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Abstract. We extend a thermodynamically consistent finite strainorsghere framework elab-
orated by Carol et al. towards the modelling of phase-transfations to allow for the simula-
tion of polycrystalline solids such as, e.g., shape memboysand shape memory polymers
undergoing large deformations. The considered phasestmamation mechanism is based on
statistical physics and allows the consideration of an ey number of solid material phases.
The specifically constructed, non-quadratic Helmholte eergy functions considered in ev-
ery micro-plane of the micro-sphere framework are extendediclude individual Bain-type
transformation strains for each of the phases. The totaliss acting in each material phase
are multiplicatively decomposed into elastic strains amhsformation strains.
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1 INTRODUCTION

The physical mechanisms and effects accompanied by prasgfdrmations in solids
present a large potential for industrial applications. &xample, NiTi-based shape memory
alloys (SMA) are used in medical applications [1], aerogp@chnology![2] and other indus-
trial fields, cf., e.g.,[[3,4].

During tensile deformation of such material—after excegdhe purely elastic regime of
the, e.g. austenitic, parent phase—the onset of phas&fdramtions is accompanied by a
plateau-type stress-strain relation, finally followed bgharp rise in the specimen stress. The
latter indicates the completion of the transformation pes; resulting again in an elastic be-
haviour of the now completely transformed material. Coasity a polycrystalline material at
the meso-scale, however, it is important to note that amalhjitpurely austenitic crystal will
not transform to100 % martensite. Unfavourably oriented grains within the pojgtalline
arrangement might not transform at all—furthermore, expental observations suggest that
even favourably oriented grains usually only transform toedain extent as elaborated in,
e.g., [5].

This so-called grain locking effect within a crystal is fteld to the sequential transformation
behaviour of individual grains. In other words, the inittadset of transformation in the most
favourably oriented grain is accompanied by a change ofldstie stress state in its surround-
ing area, i.e. in its neighboured grains. This change ofstséate can hinder transformation in
a neighboured grain, especially if a formerly favourabltest state within a particular neigh-
bouring grain turns into an unfavourable stress state.

Taking into account complex interactions at the micro-seaduch as specific microstructure
arrangements and twin formations—Ileads to reliable miemanical material models, such as
the ones presented in, e.g.} [6) 7| 8, 9,/10,[11] 12, 13, 14yveMer, a possible disadvantage
of such precise modelling approaches might be the high ctatipnal costs that usually ac-
company the detailed capturing of microstructural matesfiiects. On the other hand, purely
phenomenological models facilitate the solution of commp@croscopic initial boundary value
problems (IBVPs) via finite element simulations. Typicaepbmenological approaches such
as the ones presented in [15] 16, 17], are usually derivéddniitermodynamical frameworks.
Besides the application of the first and second law of thegmanhics, generalised irreversible
forces and fluxes, cf. [18] amongst others, are considerggkm of a consistent derivation of
evolution equations for the inelastic constitutive valésh For the application of phenomeno-
logical models in view of efficient macro-scale simulatiptiee underlying specific modelling
parameters need to be fitted to experimentally observedriaabehaviour for different, rep-
resentative loading paths [19,120,/ 21]. Such phase-tremstion models are usually based
on classic plasticity-type approaches regarding the arfabie transformation process. While
early models were formulated in a one-dimensional settiitly vestriction to states of tensile
stress|[22], more sophisticated frameworks are establishee.g., [16] 15, 23]. Constitutive
frameworks that focus on the simulation of single crystaéspovided in[[24], 25, 26] amongst
others.

Another class of thermodynamical models makes use of talisonsiderations, capturing
transformation probabilities that are derived based distitaal physics. In this context, energy
barriers related to the Gibbs potentials of the individuzdges need to be determined for the
computation of the desired transformation probabiliti2g, [28]. Such models have recently
been implemented in small strain affine and non-affine msgrioere frameworks/ [29, B0]
and [31,[32], respectively. The goal of this contributiortasprovide an ansatz for a finite
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strain micro-sphere phase-transformation model basedatistsal physics, where we use a
thermodynamically consistent microsphere frameworkbdistaed in [33] as a basis. For the
sake of conceptual clarity, we restrict the subsequentdtation to two phases—one austenitic
parent phase and a single martensite variant.

