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Abstract. The work addresses segmentation techniques for generation of individualized com-
putational domains on the basis of medical imaging dataset. The computational domains will
be used in 3D electrophysiology models and 3D-1D coupled hemodynamics models. Several
techniques for user-guided and automated segmentation of soft tissues, segmentation of vas-
cular and tubular structures, generation of centerlines, 1D network reconstruction, correction
and local adaptation are examined. We propose two algorithms for automatic vascular network
segmentation and user-guided cardiac segmentation.
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1 INTRODUCTION

In this paper we present and develop methods and algorithms for construction of patient-
specific discrete geometric models for two important medical applications. Each application
imposes specific restrictions on both the input medical images and the output patient-specific
discrete model, and, therefore, calls for a specific class of 3D reconstruction methods. The first
application considers numerical modelling of hemodynamics. The second application considers
electrophysiology modelling.

Individualized regional network of blood vessels is built from patient-specific CT-scans by
our fully automatic algorithm for arteries identification. It starts from the fast variant of the
isoperimetric distance trees algorithm [1] for aorta identification. The coronary and cerebral
networks are reconstructed by the use of Frangi vesselness filter [2]. The filter is based on
Hessian 3D analysis of the CT-image and is applicable for all tubular structures in the vascular
data set.

Modelling of cardiac electrophysiology may be formalized as the full-scale study of the heart
electrical activity from inner-cellular level to the cardiac tissues level. Various mathematical
models and numerical methods have been developed for modelling of cardiac electrophysiol-
ogy [3]. Generally the full-scale electrophysiology modelling involves simulations of electric
potential propagation on three different scales: the single-cell models represented by ODE are
used on cellular level, the bidomain model represented by PDE system is used on cardiac tis-
sue level, the simplified quasi-static version of Maxwell’s equations is used on the whole-body
level.

The reconstruction of personalized anatomical model of the pathological heart is one of the
crucial steps in electrophysiology modelling. The bidomain model requires an accurate anatom-
ical model of patient heart accounting myocardium anisotropy structure. Our preliminary sim-
ulations indicate that electrophysiological processes have low sensitivity to segmentation errors
outside the thorax region. Thus, patient-specific segmentation should be focused on the cardiac
region, and a reference human model may be used in the remaining part of the body.

The corner stone for medical image processing is segmentation process when each voxel of
the 3D medical image is assigned with the particular tissue or internal organ label. Various med-
ical image segmentation techniques have been developed [4, 5, 6]. The most promising fully
automatic segmentation methods belong to atlas-based segmentation techniques. The patient-
specific segmentation is obtained from the atlas of presegmented images of other individuals.
This atlas should contain enough different cases for accurate mapping of the new patient data.
Thus atlas-based approach requires huge amount of segmentation expert work for preparation
of atlases and the development of algorithms dealing with big data. Semi-automatic segmen-
tation technologies require interaction with the operator. They are used primarily for precise
local segmentations, where only one organ or tissue is processed. In our previous work we
used several techniques for adaptation of the once segmented reference human model to differ-
ent individuals. This technique relies on anthropometric scaling, control points mapping and
supervised segmentation [7, 8].

In the following two sections we discuss and present several methods for 3D reconstruction
of vascular network and cardiac model from medical images.

2 VASCULAR SEGMENTATION

In the current work we consider two regions of interest: cerebral and coronary vessels. Input
data is DICOM datasets obtained with contrast enhanced Computed Tomography Angiography
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(ceCTA). For simplicity of presentation we assume that quasi-isotropic voxel sizes are used in
this work.

Our automatic vessel segmentation methodology for coronary arteries was proposed in [9].
In the current work it is extended to process cerebral vessels. Essential steps of this method
consist of aorta segmentation, computation of vesselness values, searching branches of aorta
arch or ostia points, and removing segmentation errors near aorta boundary. Important addi-
tional step in the cerebral case is bone intensity decreasing by multiscale Match Mask Bone
Elimintaion (multiscale MMBE) algorithm [10]. For every patient the last step requires not
only ceCTA dataset but also corresponding CTA dataset not enhanced by contrast. All steps are
shown in Figure 1.

Figure 1: Segmentation pipeline. Gray rectangle highlights cerebral case only steps. (a) and (b) are algorithm
inputs, (c)-(g) essential algorithm steps.

Large variation of vessel radii results in numerically expensive Hessian-based filtering. Since
aorta is several times larger than arteries studied in this work it is natural to use specific al-
gorithm for its segmentation. In both coronary and cerebral cases we perform the following
steps. First, the Hough Circleness Transformation [11] is used to detect largest bright disk D
corresponding to aorta cross-section. Second, connected mask is obtained by region growing,
starting at the center of D, with lowest intensity inside of D as a threshold parameter. Third,
IDT algorithm [1] cuts mask in bottlenecks and, finally, mathematical morphology operations
are used to remove vessels branching from aorta.

Once aorta is segmented, the multiscale MMBE method is applied to decrease intensities of
bone tissues in cerebral case. This approach allows us to apply standard segmentation method-
ologies to get anatomically correct segmentations.

The next step is computation of Frangi Vesselness [2], which results in bigger values inside
bright tubular structures. In coronary datasets only coronary arteries and aorta represent these
structures. In cerebral case such structures are bones and arteries, and once bones are dark-
ened, Frangi Vesselness is applicable. Segmentation of arteries is produced by thresholding of
vesselness values. Then coronary arteries and cerebral aorta arch branches are found as voxel
connectivity components near the aorta boundary.

