseα of the mixture, the evaluation of which according
to (9) for the current stretch stateλN yields the specific stress contributionSα

N of phaseα present
in the considered micro-plane.

For the evolution of volume fractions provided in Section 2.6, the Gibbs potential (25) that
is parameterised in terms of a fictitious stretchλ∗N takes the specific form

ĝαN(λ
∗

N) = ψ̂α
N (λ

∗

N)− λ∗N S
α
N (21)

= Eα

[[
λ∗N [λαtr]

−1]2

2
+

[
λ∗N [λαtr]

−1]−3

3
− 5

6

]
− λ∗N S

α
N (22)

where use has been made of (6).
In a similar fashion, the overall micro-plane Helmholtz free energy potentialΨN of the mix-

ture specified in Section 2.4 is transformed to an overall Gibbs potentialGN = ĜN(λ
∗

N) using
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a Legendre transformation, specifically

ĜN(λ
∗

N) = Ψ̂N(λ
∗

N)− λ∗N
∂Ψ̂N (λN)

∂λN

∣∣∣∣∣
λN

(23)

= Ψ̂N(λ
∗

N)− λ∗N ŜN(λN )
∣∣∣
λN

(24)

= Ψ̂N(λ
∗

N)− λ∗N SN . (25)

Note that the partial derivative in (23) reflects the material stress currently acting within the
mixture due to the externally applied material stretchλN , the evaluation of which according to
(17) for the current stretch stateλN yields the overall stress valueSN acting on the micro-plane
under consideration.

The combination of (23) with (10) and (15) yields

ĜN(λ
∗

N) =
∑

α

ξαN ψ̂
α
N (λ

∗

N)− λ∗N

[
∑

α

ξαN
∂ψ̂α

N (λN)

∂λN

∣∣∣∣∣
λN

]
(26)

=
∑

α

ξαN

[
ψ̂α
N(λ

∗

N)− λ∗N Ŝα
N(λN)

∣∣∣
λN

]
(27)

=
∑

α

ξαN ĝ
α
N(λ

∗

N) , (28)

i.e. the overall Gibbs potential̂GN(λ
∗

N) is obtained from the contributions of the individual
constituents, which is consistent to the relation obtainedfor the overall Helmholtz free energy
potential, cf. (10).

2.6 EVOLUTION OF VOLUME FRACTIONS

The approach used for the derivation of the differential equations governing the evolution
of volume fractions is based on statistical physics, cf. [27]. In this context, a transformation
probability matrixQ = Q̂(ξ) ∈ R

2×2 corresponding to an infinitesimal generator of a Markov
process is introduced, see also [28]. The transformation probability matrix drives the evolution
of volume fractions via

ξ̇ = Q̂(ξ) · ξ , (29)

wherein the notatioṅ• denotes the material time derivative. For the two-phase transformation
between austenite A and martensite M considered in the contribution at hand, the transformation
probability matrix takes the form

Q = ω

[
−PA→M PM→A

PA→M −PM→A

]
6= Qt (30)

with ω being a material parameter denoted as transition attempt frequency and

PA→M = P̂A→M(bA→M) ∈ [0, 1] ⊂ R (31)

as well as
PM→A = P̂M→A(bM→A) ∈ [0, 1] ⊂ R (32)
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representing the probability for the transformation of austenite A to martensite M and vice versa,
respectively. Note that the sum of elements in each column ofQ is zero, i.e.

∑
iQij = 0 ∀ j

holds, inducing a so-called conservative Markov process. It can be shown that this special
structure of the system of evolution equations ensures thatthe physical restrictions (2) regarding
the volume fractionsξA andξM are fulfilled without the need to enforce any additional algebraic
inequality constraints on the system of evolution equations, cf. also [27].

In particular, according to [27], the probability for the transformation from one phaseα into
another phaseβ follows from

Pα→β = exp

(−∆v bα→β

k θ

)
, (33)

with k being Boltzmann’s constant,∆v denoting the (constant) transformation region’s volume,
θ representing the current temperature andbα→β being the energy barrier for the transformation
under consideration, i.e. from phaseα to phaseβ. Note thatbα→β 6= bβ→α and thusPα→β 6=
Pβ→α holds in general. The energy barriers follow from the evaluation of certain Gibbs energy
states as elaborated in detail in Section 2.7.