2 MICRO-PLANE CONSTITUTIVE FORMULATION

This section presents a finite strain generalisation ofipusvphase-transformation models
by the authors, cf[[29, 30]. To this end, we consider a finitaiis micro-plane constitutive
formulation for Neo-Hookean-type elasticity introduced[33] as a basis, which is extended
towards phase-transformations. The micro-plane comistittelation for phase-transformations
is then embedded into a corresponding micro-sphere framkaweiew of the solution of three-
dimensional initial boundary value problems.

21 DEFINITION OF VOLUME FRACTIONS

The volume fractiort$ associated to a particular phases {A, M}, where A represents
austenite and M represents martensite, associated to te-piane with orientatiowv is de-

fined as .
&y = lim <U—N) (1)

vy —0 ’UN
and must at any time obey the restrictions

ve DICR , Y &g=1, Y &K=0, (2)

as both the austenite and the martensite phase are assuposdéss identical time-independent
referential mass densitie§ = py = const.

2.2 MICRO-PLANE STRAIN MEASURE

Generally speaking, different micro-plane strain measuoas be considered within a micro-
sphere framework. However, in view of capturing a macroscbieo-Hookean type material
response for the individual phases—and in line withl [33]—nestrict the formulation to a
certain normal strain measure. Specifically, we charasdethe normal strain acting on the

micro-plane as
Av=||F-N||=VvVN-C-N (3)

with F representing the deformation gradient atld= F" - F being the right Cauchy-Green
deformation tensor. Note that the restriction to this straeasure induces a macroscopic Pois-
son’s ratio ofvp = 0.25.

2.3 MULTIPLICATIVE MICRO-STRAIN DECOMPOSITION

For the consideration of Bain-type transformation straissociated to the martensite phase,
the total micro-plane strain measuié (3) is multiplicdtivdecomposed into an elastic strain
contribution\; and a transformation related contributidf via

AN = AN AL (4)

so that the elastic strain contributiof, that enters the free energy potentials of the respective
material phase takes the form
Ay = A gl (5)
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with the total strain measurey defined in[(B) and with an individual material constagtfor
both austenite and martensite.

24 MICRO-PLANE HELMHOLTZ FREE ENERGY POTENTIALS

For each phase situated within a micro-plane with orientatidhwe consider a micro-plane
Helmholtz free energy§, = % (Ax) of the form

al—172 al-1773
QZ]%(AN> _ E“ [)\N [);;r] ] + [)\N [At?:] ] o 2 : (6)

with E* denoting the scalar-valued micro-plane elasticity coefficof phasey, A2 being the
corresponding transformation strain, akg representing the micro-plane strain measure de-
fined in [3). Note that this format of the Helmholtz free energpresents a natural extension of
the energy term proposed in [33] towards the consideratiorapsformation straina?. within

the individual phasea. For the transformation strain in the austenitic parenisphae have
A = [A\A]~! = 1, thus for austenite the Helmholtz free energy poteritiasi@iplifies to

~ DN D W B
AAy)=EM | X N 2 7
¢N( N) 9 + 3 61l ( )
which is directly related to the format proposed in![33] foetcompressible extension of a
micro-sphere model with vanishing initial microstresses.
Accordingly, the material micro-plane streS$ = S*(A\x) corresponding to each phase
takes the form

Siow) = 2 ®
= Bl [DwDal ™) - P el ©)

The overall Helmholtz free energlyy = @N(AN) of the considered multi-phase mixture
associated to the micro-plane with spatial orientatddms obtained from the contributions of
the respective constituents, i.e.

