
ECCOMAS Congress 2016

VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)

Crete Island, Greece, 5–10 June 2016

A DIRECT SOLVER FOR THE ADVECTION-DIFFUSION EQUATION

USING GREEN’S FUNCTIONS AND LOW-RANK APPROXIMATION

Jonathan R. Bull1, Sverker Holmgren1 and Stefan Engblom1

1Division of Scientific Computing
Department of Information Technology, Uppsala University

Polacksbacken, Uppsala, Sweden
e-mail: {jonathan.bull,sverker.holmgren,stefan.engblom}@it.uu.se

Keywords: advection diffusion, Green’s function, semi-implicit, low-rank approximation

Abstract. A new direct solution method for the advection-diffusion equation is presented.

By employing a semi-implicit time discretisation, the equation is rewritten as a heat equation

with source terms. The solution is obtained by discretely approximating the integral convolu-

tion of the associated Green’s function with advective source terms. The heat equation has an

exponentially decaying Green’s function, allowing for a reduction of effort via low-rank matrix

approximation. Simple low-rank approximations of the Green’s function matrix are investigated

as a precursor to using the Fast Multipole Method in higher dimensions. Results show that fast,

stable and accurate computations can be achieved by this method. Low-rank approximation

saves computational time at the expense of some accuracy. The new method is a template for

developing fast, scalable preconditioners for advection-dominated problems including the un-

steady Navier-Stokes equations.

1 Introduction

One can express the solution to a PDE as an integral convolution of the associated Green’s

function with forcing and boundary terms. Upon discretising, the solution is the product of a

discrete Green’s function matrix with a vector right hand side; in general the matrix is full-rank.

However, if the Green’s function has a decaying kernel then the matrix can be well-represented

by a low-rank approximation. This concept is sometimes used to precondition elliptic and

parabolic equations arising from in a variety of applications [1, 2]. However, it has not been

applied to problems featuring advection until now. The presence of advective terms in a PDE

operator introduces directionality and non-locality: the effect of conditions far upstream is felt

strongly at a particular location. Therefore, increasing separation does not imply decreasing

influence, and the degree to which the matrix rank can be reduced is limited.

This paper presents a new direct solver for the advection-diffusion equation based on discrete

Green’s functions and low-rank matrix approximation. The problem of non-locality is dealt

with by using a semi-implicit time discretisation to remove the advective term from the discrete

system matrix. Specifically, the advective part is treated explicitly in time and the diffusive part

implicitly in time, thereby transforming the equation into a steady heat equation with source

terms at each timestep. The associated Green’s function has the required decaying property,

allowing the use of low-rank approximations.

Discretisation of the integral convolution can be achieved by a number of methods. In this

paper, two simple midpoint-rule approximations are employed and their stability and accuracy

assessed. Computational cost is then reduced by using several straightforward low-rank ap-

proximations of the discrete Green’s function matrix. A series of numerical experiments in one

dimension (1D) verify the analysis and demonstrate proof of concept. The method described in

this paper is a template for more advanced strategies, in particular the use of the Fast Multipole

Method (FMM) to compute optimal low-rank approximations in 2D and 3D bounded domains.

FMM is a hierarchical algorithm for computing matrix-vector products involving N un-

knowns in O(N logN) or even O(N) arithmetic operations to a given error tolerance [3]. It is

commonly applied to N-body problems in astrophysics and molecular dynamics, and is begin-

ning to be applied to solving elliptic PDEs arising in many areas of computational physics as

well [4, 5, 6]. Recently, it has been applied as a preconditioner for elliptic PDEs in a technique

known as Inverse FMM (IFMM) [7, 8]. In all existing applications, the governing physics are

such that the mutual influence of one spatial location on another decays with separation distance.

FMM exploits this quality by hierarchically compressing interactions between well-separated

points into lower-dimensional spaces, reducing the number of interactions to be computed. The

analogy with the multigrid (MG) method is strong: both are hierarchical and act mainly on

low-frequency error components. It is envisioned that FMM could be competitive with MG for

preconditioning the system of equations arising from unsteady 3D Navier-Stokes problems.

