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Abstract. This paper demonstrates a way of solving industrial aerodynamic shape optimiza-
tion problems using the RBF4AERO platform, developed in the framework of the EU–funded
RBF4AERO project. The platform combines optimization algorithms (stochastic and gradient–
based ones), a mesh morphing tool based on Radial Basis Functions (RBFs) and various eval-
uation tools (CFD, CSD, etc). In this paper, the Evolutionary Algorithms (EAs) based tool as-
sisted by metamodels trained on a sampling performed during the Design of Experiment phase
is used along with a CFD evaluation tool. The use of Response Surface Models (RSM) signifi-
cantly reduces the number of CFD runs required to reach the optimal solution(s), while the use
of RBF–based mesh morphing avoids re–meshing prior to each CFD–based evaluation. In op-
timization problems, the platform starts by selecting a number of individuals to undergo CFD–
based evaluations. The latter constitute the training patterns for the RSM which is, then, used
as a low-cost evaluation tool within the EA–based optimization. ”Optimal” solutions found
by the EA–based search exclusively based on the trained metamodel are then re-evaluated by
means of the CFD tool. The database of already evaluated individuals is updated, the RSM is
re–trained and the EA–based optimization is repeated. The optimization terminates when con-
vergence criteria related to the RSM prediction accuracy are met or the computational budget
is exhausted. The optimization of an ultra-light aircraft and that of the DrivAer car model for
minimum drag are showcased. In all cases presented, the simpleFoam solver of OpenFOAM is
used to evaluate candidate solutions.
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1 INTRODUCTION

During the last decades, Evolutionary Algorithms (EAs) have widely been applied to shape
optimization problems. Though EAs can easily accommodate any evaluation software as a
black–box tool, they ask for a great number of evaluations to reach the optimal solution(s)
which often makes their utilization in optimization problems prohibitively expensive, especially
in industrial problems with excessive computational cost per evaluation. A known remedy
to this problem is the use of surrogate evaluation models or metamodels, leading to the so–
called metamodel–assisted EAs (MAEAs). Metamodels replace the exact evaluation tool, thus
reducing the total number of evaluations required to reach the optimal solution(s).

MAEAs can be classified to on–line and off–line trained ones, based on whether the meta-
model training takes place during the evolution or not. On MAEAs with on–line trained meta-
models, the EA relies upon the interleaving usage of the problem–specific (to be considered as
the high–fidelity) evaluation tool and the metamodel. The entire EA population can be evalu-
ated with any of these tools, [1, 2], by switching either periodically or based on some criteria.
Another option is to pre–evaluate all the generation members on the metamodel and use the
high–fidelity tool only for the most promising, according to the metamodel, individuals out
of them [3, 4, 5, 6]. Metamodels used can be of either local or global support. On the other
side, off–line trained metamodels usually rely on a single global metamodel and a sampling
technique, often referred to as Design of Experiments (DoE), [7] which defines the appropriate
training patterns. Once the metamodel has been trained, this becomes the only evaluation tool
during the EA-based search.

In the RBF4AERO platform, developed in the framework of the EU–funded RBF4AERO
project, the optimization algorithm relies on off–line trained metamodels. In particular, a
polynomial-based Response Surface Model (RSM), trained on appropriately selected samples
in the design space, is implemented.

Another important feature of the platform is the mesh morphing tool. Generally, mesh mor-
phing techniques are based on shape parameterization, which can parameterize the surface along
with the surrounding nodes of the interior mesh. These techniques allow the interior of the com-
putational mesh to be deformed, avoiding, thus, costly re-meshing. Methods like Radial Basis
Functions (RBFs) [8, 9] and volumetric B-splines or NURBS [10] can provide the required pa-
rameterization and mesh deformation. The RBF4AERO platform makes use of a morphing tool
implementing RBFs, [11]. A number of parameters controlling the positions of groups of RBF
control points are used as design variables. Though the RBF4AERO platform may accommo-
date several CFD tools, for the applications presented in this paper the simpleFoam solver of
the OpenFOAM is used, since we are dealing with low speed applications.

In what follows, the basic features of the platform are described and, then, this is used for
the re–design/shape optimization of an ultra–light aircraft and a car model.