~

Uy(Av) = Y EvUn(n) (10)

2

_ Z&o\zf =t [[)‘N [/\1?;"]_ } + [/\N [/\1?;]_ }_ _ §] ’ (11)

2 3 6

where¢$ is the volume fraction of phase as defined in[(1). The resulting overall material
micro-plane stress measusg = Sy (Ay) of the mixture follows from the combination dfl(8)
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and [10), namely

Sxdw) = ﬁgfim (12)
= % [Zé%%(h)l (13)
= Z% &% 9% )] (14)
_ Z co HWR () 3%\/ (Aw) 1s)
= wa S (Aw) (16)
= YeEr pal ™ [Pwbal ™ - Pwbal (17)

25 MICRO-PLANE GIBBSFREE ENERGY POTENTIALS

The individual micro-plane Helmholtz free energy potelstiay specified in Sectioh 2.4,
cf. (6), are transformed to a Gibbs potenyg&l = g% (\%) using a Legendre transformation.
Note that\}, corresponds to a parametrisation of the micro-plane s$ace, whereaky re-
flects the actual, physical micro-plane strain that the iciemed material mixture is subjected to.
With the considered micro-plane strain measuteas the functional variable of the Helmholtz
free energy of phase, the Legendre transformation of the latter energy is acdisimd by
means of

- e
ROV = T - xy 2 1®)
AN
= URON) = A SR Ow)| (19)
= URON) = AV ST (20)

where use has been made [of (8). Note that the partial dexverti(18) reflects the material
stress contribution corresponding to phasef the mixture, the evaluation of which according
to (9) for the current stretch stakg yields the specific stress contributiS of phasev present
in the considered micro-plane.

For the evolution of volume fractions provided in Sectiofi, 2he Gibbs potential (25) that
is parameterised in terms of a fictitious strefdghtakes the specific form

B = TRO%) =X Sk @D
e e
—— [N[Ztr] ] +[N[t3r] ] _% — Ay S¥ (22)

where use has been madeldf (6).
In a similar fashion, the overall micro-plane Helmholtzefrenergy potentiaky of the mix-
ture specified in Sectidn 2.4 is transformed to an overalb&jmotentialzy = G (Ay) using
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a Legendre transformation, specifically

. . O (A
GxOW) = Ta(xi) — 2y ) 23)
AN
= Un(Ay) = Xy Sx ()|, (24)
= Dn(Ny) — Ny S (25)

Note that the partial derivative i (23) reflects the matesteess currently acting within the
mixture due to the externally applied material strekgh the evaluation of which according to
(@7) for the current stretch stakg; yields the overall stress valug, acting on the micro-plane
under consideration.

The combination of.(23) witH (10) and (I15) yields

Cr(0i) = DR TR0 - A*[}jﬁNa%;;N ] (26)
«@ A

= ZS?V {wwm ~ Xy S;@(Am}m] 27)

= Zf““ (AN) (28)

i.e. the overall Gibbs potentizﬁN()\*N) is obtained from the contributions of the individual
constituents, which is consistent to the relation obtafieedhe overall Helmholtz free energy

potential, cf. [(10).
2.6 EVOLUTION OF VOLUME FRACTIONS

The approach used for the derivation of the differentialagigms governing the evolution
of volume fractions is based on statistical physics,[cf].[d7 this context, a transformation
probability matrix@Q = Q(&) € R**2 corresponding to an infinitesimal generator of a Markov
process is introduced, see alsol[28]. The transformatiobalility matrix drives the evolution
of volume fractions via

E=Q(¢) ¢, (29)

wherein the notatiom denotes the material time derivative. For the two-phagsefamation
between austenite A and martensite M considered in theibatiom at hand, the transformation
probability matrix takes the form

Q - w _PA—>1\/I PNT—)A # Qt (30)

PA—>M _PM—>A
with w being a material parameter denoted as transition atteregaéncy and
Paoni = Paoni(basm) €[0,1] C R (31)

as well as R
Pyoa = Pusa(busa) € 0,1 C R (32)
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representing the probability for the transformation oftange A to martensite M and vice versa,
respectively. Note that the sum of elements in each colum@ o zero, i.e) , Q;; =0V j
holds, inducing a so-called conservative Markov processcam be shown that this special
structure of the system of evolution equations ensurestibathysical restriction§{2) regarding
the volume fractiong® and¢™ are fulfilled without the need to enforce any additional algéc
inequality constraints on the system of evolution equatich also([27].