2 Method

2.1 Discretisation of advection-diffusion equation

We consider the advection-diffusion equation in one dimension (1D) on a finite domain x ∈
V : [0, L] with boundary S

∂u

∂t
+ a

∂u

∂x
− ν

∂2u

∂x2
= 0, x ∈ V, (1a)

u(x, 0) = u0(x), x ∈ V, (1b)

u(x, t) = g(x, t), x ∈ S, (1c)

where u is a smooth scalar field, a is the (positive) advection coefficient and ν is the diffu-

sion coefficient. Dirichlet, Neumann and Robin boundary conditions can be specified for the

problem and the domain L may be periodic.

We subdivide the domain with N uniform intervals of size ∆x = L/N and choose timestep

∆t. Now we write (1) in semi-discrete form using matrix notation:

du

dt
+ Au−Du = b, (2)

where u is the solution vector, A and D are the discrete advection and diffusion operators and

b is the vector containing boundary terms. We now discretise in time using a semi-implicit

splitting scheme for the advective and diffusive terms:

du

dt
−Du

n+1 = b− Aun. (3)

For simplicity, let b = 0 and impose periodic boundary conditions. The spatial derivatives are

discretised by finite differences with an upwind scheme for advection:

un+1
i − ν∆t

∆x2
(un+1

i+1 − 2un+1
i + un+1

i−1) = un
i −

a∆t

∆x
(un

i − un
i−1). (4)

The advective and diffusive CFL numbers are denoted cA = a∆t
∆x

and cD = ν∆t
∆x2 respectively.

This is the simplest, first-order semi-implicit method for time-dependent PDEs; higher-order

methods could also be used for greater accuracy [9].

2.2 Green’s function

The semi-implicit discrete equation (3) is in the form of an initial-boundary value problem

governed by the 1D heat equation:

(
∂

∂t
− ν

∂2

∂x2

)

u(x, t) = f(x, t), x ∈ V, (5a)

u(x, 0) = u0(x), x ∈ V, (5b)

u(x, t) = g(x, t), x ∈ S, (5c)

where in our case the source term f(x, t) = −a∂un

∂x
and un denotes the solution at the previous

timestep. The solution of (5) is expressed in terms of a Green’s function G(x− x′, t− t′) as the

sum of three integrals accounting for source terms, boundary and initial conditions [10]:

u(x, t) =

∫ T

0

∫

V

G(x− x′, t− t′)f(x′, t′)dx′dt′

+

∫

V

G(x− x′, t− 0)u0(x
′)dx′

−
∫ T

0

∫

S

∂G

∂n
g(x′, t′)dS(x′)dt′, x ∈ R, t > t′. (6)

The Green’s function satisfies

(
∂

∂t
− ν

∂2

∂x2

)

G(x− x′, t− t′) = δ(x− x′, t− t′), (7)

where δ(x − x′, t − t′) is the Dirac delta function. The expression for Green’s function in one

dimension is [10]:

G(x− x′, t− t′) = (4πν(t− t′))−1/2e
− (|x−x

′|)2

4ν(t−t′) . (8)

Hereafter, only periodic (free-space) problems are considered so the third term is dropped.

Let us treat the n+1th timestep as an initial-boundary value problem from time t to t+∆t with

initial conditions u(x, t) = un(x). The solution u(t+∆t) = un+1(x) is given by

un+1(x) =

∫ t+∆t

t

∫

V

G(x− x′, t− t′)f(x′, t′)dx′dt′

+

∫

V

G(x− x′, t+∆t− t)un(x′)dx′. (9)