2 OPTIMIZATION THROUGH THE RBF4AERO PLATFORM

The EA–based optimization algorithm of the RBF4AERO platform is summarized below:

1. Define the RBF shape modifications that require a specific set–up and a steerable para-
metric mesh.

2. Sample the design space with a DoE technique.

3. Evaluate the above samples on the high–fidelity (herein CFD) tool, after appropriately
morphing a pre–existing computational mesh using the RBF–based morpher tool. Store
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the so–computed objective function value(s) in the database (DB), paired with the corre-
sponding values of the design variables.

4. Train the RSM using the DB entries as training patterns.

5. Perform EA–based optimization, exclusively based on evaluations on the RSM.

6. Re–evaluate ”optimal” solution(s) resulting from step 5 on the exact evaluation tool and
update DB.

7. Return to step 4 until convergence.

In the re–evaluation phase, step 6, there is the possibility to perform additional high–fidelity
evaluations, if one area of the design space is not explored properly. Below, the basic features
of each step are further described. Note that the optimization algorithm settings, i.e. DoE,
RSM and EA parameters are user–defined through the RBF4AERO platform Graphical User
Interface.

2.1 Design space sampling

The RBF4AERO platform offers three DoE [12, 13] options to sample the design space,
namely the full factorial, partial factorial and randomized designs. Either option decides how
many and which candidate solutions will be evaluated on the CFD tool. To perform DoE, each
design variable is discretized to a number of user–defined levels. In case of a full factorial de-
sign, all possible combinations of design variables’ levels are considered. Full factorial designs
may result to high CPU cost since all possible combinations must then be evaluated on the
computationally expensive tool. The partial (or fractional) factorial design extracts a sub–group
from the corresponding full factorial design after cutting some user–selected “less important”
variables off. To obtain the partial factorial, a full factorial design is firstly defined using only
the “important” variables and the levels of the cut–off variables results from combinations of
the other variables’ levels. The partial factorial is a better compromise in terms of CPU cost but
requires a very good knowledge of the problem in hand in order to correctly decide the design
variables to cut–off. Finally, in the randomized design, a user–defined number of designs must
be generated. To do so the algorithm computes all possible partial factorial designs and keeps
the one with number of members less or equal to the user–defined number of individuals. If the
number of collected members is less than the user–defined one, the remaining design vectors
are selected from the remaining members of the corresponding full factorial design at random.

2.2 Individuals mesh morphing and evaluation

The individuals determined by the DoE are evaluated on the CFD tool. In this paper, all
evaluations are carried out using the steady state solver of OpenFOAM. Instead of re–meshing
the computational domain for each and every geometry change during the DoE, an RBF–based
morpher undertakes the morphing of a baseline mesh before delivering it to the evaluation man-
ager for the CFD run. In all cases, the baseline mesh is generated using the snappyHexMesh
tool of OpenFOAM.

RBFs are mathematical functions able to interpolate data defined at discrete points only
(source points) in an n-dimensional environment. The RBF function has the following form

s(x) =
K∑
k=1

γk φ(||x− xk||) + h(x) (1)
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where x the position vector of a mesh node and γk the coefficients of the polynomial, fitted
imposing the known values at source points xk. The interpolation quality and its behavior
depends on the chosen φ function, being of either global or compact support. In 3D mesh
morphing, the bi–harmonic function φ(r)=r is adopted for its smoothing abilities. The solution
of the RBF mathematical problem consists of the computation of the scalar coefficients of a
linear system of order equal to the number of considered source points (RBF centers). Once the
RBF system coefficients have been computed, the displacement of an arbitrary mesh node can
be expressed as a function of the distance-based contributions from the RBF centers.

The RBF method has several advantages that make it very attractive for mesh morphing.
Being a mesh–less method, where only grid points are moved regardless their connectivity, its
parallelization is quite straightforward. Over and above, it is able to exactly prescribe known
deformations onto the surface mesh. This can be achieved by using all the mesh nodes as RBF
centers with prescribed displacements, including the simple zero field to denote a surface which
is left untouched by the morphing action.

The industrial implementation of the RBF mesh morphing poses two challenges, (a) the
numerical complexity related to the solution of the RBF problem for a large number of centers
and (b) the definition of suitable paradigms to effectively control shapes using RBF. The RBF
Morph software, [11], included in the RBF4AERO platform addresses both challenges as it
comes with a fast RBF solver capable to fit large dataset (hundreds of thousands of RBF points
can be fitted in a few minutes) and with a suite of modeling tools that allows the user to easily
set–up each shape modification.