Final step is removal of segmentation errors. Thresholding of Frangi Vesselness values may
produce “leaks” near the aorta boundary. Let us assume we have segmented object represented
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by set of voxels A, but segmentation S contains set of extra voxels B, i.e. S = A ∪ B. In
case S is a connected component we call B as leak. In terms of definition leaks cannot be
removed by “remove islands” procedure. Also leaks may have different shapes, so it is hard to
find appropriate mathematical morphology operation to remove leaks automatically.

We propose automatic method for leaks removal from aorta boundary. Let us denote mask
of cerebral vessels by Vmask, mask of aorta by Amask and define voxel layer Li = {v ∈
Vmask | dist(Amask, v) = i}. For i = imax, . . . , 0 the following procedure is taken: remove
all voxels from layer Li having no neighbouring voxels in Li+1. Experiments has shown that
imax can be set to 15 voxels. In theory imax must be set bigger than the thickness of a leak.

Several examples of vessel structure reconstruction are presented in [8, 9].

3 CARDIAC IMAGES SEGMENTATION

Mathematical modelling of electrophysiology requires an anatomical 3D cardiac model. Our
group created a reference 3D cardiac model based of Visible Human Project (VHP) data [12].
This model is used for evaluation of modelling methods and algorithms. The reference model
may be used for patient-specific adaptation in case medical imaging data is insufficient for
complete segmentation.

Several segmentation techniques were examined for automatic segmentation of heart ventri-
cles. The preprocessing steps include optional noise reduction using non-local means filtering
and histogram equalization processing. The first used approach was based on SLIC supervoxel
clustering [13] and recursive region adjacency graph partitioning.

The second approach was based on user-guided active contour segmentation with supervised
random forest classification from ITK-SNAP segmentation platform [14]. The results of user-
guided segmentation highly depend on user expertise.

Based on our experience we propose to combine both approaches: the supervised random
forest classification is used for supervoxel grouping. Several post-processing steps are used to
improve the segmentation.

VHP dataset provides CT, MRI and photo images of human cadaver. Transversal photo
images are digitized with resolution 0.33×0.33 mm, distance between images is 1 mm. Photo
images were aligned, rescaled and combined in a 3D volume dataset. ITK-SNAP segmentation
software was used for visualization and segmentation. Only thorax region was investigated
resulting in cropped image 573× 330× 170 voxels with resolution 1 mm (Figure 2).

Figure 2: ITK-SNAP platform snapshot with VHP photo images of cardiac region.
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Heart cavities and blood vessels were segmented using active contours method and random
forest classifier. These regions are filled with blood and usually have a distinct color and/or
intensity on photo images and CT/MRI images. The segmented region was split into parts
corresponding to right atrium (RA), left atrium (LA), right ventricle (RV), left ventricle (LV),
aorta, pulmonary trunk, superior vena cava and inferior vena cava (Figure 3).

Figure 3: Segmentation of cardiac cavities and blood vessels.

Myocardium segmentation is performed in the vicinity of segmented heart cavities. My-
ocardium tissue differs in texture and intensity compared with neighbouring fat tissue, bones
and lungs (Figure 4). This segmentation step is also performed using active contours method
and random forest classifier.

Figure 4: Myocardium segmentation.

The final step involves segmentation smoothing. The myocardium tissue was divided into
four parts using mathematical morphology operations: right atrium, left atrium, right ventricle,
and left ventricle (Figure 5). This division will be used in modelling algorithms for synthetic
computation of myocardium fiber orientation.

The segmented model is a 3D structure with 128×119×129 voxels with resolution 1 mm and
12 tissue labels corresponding to different heart cavities, blood vessels and four myocardium
regions. The segmented model may be used for estimation of myocardium mass and ventricles
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Figure 5: Final VHP segmented model.

volume. Assuming relative density of myocardium tissue is equal to 1.05 g/ml we obtain the
mass of right ventricle 95 g, and left ventricle – 187 g. The volume of right ventricle is 77 ml, the
volume of the left ventricle – 21 ml. The computed myocardium mass lies in reference limits
for a male aged 38 years [15, 16]. We should note, that the volume of the left ventricle lies
bellow the minimum reference values [16]. This inconsistency in ventricle volumes between
VHP data and in vivo reference studies may be due to the stopped heart in VHP dataset. An
underestimated volume of the left ventricle should be accounted in further investigations. The
left ventricle volume may be extended by thickening the walls of left ventricle.

The adaptive unstructured tetrahedral mesh was constructed using Delaunay triangulation
algorithm from CGAL Mesh library [17]. The maximum mesh size is 3 mm, the minimum
mesh size in the vicinity of heart boundaries and material interfaces is 1 mm. The computational
mesh consists of 367 318 tetrahedra and 77 953 vertices (Figure 6). Upscaling of multi-labeled
segmented image was used to improve the resolution of input data.

(a) (b) (c)
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Figure 6: Unstructured mesh for VHP heart: (a) translucent 3D model; (b) triangular surface mesh; (c) volume cut
of the tetrahedral mesh.

The cardiac mesh may be used in electrophysiology modelling. The proposed segmentation
and mesh generation pipeline may be applied to patient’s CT/MRI images.

4 CONCLUSIONS

The work addresses several segmentation techniques for generation of individualized com-
putational domains on the basis of medical imaging datasets. Two algorithms were proposed
for automatic vascular network segmentation and user-guided cardiac segmentation. Several
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examples of numerical modeling applications are presented in [8, 9].
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