Taking a backwards-in-time approximation of the first integral, we obtain

un+1(x) ≈ ∆t

∫

V

G(x− x′, t+∆t− t)f(x′, t)dx′

+

∫

V

G(x− x′, t+∆t− t)un(x′)dx′

=

∫

V

(4πν∆t)−1/2e−
(|x−x

′|)2

4ν∆t [un +∆tf(x′, t)]dx′. (10)

Note that the forcing term un + ∆tf(x′, t) is identical to the right-hand side of the semi-

implicit finite difference relation (4). The Green’s function can be expressed in terms of a

scaled wavenumber ǫ = (4ν∆t)−1/2 and radial distance r = |x− x′| as

G(r, ǫ) =
ǫ√
π
e−ǫ2r2. (11)

2.3 Integral approximation

The continuous integral (10) is approximated as a sum of integrations over each interval using

the midpoint rule1. The mesh nodes are the points xi = {0,∆x, . . . , L−∆x, L}. Intervals can

1Caveat: the exponential function is not smooth at x = x′. In approximations that sample this point, the error

may be dominated by this value.

be defined with the nodes either as their midpoints (node-centred scheme) or endpoints (face-

centred scheme). Figure 1 (a) illustrates the node-centred scheme. In the case of non-uniform

mesh spacing and in higher dimensions, it can be generalised as integration on a dual mesh.

Using the node-centred scheme the solution at a node xi is:

un+1
i = Mij(u

n
j +∆tfj) (12)

=

N∑

j=1

ǫ∆x√
π
e−(|j−i|ǫ∆x)2[(1− cA)u

n
j + cAu

n
j−1]. (13)

The [N × N] matrix M with entries mij = ǫ∆x√
π
e−(|j−i|ǫ∆x)2 is symmetric positive-definite,

diagonally dominant and circulant. Periodicity is imposed on j such that if j − i > N/2 then

j = j −N and similarly, if j − i < N/2 then j = j +N .

The face-centred scheme is illustrated in Figure 1 (b). Using this scheme, the solution at a

node xi is defined as:

un+1
i = MF

ij (u
n
j +∆tfj) (14)

=

N∑

j=1

ǫ∆x√
π
e−((|j−i|+1/2)ǫ∆x)2 [(1− cA)u

n
j + cAu

n
j−1]. (15)

The salient difference between these two methods is that the latter does not include the peak of

the Green’s function. Although not critical for our Green’s function, similar PDEs have Green’s

functions with singularities. In those cases, the face-centred scheme is preferable. Using either

scheme, the error ηi at a point xi is the sum of the errors in each interval:

ηi =

∣
∣
∣
∣
∣

∫

L

G(x, x′)dx′ −
N∑

j=1

∆xG(xj , xi)

∣
∣
∣
∣
∣
≤

N∑

j=1

∆x3

24

∥
∥
∥
∥

d2G

dx2

∥
∥
∥
∥
L∞(j)

. (16)

With the node-centred scheme the error is

ηi ≤
N∑

j=1

∆x3

24

∥
∥
∥
∥
− ǫ

2
√
π
e−(|j−i|ǫ∆x)2(2(|j − i|ǫ∆x)2 − 1)

∥
∥
∥
∥
L∞(j)

≤ Lǫ∆x2

48
√
π
. (17)

Therefore second-order convergence of the solution is expected. The face-centred scheme has

the error

ηi ≤
N∑

j=1

∆x3

24

∥
∥
∥
∥
− ǫ

2
√
π
e−(|j−i+1/2|ǫ∆x)2(2(|j − i+ 1/2|ǫ∆x)2 − 1)

∥
∥
∥
∥
L∞(j)

≤ Lǫ∆x2

48
√
π
e−ǫ∆x/2(1− (ǫ∆x)2)

=
Lǫ∆x2

48
√
π
(1− ǫ∆x/2 +O(∆x2))(1− (ǫ∆x)2)

=
Lǫ∆x2

48
√
π
, (18)

where e−ǫ∆x/2 has been expanded as a Taylor series about ∆x = 0. Keeping the leading-order

term only, the face-centred error (18) reduces to the same expression as for the node-centred

scheme (17). Higher-order approximations may also be employed for the integral. Note that

this is not the only source of error: the spatial and temporal discretisations also contribute.

x
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G(x

i
,x

j
)

(a) Integration on dual mesh (node-centred)

x
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G(x)

(b) Integration on primary mesh (face-centred)

Figure 1: Approximations of Green’s function with N = 10 centred at 5th interval. Primary mesh nodes shown in

blue and midpoints in red.