2.3 Response surface model training

The surrogate evaluation model (or metamodel) implemented in the platform is a Response
Surface Model [7] based on polynomial functions. The mathematical expression of the response
is

F̂ (~x) = b0 +
N∑
i=1

Pi∑
j=1

bijx
j
i +

M∑
j=0

aj

N∏
i=1

xIii (2)

where F̂ is the approximate objective function value, N is the number of design variables, xi is
the ith design variable, M the number of interactions, Ii the power that the ith design variable
is raised to and Pi the maximum power for each variable. The RSM coefficients bij, aj are
computed during the training phase. Interactions, [14], denote the relationship among design
variables and are mathematically expressed as multiplications among the related/interacting
variables. In case that the number of training patterns exceeds the number of coefficients to be
computed, the least–squares method is used during the RSM training. The number of equations
constructed by the least–squares method is equal to the number of coefficients. As a result, the
cost of the training depends on the number of used coefficients.

The Pi and Ii values in equation 2 can either be selected by the user or defined automatically
by minimizing the RSM’s error. Note that a different RSM, i.e. with a different configuration
(maximum powers, interactions, etc) is trained for each objective function and constraint.

2.4 Optimization using evolutionary algorithms

Once the RSM has been trained, a (µ, λ)EA, with µ parents and λ offspring, undertakes
the optimization by exclusively using the RSM as the evaluation tool. A real coded EA with
tournament selection for the parents population and simulated binary crossover scheme is im-
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plemented. Note that the computational cost of this phase is negligible since the previously
trained RSM is used to approximately evaluate all candidate solutions. Upon the termination of
the evolution, the “optimal” solution(s) resulting from EA are re–evaluated on the high-fidelity
tool and added to the DB.

2.5 Convergence/Termination criteria

The optimization platform includes three convergence criteria, checked upon completion of
each optimization cycle. The first convergence criterion is related to the CPU clock time of the
optimization (computational budget) and is defined as the maximum number of high-fidelity
evaluations that can be performed with the provided budget. This limits the size of the initial
sampling and the number of optimization cycles to be performed. The second convergence
criterion is related to the RSM prediction accuracy. The optimal solution is considered as found,
if the RSM error is very small and its prediction practically replicates the objective function
value which results from the problem–specific evaluation tool. The third convergence criterion
checks if the “optimal” solution found by the EA is not improving during a user-defined number
of evaluations.

3 OPTIMIZATION OF AN ULTRA–LIGHT AIRCRAFT

The first case is concerned with the re–design/optimization of an ultra–light aircraft [15] aim-
ing at the minimization of its drag coefficient. The aircraft geometry was provided by Pipistrel,
a light aircraft manufacturer, partner in the RBF4AERO project. In particular, the re–design
focuses on the wing root–body junction by defining two boxes. The larger one is used to limit
the morphing action and remains fixed thanks to the proper spacing of RBF points. The smaller
box, which includes the whole wing, is allowed to move along all three directions, leading to
3 design variables in total (the degrees of freedom are the displacements of the control box in
the x, y and z axes). The mesh lying in the space between the small box (which is allowed to
change) and the large one (still), including part of the fuselage and wing surfaces, is deformed
by the RBF model. A close–up view of the wing root–body junction and the morphing boxes is
shown in figure 1.

Figure 1: Optimization of an ultra–light aircraft. Close–up view of the wing root–body junction
on a surface mesh (left) and RBF control boxes (right).

The flow conditions areM∞ = 0.08, flow angle 10o andRe = 106 (based on the wing chord).
Each candidate solution is evaluated on the OpenFOAM incompressible solver (simpleFoam)
coupled with the Spalart–Allmaras turbulence model with wall functions. The computational
mesh around the aircraft is unstructured and consists of about 4.7M cells.



Dimitrios H. Kapsoulis et al.

The optimization starts by evaluating, on the aforementioned CFD tool, 45 samples which
are used for training a sixth degree (Pi = 6 in equation 2) RSM. Then a (µ, λ) = (15, 30) EA
undertakes the optimization with a termination criterion of 500 evaluations on the RSM. The
“optimal” solution resulting from the EA is re–evaluated on the CFD tool and the RSM is trained
anew. Note that each re–training results in different degree and coefficients in equation 2, since
the algorithm automatically defines the parameters needed (see section 2.3). This procedure
is repeated ten times before meeting the convergence criteria of the optimization procedure
(herein, RSM error criterion is firstly met), resulting into a total cost of 55 evaluations on the
CFD tool. The convergence history of the optimization is shown in figure 2. Note that the
horizontal axis starts from 45 since the optimization started after evaluating 45 samples during
the DoE phase.
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Figure 2: Optimization of an ultra–light aircraft. Convergence history of the optimization.