2.7 COMPUTATION OF GIBBS ENERGY BARRIERS

For the computation of Gibbs energy barriers that need to be overcome for the transforma-
tion from one phase into another, the minima of the individual Gibbs energy functionŝgαN(λ

∗

N)
specified in (22) as well as the Gibbs energy value at the intersection point of the two involved
potentials need to be determined. To this end, in the contextof the considered two-phase setup,
we determine the minima of the austenite and martensite Gibbs free energies in theλ∗N param-
eter space via

λAmin = argmin ĝAN(λ
∗

N) (34)

and
λMmin = argmin ĝMN (λ∗N) , (35)

respectively. The associated minimal Gibbs free energy values for both phases are then evalu-
ated as

gAmin = ĝAN(λ
A
min) (36)

and
gMmin = ĝMN (λMmin) . (37)

Moreover, the intersection point of both potentials in the fictitious strain space parameterised
by λ∗N yields

ĝAN(λ
∗

N) = ĝMN (λ∗N ) (38)

⇒ ĝAN(λ
∗

N)− ĝMN (λ∗N) = 0 , (39)

which is solved using a minimisation procedure in terms of

λiscmin = argmin | ĝAN(λ∗N)− ĝMN (λ∗N) | , (40)

where the superscript ’isc’ stands for ’intersection’. Theobtained solutionλiscmin therefore cor-
responds to the specific point in the fictitious strain space at which the Gibbs energy potentials
of both phases take the same value, i.e.

ĝAN(λ
isc
min) = ĝMN (λiscmin) . (41)
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(a) Stress-stretch response.

 

 

austenite ξA

martensite ξM

λN

m
ic
ro
−
p
la
n
e
v
o
lu
m
e
fr
a
ct
io
n
[−

]

1.02 1.04 1.06 1.08 1.1

0

0.2

0.4

0.6

0.8

1

1

(b) Micro-plane evolution of volume fractions.

Figure 1: Micro-plane results: evolution of stress and volume fractions due to an artificially prescribed time-
proportional ramp-type micro-plane normal stretchλN (t) up to a maximum stretch ofλN (t = 1 s) = 1.1. The
load is then reversed to a state of zero stretch,λN (t = 2 s) = λN (t = 0) = 1.

The Gibbs energy barrierbA→M for the transformation from austenite A to martensite M then
follows from

bA→M = ĝAN(λ
isc
min)− gAmin , (42)

whereas the Gibbs energy barrierbM→A for the reverse transformation, i.e. from martensite M
to austenite A, follows in a similar way according to

bM→A = ĝMN (λiscmin)− gMmin . (43)

With the aforementioned quantities at hand, the system of evolution equations (29) is fully
specified and can thus be solved with the help of standard numerical time-integration schemes.

2.8 NUMERICAL EXAMPLE ON THE MICRO-PLANE LEVEL

For the numerical example on the micro-plane level, we consider a stretch-driven deforma-
tion and evaluate the stress response (17) as well as the deformation-driven evolution of internal
variables, i.e. volume fractionsξA andξM, cf. (29). Given the two-phase setup considered in
the contribution at hand, for the transformation strain of the austenitic parent phase A we set
λAtr = 1 and for the martensite phase M we chooseλMtr = 1.04. Further parameters are chosen
asω = 16 s−1, ∆v = 2.71× 10−8mm3, andθ = 273K, see Section 2.6.

The numerical results obtained for a prescribed micro-plane stretchλN with time-
proportional quasi-static loading are depicted in Fig. 1. The stress-stretch relation shows a
plateau-type stress evolution within the material as soon as the martensite transformation is ac-
tivated at approximatelyλN ≈ 1.01. At this deformation state, the austenitic parent phase starts
to decrease, while at the same time the martensite volume fraction increases, cf. Fig. 1(b). As
the martensitic transformation is completed, i.e. atξM → 1 asλN → 1.08, further stretch of
the material induces a linear increase in elastic martensite stress, cf. Fig. 1(a). In addition to
the micro-plane material stress measureSN = ŜN(λN ), cf. (17), we compute the micro-plane
Cauchy stressσN = σ̂N (λN) via σ̂N (λN) = λ4N ŜN(λN)/J

2, see [33], whereJ = det(F )
denotes the determinant of the macroscopic deformation gradientF . In the context of the arti-
ficially applied micro-plane strain, however, we chooseJ = λN .
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(c) Stretched state,λN = 1.1.