2.4 Stability analysis

2.4.1 Node-Centred Scheme

Consider a uniform initial flow field u(x) = C: the solution is constant throughout time.

Therefore a necessary, but not sufficient, condition for stability of the integral equation (12)

(and also (14)) is that the row sum of matrix M (resp. MF) must not be greater than one. For

the sake of accuracy the row sum must be as close to one from below as possible. Periodic

boundaries and uniform ∆x are assumed. Thanks to the circulant property of M , the sum is

identical for all rows l. The node-centred matrix row sum stability constraint is written:

ǫ∆x√
π

N∑

j=1

e−(|j−l|ǫ∆x)2 ≤ 1

ǫ∆x√
π



1 + 2

(N−1)/2
∑

j=1

e−(jǫ∆x)2



 ≤ 1. (19)

Now ǫ∆x = c
−1/2
D is substituted into (19) to obtain a function f(cD):

f(cD) =
1√
π
c
−1/2
D









1 + 2

(N−1)/2
∑

j=1

(e1/cD)−j2

︸ ︷︷ ︸

SN









− 1 ≤ 0. (20)

The sum SN is convergent for e1/cD > 1, i.e. cD > 0. However, no expression can be found

for the limit of the sum as N → ∞. Numerical calculations with large N provide the following

information:

1. as cD → 0, SN → 0,

2. as cD → ∞, SN → N ,

3. at cD = 1, SN = 0.3863.

The stability function (20) is plotted (20) in Figure 2 on (a) semi-log and (b) log-log scales (real

part) for several values of N . The function lies below the cD axis above a certain value, i.e.

there is a minimum bound on cD for the inequality to be satisfied. The values of cD at which the

function crosses the axis (spikes on the log-log plot) increases with N . In the simplest case of

N = 1, the stability condition is cD ≥ 0.66. At N = 10, cD > 2.28; at N = 100, cD > 3.73,

and at N = 1000, cD > 3.73. The reason for the limited stability of the node-centred scheme is

the presence of the central term at j = i in (19). Accuracy also depends on cD: there is a range

of cD in which f(cD) ≈ 0 and f(cD) ≤ 0 with the zero-crossing defining the lower bound. The

extent of the range increases with N . At larger N , the row sum equals one to machine precision

across several orders of magnitude in cD.

log10(cD)
-1 0 1 2 3 4 5 6

f(
cD

,N
)

-1

-0.5

0

0.5
1
10
100
1000

(a) Linear axes

log10(cD)
-1 0 1 2 3 4 5 6

lo
g1

0(
f(

cD
,N

))

-16

-14

-12

-10

-8

-6

-4

-2

0

1
10
100
1000

(b) Re(f(cD, N)) Log axes

Figure 2: Stability condition on node-centred scheme as a function of cD for N = {1, 10, 100, 1000}.

2.4.2 Face-Centred Scheme

The matrix row sum using the face-centred scheme is:

ǫ∆x√
π

N∑

j=1

e−((|j−l|+1/2)ǫ∆x)2 ≤ 1

2
ǫ∆x√

π

N/2
∑

j=1

e−((j−1/2)ǫ∆x)2 ≤ 1. (21)

Again, we substitute ǫ∆x = c
−1/2
D into (21) to obtain:

f(cD) =
2√
π
c
−1/2
D

N/2
∑

j=1

(e1/cD)−(j−1/2)2 − 1 ≤ 0. (22)