The optimized geometry yields drag coefficient which is lower by 9% compared to the ref-
erence one. The displacement of the junction towards the rear and bottom part of the fuselage
(figure 3) is responsible for the observed objective function reduction. A by–product of this
optimization is that the lift of the optimized geometry becomes higher, without being included
in the objective function. Figures 3, 4 and 5 compare the reference and the optimized aircraft
geometries. In all figures, the pressure field on the aircraft surface is plotted.

Figure 3: Optimization of an ultra–light aircraft. Comparison of the reference (left) and opti-
mized (right) aircraft geometries. Close–up front view of the wing root–body junction.
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Figure 4: Optimization of an ultra–light aircraft. Comparison of the reference (left) and opti-
mized (right) aircraft geometries. Upper view.

Figure 5: Optimization of an ultra–light aircraft. Comparison of the reference (left) and opti-
mized (right) aircraft geometries. Bottom view.

4 OPTIMIZATION OF THE DRIVAER CAR MODEL

The second case is dealing with the drag minimization of a specific configuration of the
DrivAer car model, a generic car model developed at the Institute of Aerodynamics and Fluid
Mechanics of TU München, [16], to facilitate aerodynamic investigations of passenger vehicles.
Herein, the fast–back configuration with a smooth underbody, mirrors and stationary wheels is
used [17]. For this configuration, the generated unstructured mesh consists of about 3.8M cells.

Six design variables related the shape deformation of the mirror, the rear window, the front
and back underbody, the car’s distance from the road and the boat tail are used. The RBF set–up
for two out of the six design variables is shown in figure 6. The evaluation tool is the steady
state solver of OpenFOAM with the Spalart–Allmaras turbulence model with wall functions. In
some candidate solutions, for which the flow becomes unsteady, the objective function value
results from averaging results of the 100 last iterations.

The optimization starts with 20 samples, resulting from a randomized design which are then
used to train the initial RSM. A (25, 50)EA with 500 evaluations on the RSM is used as de-
scribed before. A total of 10 optimization cycles was needed to meet the convergence criteria.
The convergence history is depicted in figure 7.

After 30 high-fidelity evaluations (including those in the DoE phase), the best solution yields
7% reduction in mean drag. Figures 8 and 9 compare the reference and the optimized car
geometries. In all figures, the pressure over the DrivAer model surface is plotted.

Since, the shape optimization of this car model with the same design variables has previously
been presented by the same team in [17], using a gradient–based optimization algorithm and the
continuous adjoint method for the computation of the objective function gradient, it is interest-
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(a) Rear window. (b) Boat tail.

Figure 6: DrivAer car shape optimization. Preview of the RBF source points, before applying
morphing, for two out of the six design variables.
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Figure 7: DrivAer car shape optimization. Convergence history of the optimization.

(a) Front view. (b) Side front view.

Figure 8: DrivAer car shape optimization. Comparison of the reference (left) and the optimized
(right) car geometries.

ing to compare the resulting optimal solutions. Both methods yield almost similar results at the
same computational cost and reduce the objective function value by about 7%. The resulting
optimal geometries are similar and small differences can be identified in the front bumper and
the spoiler, see figure 10.

5 CONCLUSIONS

This paper presented EA–based features of the RBF4AERO optimization platform along
with real–world applications. The gradient–based features are presented in a companion paper,
[18]. The use of RSM as a surrogate evaluation model during the EA–based search allows for
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(a) Rear view. (b) Side rear view.

Figure 9: DrivAer car shape optimization. Comparison of the reference (right) and the opti-
mized (left) car geometries.

(a) Front view. EA (left), adjoint (right) (b) Rear view. Adjoint (left), EA (right).

Figure 10: DrivAer car shape optimization. Comparison of optimized geometries resulted from
the EA assisted by the RSM and a gradient–based optimization in conjunction with the adjoint
method, as presented by the same group in [17].

reduced optimization time. Over and above, the RBF–based mesh morphing reduces further the
wall clock time per evaluation to be performed on the high–fidelity (CFD) tool. The overall op-
timization algorithm described is fully automated and quite user–friendly thanks to the graphic
user interface of the RBF4AERO platform.
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