In particular, according to [27], the probability for thamsformation from one phaseinto
another phasg follows from

—Av b,
Paaﬁ = exXp <T_)B) 5 (33)

with k£ being Boltzmann’s constanfyv denoting the (constant) transformation region’s volume,
¢ representing the current temperature ands; being the energy barrier for the transformation
under consideration, i.e. from phasdo phase3. Note thath,_,s # bs_,, and thusP,_,z #
Ps_,, holds in general. The energy barriers follow from the eviaueof certain Gibbs energy
states as elaborated in detail in Secfion 2.7.

2.7 COMPUTATION OF GIBBSENERGY BARRIERS

For the computation of Gibbs energy barriers that need tovbecome for the transforma-
tion from one phase into another, the minima of the individsiabs energy functiongs, (\})
specified in[(2R) as well as the Gibbs energy value at thesettion point of the two involved
potentials need to be determined. To this end, in the coofdakie considered two-phase setup,
we determine the minima of the austenite and martensitesGiiele energies in th&, param-
eter space via

Anin = arg min gy (Ay) (34)
and

Ain = arg min g (Ay) , (35)
respectively. The associated minimal Gibbs free energyeglor both phases are then evalu-
ated as

grﬁin = /g\]é/(ArAnln> (36)
and

Moreover, the intersection point of both potentials in tletitious strain space parameterised
by A} yields

v AN =N () (38)
= v —IN(AN) =0, (39)

which is solved using a minimisation procedure in terms of
Amin = argmin | Gy (Ax) — v () | (40)

where the superscript 'isc’ stands for “intersection’. Tdi#ained solution\s; therefore cor-

responds to the specific point in the fictitious strain spaeehich the Gibbs energy potentials
of both phases take the same value, i.e.

Gy (A = gv (A ) (41)

7
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(a) Stress-stretch response. (b) Micro-plane evolution of volume fractions.

Figure 1: Micro-plane results: evolution of stress and wwdufractions due to an artificially prescribed time-
proportional ramp-type micro-plane normal strefchi(¢) up to a maximum stretch ofy (¢t = 1s) = 1.1. The
load is then reversed to a state of zero strelgh(t = 2s) = Ay (t =0) = 1.

The Gibbs energy barriér, _,\; for the transformation from austenite A to martensite M then
follows from

bA—)M - /g\}%()\;slcln) - grﬁin 5 (42)
whereas the Gibbs energy barrigr_, » for the reverse transformation, i.e. from martensite M
to austenite A, follows in a similar way according to

bMﬁA = /g\Jl\\?(Aﬁ?n> - grlgin : (43)

With the aforementioned quantities at hand, the system ofugen equations[(29) is fully
specified and can thus be solved with the help of standard meethgme-integration schemes.

2.8 NUMERICAL EXAMPLE ON THE MICRO-PLANE LEVEL

For the numerical example on the micro-plane level, we cwmrsa stretch-driven deforma-
tion and evaluate the stress respofseé (17) as well as therddfon-driven evolution of internal
variables, i.e. volume fractior&* and&M, cf. (29). Given the two-phase setup considered in
the contribution at hand, for the transformation strainha austenitic parent phase A we set
M = 1 and for the martensite phase M we choage= 1.04. Further parameters are chosen
asw = 16571, Av = 2.71 x 10~ mm?, andd = 273 K, see Section 2.6.

The numerical results obtained for a prescribed microlatretch Ay with time-
proportional quasi-static loading are depicted in Eig. lhe Btress-stretch relation shows a
plateau-type stress evolution within the material as seath@ martensite transformation is ac-
tivated at approximately =~ 1.01. At this deformation state, the austenitic parent phasessta
to decrease, while at the same time the martensite volurotdinaincreases, cf. Fig. 1(b). As
the martensitic transformation is completed, i.e¢®at— 1 as\y — 1.08, further stretch of
the material induces a linear increase in elastic maressiess, cf. Fig. 1(a). In addition to
the micro-plane material stress meastifge= Sy (Ay), cf. (I1), we compute the micro-plane
Cauchy stressy = oy(Ay) Via oy(Ay) = A4 Sy(Ay)/J2, seel[33], where/ = det(F)
denotes the determinant of the macroscopic deformatiatiggmaF’. In the context of the arti-
ficially applied micro-plane strain, however, we chodse \y.
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Figure 2: Micro-plane Gibbs potentials for austenite andtemsite,g3 and g, respectively, at two selected
material stretch statesy. Note thath\y = 1 refers to the initial, undeformed configuration and thit is a
fictitious stretch used for parameterisatiorygf, cf. Sectiol 2.b.