The stability function is plotted in Figure 3. Now, the inequality is satisfied for all cD. Neverthe-

less, the accuracy is still contingent upon cD. As with the node-centred scheme, it is clear from

Figure 3 (a) that the face-centred scheme is accurate over a finite region that increases rapidly

with N . At N = 1000, machine-precision accuracy is achieved from cD = 3.75 to cD ≈ 10000.

log10(cD)
-1 0 1 2 3 4 5 6

f(
cD

,N
)

-1

-0.5

0

0.5
1
10
100
1000

(a) Semi-log axes

log10(cD)
-1 0 1 2 3 4 5 6

lo
g1

0(
f(

cD
,N

))

-16

-14

-12

-10

-8

-6

-4

-2

0

1
10
100
1000

(b) Log-log axes

Figure 3: Stability condition on face-centred scheme as a function of cD for N = {1, 10, 100, 1000}.

2.5 von Neumann analysis

The above conditions are necessary but not sufficient for stability of the node- and face-

centred schemes. Von Neumann’s method is used to derive a second condition which, together

with the first condition, is sufficient for stability of the method. We analyse the node-centred

scheme first. The error term at time level n + 1 and location l is related to the error at the

previous time level by:

ea(t+∆t)eikmx =
ǫ∆x√

π

[

[(1− cA)e
ateikmx + cAe

ateikm(x−∆x)]

+

(N−1)/2
∑

j=1

e−(jǫ∆x)2[(1− cA)e
ateikm(x−j∆x) + cAe

ateikm(x−(j−1)∆x)]

+

(N−1)/2
∑

j=1

e−(jǫ∆x)2[(1− cA)e
ateikm(x+j∆x) + cAe

ateikm(x+(j−1)∆x)]

]

,(23)

where the first term is the contribution from point j = l and the next two terms are the contribu-

tions from points to the left and right of l respectively. Upon dividing through by eateikmx and

substituting the relations e−(j+1)ikm∆x = e−jikm∆xe−ikm∆x and e(j−1)ikm∆x = ejikm∆xe−ikm∆x,

we obtain

ea∆t =
ǫ∆x√

π

[

(1− cA + cAe
−ikm∆x)

(

1 +

(N−1)/2
∑

j=1

e−(jǫ∆x)2
(
e−jikm∆x + ejikm∆x)

)
)]

= (1− cA + cAe
−ikm∆x)

ǫ∆x√
π

(

1 + 2

(N−1)/2
∑

j=1

e−(jǫ∆x)2 cos(jkm∆x)

)

︸ ︷︷ ︸

M

. (24)

For stability it is required that |ea∆t| ≤ 1. For the most restrictive condition on cA term M
must be maximised. Using max(| cos(jkm∆x)|) = 1, M is reduced to the matrix row sum (19).

Choosing cD such that the stability function in (20) equals zero to a sufficient level of precision,

we have M ≈ 1. Thus (24) reduces to

∣
∣1− cA + cAe

−ikm∆x
∣
∣ ≤ 1. (25)

This represents a circle of radius cA and centre 1− cA. Finally, we have the stability condition:

2cA − 1 ≤ 1 ∴ cA ≤ 1. (26)

This condition is typical of the upwind finite difference discretisation of the advection term and

does not depend on the attributes of the Green’s function method. An identical condition can

also be derived for the face-centred scheme.

2.6 Low-rank approximation

In the two matrix methods defined above, entries far from the diagonal make a relatively

small contribution to the solution so low-rank approximations to M or MF can be justifiably

used to reduce computational effort. The primary method of interest here is the fast multipole

method (FMM), although this paper treats only the 1D case for which FMM is not applicable.

After a generic description of FMM, two simple methods of constructing a low-rank matrix are

presented. This work is a precursor step to using FMM for the 2D and 3D advection-diffusion

equations.

Fast multipole method: The computational degrees of freedom are treated as a cloud of

points (we do not specify the number of spatial dimensions d to keep the description generic).