 

 

ĝA
N
(λ∗

N
)

ĝM
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(d) Stretched state,λN = 1.1 (zoom).

Figure 2: Micro-plane Gibbs potentials for austenite and martensite,gA
N

andgM
N

, respectively, at two selected
material stretch statesλN . Note thatλN = 1 refers to the initial, undeformed configuration and thatλ∗

N
is a

fictitious stretch used for parameterisation ofgN , cf. Section 2.5.

The Gibbs energy potentials of the individual phases as derived in (22) are provided in Fig. 2
for both the initial material state and the state of maximum stretch, i.e. for states ofλN(t =
0) = 0 andλN(t = 1 s) = 1.1, respectively. The non-quadratic nature of both micro-plane
Gibbs energy potentials—as resulting from the specific formof the underlying Helmholtz free
energy definition (6)—is shown in Figs. 2(a) and 2(c).

A closer look at the intersection points of the individual phase potentials—cf. Figs. 2(b)
and 2(d)—reveals the location of the Gibbs energy minima in relation to the Gibbs energy value
at the intersection point. The minimum-related Gibbs energy values, (36) and (37), as well as
the Gibbs energy value at the intersection point (41) need tobe computed in order to obtain the
Gibbs energy barriers, (42) and (43), which define the transformation probabilites (33) and thus
drive the evolution of volume fractions (29).

3 MICRO-SPHERE APPLICATION

Following [33], the macroscopic Piola-Kirchhoff stress tensorS is computed based on the
individual material micro-plane stress measuresŜ(λN) via integration over the unit hemisphere
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in terms of

S =
3

2 π

∫

H2

Ŝ(λN) λ
−1
N N ⊗N dω . (44)

For the macroscopic Cauchy stress responseσ depicted in Fig. 3, we apply the standard push-
forward ofS viz.

σ =
1

J
F · S · F t . (45)

The quasi-static application of a macroscopic non-isochoric homogeneous state of tensile
deformation

F (t) = I + κ(t) e1 ⊗ e1 (46)

with κ(t) ∈ [0, 0.2] ⊂ R introduced as a time-proportional load scaling parameter results in
the macroscopic material response provided in Fig. 3. The obtained Cauchy stress response,
Fig. 3(a), shows a plateau-type stress characteristic thatis related to the deformation-induced
onset of martensitic transformation within the polycrystal. The macroscopic volume fractions
Ξ•—homogenised in terms of a moment of zeroth order—show a saturation-type evolution, i.e.
even for very large deformations the polycrystal will not transform to100% martensite.
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Figure 3: Application of the micro-sphere framework: evolution of stress and volume fractions due to a quasi-
statically applied macroscopic non-isochoric homogeneous state of tensile deformation in terms ofF (t) = I +
κ(t) e1 ⊗ e1.

4 CONCLUSIONS

The contribution at hand introduces a constitutive formulation that extends an established
finite strain micro-sphere framework for the simulation of Neo-Hookean-type materials towards
phase-transformations between austenite and martensite.Individual micro-plane free energy
terms are assigned to both phases, where the Helmholtz free energy of martensite is consistently
extended to include a Bain-type transformation strain which is multiplicatively coupled to the
overall micro-plane strain measure of the martensite fraction.

The numerical examples obtained at both the micro-plane level, see Section 2.8, and at the
micro-sphere level, see Section 3, show that the proposed modelling framework—even though
not yet fitted to experimental data—is able to capture the typical, experimentally observed
stress-strain behaviour of, e.g., shape memory alloys. Moreover, the proposed micro-sphere
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formulation naturally captures the polycrystalline transformation behaviour that is related to
the so-called grain-locking effect as introduced in Section 1.

In conclusion, the proposed micro-sphere based finite strain modelling framework for phase-
transformations can be considered as a promising foundation in view of later extensions towards
coupled plasticity and temperature effects in polycrystals.
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