The Gibbs energy potentials of the individual phases asel&in (22) are provided in Figl 2
for both the initial material state and the state of maximuratsh, i.e. for states ok (¢ =
0) = 0andAx(t = 1s) = 1.1, respectively. The non-quadratic nature of both micrapla
Gibbs energy potentials—as resulting from the specific fofrtihe underlying Helmholtz free
energy definition[(6)—is shown in Fids. 2|(a) dnd 2(c).

A closer look at the intersection points of the individuabph potentials—cf. Fig§. 2(b)
and 2(d)—reveals the location of the Gibbs energy minimaliation to the Gibbs energy value
at the intersection point. The minimume-related Gibbs eperjues, [(36) and (37), as well as
the Gibbs energy value at the intersection pdint (41) neéé twomputed in order to obtain the
Gibbs energy barrierd, (42) arid [43), which define the taansdtion probabiliteg (33) and thus
drive the evolution of volume fractions (29).

3 MICRO-SPHERE APPLICATION

Following [33], the macroscopic Piola-Kirchhoff stressder.S is computed based on the
individual material micro-plane stress measusésy ) via integration over the unit hemisphere

9
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in terms of 5
S=" | SOOIV N®Ndw. (44)

27T H2
For the macroscopic Cauchy stress respensiepicted in Figl.B, we apply the standard push-

forward of S viz. .
o-:jF-S-Ft. (45)

The quasi-static application of a macroscopic non-isachmomogeneous state of tensile
deformation
F(t) = I —+ /{(t) e X el (46)

with x(¢) € [0,0.2] C R introduced as a time-proportional load scaling parametsults in
the macroscopic material response provided in [Hig. 3. Thaimdd Cauchy stress response,
Fig.[3(a), shows a plateau-type stress characteristidghatated to the deformation-induced
onset of martensitic transformation within the polycrysiehe macroscopic volume fractions
=*—homogenised in terms of a moment of zeroth order—show asaio-type evolution, i.e.
even for very large deformations the polycrystal will natrtsform to100% martensite.

A

austenite =

M. 4

o
00

= = = = martensite =

-
f——
-

macroscopic stress [GPa]

macroscopic volume fraction

1 1.05 1.1 1.15 1.2 1 1.05 1.1 1.15 1.2
K(t) K(t)
(a) Macroscopic Cauchy stress evolution. (b) Macroscopic volume fractions.

Figure 3: Application of the micro-sphere framework: evimn of stress and volume fractions due to a quasi-
statically applied macroscopic non-isochoric homogesestate of tensile deformation in terms Bft) = I +
H(t) e Xe.

4 CONCLUSIONS

The contribution at hand introduces a constitutive formakathat extends an established
finite strain micro-sphere framework for the simulation @fdNHookean-type materials towards
phase-transformations between austenite and marterisdezidual micro-plane free energy
terms are assigned to both phases, where the Helmholtzafesgyeof martensite is consistently
extended to include a Bain-type transformation strain twigcmultiplicatively coupled to the
overall micro-plane strain measure of the martensiteifvact

The numerical examples obtained at both the micro-plara,leee Section 2.8, and at the
micro-sphere level, see Sectign 3, show that the proposeklimg framework—even though
not yet fitted to experimental data—is able to capture thécapexperimentally observed
stress-strain behaviour of, e.g., shape memory alloys.eMar, the proposed micro-sphere

10
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formulation naturally captures the polycrystalline tdfamshation behaviour that is related to
the so-called grain-locking effect as introduced in Sexffio

In conclusion, the proposed micro-sphere based finitenstnaidelling framework for phase-
transformations can be considered as a promising foundiaitiew of later extensions towards
coupled plasticity and temperature effects in polycrystal
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