A k-level tree mesh is constructed in which level one consists of one box containing all points

and the kth level consists of k2d boxes. Each box at level k contains a small number of points,

say p on average. A multipole expansion (polynomial series) of degree m is employed at the

box centroid to describe the equivalent source due to all point sources in the box.

The interactions between any two boxes on the same level are classified as strong or weak

based on their radii, on the separation between their centroids and on a threshold value θ. Strong

interactions are computed directly between points. Weak interactions are computed by ‘shift-

ing’ a multipole expansion from one box to the other. At levels 1 to k−1, a multipole expansion

in a box is computed from multipole expansions inside its children. In this manner, only local

interactions at level k are computed directly and all other interactions are computed approxi-

mately via multipole expansions and shifts. This saves considerable effort especially for very

large N .

In an abstract sense FMM is a method for hierarchical sparsification of a dense matrix. Strong

interactions are clustered around the diagonal. Away from the diagonal, zeros are introduced by

the multipole representation. The degree of sparsification depends on the user-defined parame-

ters p, m and θ. Accuracy and computational cost can be fine-tuned via these parameters.

Threshold value: A minimum value is specified, below which the matrix entry is set to zero.

The sparse matrix ML1 is constructed according to

mL1
ij =

{

mij , mij > 1.0/N,

0, otherwise
(27)

Likewise, the very sparse matrix ML2 is constructed with the threshold value of 1.0/
√
N .

Specified bandwidth: Let P be the low-rank matrix bandwidth; in this case P = round(N/8).
Then the entries of sparse matrix ML3 are given by

mL3
ij =

{

mij , i− P ≤ j ≤ i+ P,

0, otherwise
(28)

with the same periodic indexing as the full-rank matrix.

2.7 Comparison to iterative method

To compute a reference solution, an iterative method is employed based on the same implicit-

explicit flux splitting:

Aun+1
i =

(

1− ν∆t
d2

dx2

)

un+1
i = (1− cA)u

n
i + cAu

n
i−1, (29)

where the matrix A is

A =










1 + 2cD −cD . . . −cD
−cD 1 + 2cD −cD

. . .
. . .

. . .

−cD 1 + 2cD −cD
−cD . . . −cD 1 + 2cD










. (30)

The Matlab linsolve function was used with opts.SYM=true,opts.POSDEF=true

and all other options set to false. It is not a very efficient method but serves to provide a

reference solution.

3 Numerical tests

The full-rank and sparse matrix-vector products and the iterative method were implemented

in Matlab to solve the 1D advection-diffusion equation with periodic boundary conditions. The

advective and diffusive constants were set to a = 1.0 and ν = 0.1 and simulations were run

for 100 timesteps. Discrete optimisation of the diffusive CFL number was performed for the

node- and face-centred schemes. The smallest values of cD that minimised the functions in

Figures 2 and 3 were found for each value of N . These in turn dictated the timesteps, which

were sufficiently small that the advective CFL condition (26) was also satisfied. Table 1 lists the

optimised timesteps ∆t for each N and each scheme. The values scale approximately with N−2

and the node-centred scheme has an optimal timestep slightly larger than that of the face-centred

scheme.

Figure 4 (a) shows the full-rank node-centred matrix M coloured by magnitude. For com-

parison, Figure 4 (b) shows the inverse of matrix A in (30). Figures (c,d,e) show the non-zeros

of sparse matrices ML1, ML2 and ML3. Table 2 shows the row sum and number of nonzeros in

each matrix.

Figure 5 plots the solutions starting from (a) sinusoidal and (b) Gaussian initial conditions

with N=100. Node-centred solutions are compared to the reference solution computed at nodes,

and the face-centred scheme to the reference solution computed at interval midpoints. The ML2

solution displays a large amplitude (dissipative) error, as expected from the fact that it has a row

sum well below one. All the other node-centred solutions overlie the reference solution. The

face-centred solution has a phase lag (dispersion error).

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) M

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0.05

0.1

0.15

0.2

(b) A−1

nz = 1700
20 40 60 80

(c) ML1

nz = 2100
20 40 60 80

(d) ML2

nz = 1700
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

(e) ML3

Figure 4: Colour plot of (a) full-rank matrix, (b) inverse iterative matrix, (c,d,e) non-zeros of sparse matrices.

N ∆t (node-centred) ∆t (face-centred)

100 3.85e− 3 3.75e− 3
200 9.64e− 4 9.37e− 4
400 2.41e− 4 2.34e− 4
800 6.02e− 5 5.86e− 5

1600 1.51e− 5 1.46e− 5
3200 3.76e− 6 3.66e− 6

Table 1: Optimal timesteps.

matrix row sum NNZ

A−1 1.00000 10000

M 1.00000 10000

MF 1.00000 10000

ML1 0.99791 1700

ML2 0.95359 1100

ML3 0.99999 4900

Table 2: Matrix row sums and no. of nonzeros, N=100.

3.1 Error Convergence

The L2 norm of the solution errors with respect to the reference solutions (at the nodes

or faces as appropriate) was calculated after one timestep, successively doubling N from 100

up to 3200. Figure 6 (a) shows the error convergence on a log-log plot, starting from the

sinusoidal initial condition. The full-rank node-centred matrix M results in a convergence rate

of approximately fifth order and approaches machine precision at large N . The ML3 error

converges at an identical rate and has the same magnitude: this low-rank approximation does

not reduce accuracy. The ML1 and ML2 errors converge at between first and second order. The

full-rank face-centred matrix MF error also converges at between first and second order. Figure

6 (b) shows the errors when starting from the Gaussian initial condition, with similar results to

the (a).

3.2 CPU time

The time taken to compute one timestep with N=100 to N=3200 was found. The times to

construct A, M , ML1 etc. were not included. Figure 7 shows the CPU times. Similar results

are obtained from both initial conditions. The reference solution is much slower than the direct

solutions and the time increases faster than N2. Direct solution times increase at about first

order. The low-rank matrices constructed using the minimum-value rule, ML1 and ML2, are by

far the fastest at large N . Matrix ML3 with prescribed rank is as slow as the full-rank matrices

at large N . Given that the error is as small as the full-rank scheme, this low-rank scheme

clearly does not alter the matrix noticeably. Specifying a smaller bandwidth would have a more

pronounced effect.

4 Conclusions

This paper presents a simple scheme for direct solution of the one-dimensional advection-

diffusion equation in a periodic setting. By using a semi-implicit time discretisation the ad-

vective term becomes a forcing function and the left-hand side becomes the heat equation.

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
A
M
ML1
ML2
ML3
AF
MF

(a) sinusoidal initial condition

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A
M
ML1
ML2
ML3
AF
MF

(b) Gaussian initial condition

Figure 5: Computed solutions with (a) sinusoidal, (b) Gaussian initial conditions. —: reference (node), – –:

reference (face), blue: M , red: ML1, green: ML2, magenta: ML3, blue dashes: MF .

The associated Green’s function has a decaying kernel, making it highly suitable for low-rank

discrete approximation. Similar methods have been very successful in solving purely elliptic

equations, but this is the first known application to a hyperbolic equation.

Several different full- and low-rank discrete approximations of the kernel were analysed and

found to have differing stability limits and lead to differing error convergence rates. All ob-

tained approximately linear scaling of CPU time with N . The node-centred full-rank scheme

was not unconditionally stable but had the best accuracy and the error converged at fifth or-

der. Almost machine-precision accuracy (with respect to the reference iterative solution) was

attained by this scheme at N = 3200 in a single matrix-vector multiplication. The face-centred

scheme, although unconditionally stable, was less accurate and had a much lower convergence

rate. Specifically, the numerical wave speed was under-predicted although the amplitude was

well-predicted. Low-rank node-centred approximations in which a threshold matrix entry was

defined were shown to save considerable computational effort but were less accurate and had a

lower error convergence rate. The balance of accuracy and cost may be problem-dependent and

more work is needed to determine robust sparsification strategies.

The new method is a template for finding fast approximate solutions of advection-dominated

problems. FMM is proposed as the ideal low-rank approximation algorithm for this application

(although it is not suitable for 1D problems). FMM allows control over the balance of accuracy

and speed, and scales very well to large numbers of parallel processes. In terms of solving PDEs,

FMM is somewhat analogous to multigrid, in that low-frequency error components (i.e. distant

interactions) are rapidly diminished. Indeed, FMM could become a competitor to multigrid as a

solver/preconditioner for hyperbolic PDEs including the Navier-Stokes equations. Future work

will extend the low-rank direct solution method to 2D and 3D problems on bounded domains.

REFERENCES

[1] M. Bebendorf, Hierarchical lu decomposition-based preconditioners for BEM, Computing

74 (3) (2005) 225–247.

log10(1/N)
-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2

lo
g1

0(
er

ro
r)

-14

-12

-10

-8

-6

-4

-2

M
ML1
ML2
ML3
MF
slope 1
slope 2
slope 5

(a) sinusoidal initial condition

log10(1/N)
-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2

lo
g1

0(
er

ro
r)

-14

-12

-10

-8

-6

-4

-2

M
ML1
ML2
ML3
MF
slope 1
slope 2
slope 5

(b) Gaussian initial condition

Figure 6: Error convergence of direct solutions with respect to reference solution, (a) sinusoidal and (b) Gaussian

initial conditions.

log10(1/N)
-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2

lo
g1

0(
C

P
U

 ti
m

e)

-5

-4

-3

-2

-1

0

1
M
ML1
ML2
ML3
MF
A
slope -1
slope -2

(a) sinusoidal initial condition

log10(1/N)
-3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2

lo
g1

0(
C

P
U

 ti
m

e)

-5

-4

-3

-2

-1

0

1
M
ML1
ML2
ML3
MF
A
slope -1
slope -2

(b) Gaussian initial condition

Figure 7: Time to solution.

[2] H. Branden, P. Sundqvist, An algorithm for computing fundamental solutions of difference

operators, Numerical Algorithms 36 (4) (2004) 331–343.

[3] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, Journal of Computa-

tional Physics 73 (1987) 325–348.

[4] F. Ethridge, L. Greengard, A new fast-multipole accelerated Poisson solver in two dimen-

sions, SIAM J. Sci. Comput. 23 (3) (2001) 741–760.

[5] L. Greengard, D. Gueyffier, P.-G. Martinsson, V. Rokhlin, Fast direct solvers for integral

equations in complex three-dimensional domains, Acta Numerica 18 (2009) 243–275.

[6] R. Yokota, H. Ibeid, D. Keyes, Fast multipole method as a matrix-free hierarchical low-

rank approximation, arXiv:1602.02244 [cs.NA] (2016).

[7] S. Ambikasaran, E. Darve, The inverse fast multipole method, arXiv:1407.1572 (2014).

[8] P. Coulier, H. Pouransari, E. Darve, The inverse fast multipole method: using a fast ap-

proximate direct solver as a preconditioner for dense linear systems, arXiv:1508.01835

(2015).

[9] U. Ascher, S. Ruuth, B. Wetton, Implicit-explicit methods for time-dependent partial dif-

ferential equations, SIAM Journal on Numerical Analysis 32 (3) (1995) 797–823.

[10] P. Olver, introduction to partial differential equations, Springer, 2013.

	Introduction
	Method
	Discretisation of advection-diffusion equation
	Green's function
	Integral approximation
	Stability analysis
	Node-Centred Scheme
	Face-Centred Scheme

	von Neumann analysis
	Low-rank approximation
	Comparison to iterative method

	Numerical tests
	Error Convergence
	CPU time

	Conclusions

